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Flux-controlled skin effect and topological transition in a dissipative two-leg ladder model
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The synthetic gauge field and dissipation are of crucial importance in both fundamental physics and applica-
tions. Here, we investigate the interplay of the uniform flux and the on-site gain and loss by considering a dissi-
pative two-leg ladder model. By calculating the spectral winding number and the generalized Brillouin zone, we
predict the non-Hermitian skin effect, whose skin modes display the bipolar localization. This skin effect emerges
when the flux is not an integer multiple of π . We further demonstrate the breakdown of the chiral currents
due to the presence of the skin effect by studying single-particle dynamics. Moreover, we show that the
non-Hermiticity can drive a flux-dependent topological transition characterized by a hidden Chern number. Our
results provide a scheme to manipulate the non-Hermitian skin effect and topological phase transitions, which
may find potential applications in lasing, light manipulating, and signal processing.
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I. INTRODUCTION

Non-Hermitian systems, described by Hamiltonians with
non-Hermitian terms, have attracted significant attention both
theoretically and experimentally in recent years [1–6]. In
general, there are two kinds of non-Hermitian Hamiltoni-
ans, describing on-site gain-loss and nonreciprocal systems.
They host extensive properties with no correspondence to
Hermitian systems, such as complex eigenvalues [7],
biorthonormal eigenvectors [8], and exceptional points [9].
A most intriguing feature is the non-Hermitian skin effect
[10–22], where the non-Hermiticity drives the bulk eigen-
states of the system to approach the boundaries. It leads
to potential applications, including lasing [23–25], sensing
[26,27], directional amplification [28,29], and anomalous
transport behavior [30–36]. Recently, the interplay of non-
Hermiticity and topology was explored [37] and led to novel
topological invariants [38–44], non-Bloch bulk-boundary cor-
respondence [45–51], and rich topological classifications with
new symmetries [52–55].

Meanwhile, the discovery of a synthetic gauge field involv-
ing neutral entities has revolutionized the field of quantum
simulation [56–69]. A simple and archetypal model to study
the effect of the synthetic gauge field is the two-leg lad-
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der lattice subjected to a flux in each square plaquette. It
was demonstrated experimentally in ultracold atoms [70–74]
and photonics [75] that the flux can induce spin-momentum
locking in the band structure, chiral currents, and Meissner-to-
vortex phase transition. In these experimental systems, on-site
dissipations are also well controlled. Thus, it is natural to
ask what interesting physics will occur under the interplay
between the synthetic gauge field and non-Hermiticity. Recent
work [76] considered a non-Hermitian two-leg ladder model
with staggered flux and parity-time (PT ) symmetry on-site
gain and loss. It was shown that such a system does not
exhibit the non-Hermitian skin effect and the non-Hermitian
parameters do not affect the topological phases.

In this paper, we consider a dissipative two-leg ladder
model with uniform flux (complex hoppings) and anti-
PT -symmetry on-site gain and loss. It is found that the
non-Hermitian skin effect appears when the flux is not an inte-
ger multiple of π . In particular, the skin modes display bipolar
localization, which can be characterized by the spectral wind-
ing number and the generalized Brillouin zone (GBZ). We
further demonstrate the breakdown of the chiral currents due
to the presence of the skin effect by studying single-particle
dynamics. We also reveal that the non-Hermiticity can induce
a flux-dependent topological transition, which is characterized
by a hidden Chern number. Our results provide a scheme to
steer skin effects and study non-Hermitian topological states,
which may find applications in lasing, light manipulation, and
signal processing.
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FIG. 1. Schematic of the non-Hermitian two-leg (labeled A and
B) ladder model with four sites {a1,2, b1,2} per unit cell (shaded
region). t1 (dotted lines) is the interleg coupling strength, and t2

(dashed lines) and t3eiφ (solid lines) are the intraleg couplings, which
generate a flux φ threading each square plaquette. The sites of the A
and B legs are subjected to on-site gain (solid red circles) and loss
(dashed green circles), respectively.

II. MODEL AND HAMILTONIAN

Figure 1 shows our introduced non-Hermitian two-leg
(labeled A and B) ladder model with four sites {a1,2, b1,2} per
unit cell (shaded region), where a and b denote the A and B
legs, respectively, and 1 and 2 denote two sublattices within
a unit cell in each leg. This model hosts the interleg coupling
strength t1 (dotted lines) and the intraleg couplings t2 (dashed
lines) and t3eiφ (solid lines). As a result, each plaquette is
threaded by a synthetic magnetic flux φ. On the other hand,
the sites of the A and B legs are subjected to on-site gain
(solid red circles) and loss (dashed green circles), respectively.
The gain and loss rates are denoted by γ . The corresponding
tight-binding Hamiltonian is given by

H =
N∑
j

{[−t1(a†
j,1b j,1+b†

j,2a j,2)−t2(b†
j,1b j,2+a†

j,2a j+1,1)

− t3eiφ (a†
j,2a j,1 + b†

j,2b j+1,1) + H.c.]

+ iγ (a†
j,1a j,1 − b†

j,1b j,1 − b†
j,2b j,2 + a†

j,2a j,2)}, (1)

where α j,s and α
†
j,s are the annihilation and creation operators

on the α-s sublattice of the jth unit cell with α = a or b
and s = 1 or 2; L = 4N is the length of the lattice, with N
being the number of the unit cells; and H.c. represents the
Hermitian conjugate. The third line of Eq. (1) describes the
non-Hermitian part with on-site gain and loss.

In the basis of (a1,k, b1,k, b2,k, a2,k )T, the Hamiltonian (1)
is written as

H (k) =

⎛
⎜⎜⎝

iγ −t1 0 h1

−t1 −iγ h2 0
0 h∗

2 −iγ −t1
h∗

1 0 −t1 iγ

⎞
⎟⎟⎠, (2)

with h1 = −t3e−iφ − t2e−ik and h2 = −t2 − t3e−iφe−ik . The
Hamiltonian (2) satisfies a pseudo-anti-Hermiticity (i.e., non-
Hermitian chiral symmetry), H (k) = −�H†(k)�, with � =
σ0 ⊗ σz. This symmetry can induce a nontrivial topology
with pairwise eigenvalues with E (k) = −E∗(k) [77]. For
φ = 0, the Hamiltonian (2) possesses particle-hole sym-
metry with �H∗(k)�−1 = −H (−k) and anti-PT symmetry
(PT )H (k)(PT )−1 = −H (k), with P = iσx ⊗ σy and T = K
being the complex-conjugation operator. Here, σ0 is the 2 × 2

identity matrix, and σx,y,z are the Pauli matrices. Due to the
presence of the flux, the system does not have time-reversal
symmetry.

In fact, the Hamiltonian (1) can be viewed as a non-
Hermitian generalized Su-Schrieffer-Heeger (SSH) model
with next-nearest-neighbor intercell coupling [78,79]. It
should be noted that a similar non-Hermitian generalized SSH
model with a synthetic gauge field was discussed in Ref. [76]
which is equivalent to a two-leg ladder lattice with staggered
flux and PT -symmetry on-site gain and loss. That paper
demonstrated that such staggered flux affects the topological
phase of the system, which does not exhibit the non-Hermitian
skin effect. Moreover, the non-Hermiticity determines the
PT -symmetry transition, while it does not affect the topo-
logical phase transitions. Intriguingly, the dissipative two-leg
model considered here exhibits quite different properties un-
der the interplay of the uniform flux and anti-PT -symmetry
on-site gain and loss. In the following, we will demonstrate
that the dissipative two-leg ladder model with uniform flux
hosts the non-Hermitian skin effect and show the breakdown
of the chiral dynamics due to the interaction between chiral
currents induced by the gauge field and skin effect. We will
also reveal a flux-dependent topological phase transition in-
duced solely by the on-site gain and loss.

III. NON-HERMITIAN SKIN EFFECT

In this section, we demonstrate that the dissipative two-leg
ladder shown in Fig. 1 exhibits the non-Hermitian skin effect
under the interplay of the flux and on-site gain and loss.

A typical signature of the non-Hermitian skin effect is
the significant difference in the energy spectra in the com-
plex plane of the non-Hermitian Hamiltonian under the open
boundary condition (OBC) and the periodic boundary condi-
tion (PBC). In Figs. 2(a)–2(e), we plot the complex energy
spectra of the Hamiltonian (1) with γ = 0.5 for φ = 0, φ =
π/4, φ = π/2, φ = 3π/4, and φ = π , respectively. It is
found that the energy spectra under the OBC and PBC totally
overlap for φ = 0 [Fig. 2(a)] and φ = π [Fig. 2(e)]. However,
for φ = π/4, π/2, and 3π/4 [Figs. 2(b)–2(d)], the PBC spec-
tra form two closed loops, which are separated from those
under the OBC. These results indicate that the system sustains
the skin effect when γ �= 0 and φ �= nπ , with n being the
integer number.

To further clarify the existence of the skin effect, in
Figs. 2(f)–2(j) we show the profiles of all eigenstates as a func-
tion of eigenenergies corresponding to Figs. 2(a)–2(e) under
the OBC. It is clear that all eigenstates are distributed among
the bulk for φ = 0 [Fig. 2(f)] and φ = π [Fig. 2(j)]. However,
for φ = π/4, π/2, and 3π/4 [Figs. 2(g)–2(i)], the eigenstates
with Re(E ) > 0 are localized at the left boundary of the lad-
der, while the eigenstates with Re(E ) < 0 are accumulated at
the right boundary. This phenomenon is the so-called bipolar
non-Hermitian skin effect [80–82], where the eigenstates col-
lapse to both ends of the lattice. Note that there are several
extended eigenstates with Re(E ) ≈ 0 for φ = π/4 and π/2.
These energies are dubbed the Bloch points, which belong to
both the PBC and OBC spectra.

The non-Hermitian skin effect is a consequence of the
nontrivial topology of a point-gapped non-Hermitian system,
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FIG. 2. Complex energy spectra of the Hamiltonian (1) under the OBC (gray dots) and the PBC (red dots) for (a) φ = 0, (b) φ = π/4,
(c) φ = π/2, (d) φ = 3π/4, and (e) φ = π . w = ±1 denotes the wingding number of the eigenvalues under the PBC. (f)–(j) Profiles of all
eigenstates as a function of eigenenergies corresponding to (a)–(e). The other parameters are chosen to be t1 = 1.2, t2 = t3 = 1, γ = 0.5, and
N = 50. We set t2 = 1 as the energy unit.

which can be characterized by the spectral winding number
[13]. The spectral winding number with respect to a reference
energy Er is defined as

w =
M∑

m=1

∮
BZ

dk

2π
∂k arg [Em(k) − Er], (3)

where Em(k) is the eigenenergy of the Bloch Hamiltonian
(2), M is the total number of bands, and the integral runs
over the whole Brillouin zone. Equation (3) means that the
non-Hermitian skin effect presents in the system under the
OBC if w is nonzero with respect to a certain reference energy
Er . Moreover, the sign of w determines the skin direction
of the eigenstates; that is, a positive (negative) sign indicates
the localization to the left (right). By calculating the spectral
winding number of the Hamiltonian (2), we obtain w = −1
(clockwise winding) for the bands with Re(E ) < 0 and w = 1
(counterclockwise winding) for the bands with Re(E ) > 0,
as shown in Figs. 2(b)–2(d). Therefore, the eigenstates with
Re(E ) < 0 under the OBC are localized on the right side of
the ladder, and the eigenstates with Re(E ) > 0 are localized
on the left side, which is consistent with Figs. 2(g)–2(i). For
the Hermitian case, or φ = nπ , the complex spectra under the
PBC collapse into lines or arcs [Figs. 2(a) and 2(e)], and there
is no skin effect.

The properties of the above non-Hermitian skin effect
can also be characterized by the GBZ [46,47], which is
calculated by

f (β, E ) = det [E − H (β )] = 0, (4)

with H (β ) = H (eik → β ) and E being the eigenvalues under
the OBC. Here, f (β, E ) is a quartic equation for β (see
Appendix A for details), having four solutions βi (i =
1, . . . , 4), with |β1| � |β2| � |β3| � |β4|. The trajectory of
solution β satisfying |β2| = |β3| gives rise to the GBZ.

Figures 3(a) and 3(b) show the GBZs of the Hamiltonian
(1) for φ = π/2 and φ = 3π/4, respectively. It can be seen
that one set of sub-GBZs with Re(E ) > 0 (purple dots) is
located in the interior of the unit circle (gray lines), indi-

cating the localization on the left end. However, another set
of sub-GBZs with Re(E ) < 0 (red dots) is outside the unit
circle, indicating the localization on the right end. Especially,
the intersections of the GBZ with the unit circle [Fig. 3(a)]
correspond to the Bloch points.

IV. INTERPLAY OF CHIRAL DYNAMICS AND SKIN
EFFECT

From the above discussions, such a flux-dependent dissi-
pative two-leg model displays the bipolar non-Hermitian skin
effect. Contrary to the conventional single-side skin effect, the
wave dynamics exhibits ballisticlike transport instead of the
directional bulk flow for arbitrary single-site initial excitation
of the system. This makes the detection of the bipolar
non-Hermitian skin effect experimentally challenging. On the
other hand, we note that one of the hallmark features of the
Hermitian two-leg ladder model with magnetic flux (Hall lad-
der) is the chiral current [70,71]. In this section, we study the
interplay of the chiral current and non-Hermitian skin effect.

In the absence of non-Hermiticity (γ = 0) and t2 = t3, the
Hamiltonian (1) reduces to the general two-legged ladder with

-2 -1 0 1 2

-1

0

1

-1 0 1

-1

0

1

(a) (b)

FIG. 3. The generalized Brillouin zone (red and purple dots) of
the Hamiltonian (1) for (a) φ = π/2 and (b) φ = 3π/4. The other
parameters are the same as those in Fig. 2. The gray line is the unit
circle.
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FIG. 4. (a) Band structure of the Hamiltonian (5) for φ = 0.
(b) Chiral band structure of the Hamiltonian (5) for φ = π/2. The
color represents spin polarization 〈σz〉 for corresponding eigenstates
and indicates on which leg ( A or B) the eigenstates mainly locate.
In (a) and (b), we choose γ = 0 and t1/t2 = 0.5 and set t2 = 1 as the
energy unit. (c) Numerical results of the density distributions at time
t = 4 for {φ = 0, γ = 0} (top panel) and {φ = π/2, γ = 0} (bottom
panel). The blue shaded regions denote the single-particle initial state
occupying the central rung subsystem with symmetric superposition.
The color of a given circle indicates the occupation probability of
that lattice site. (d) Numerical results of the density distributions at
time t = 4 for {φ = 0, γ = 0.5} (top panel) and {φ = π/2, γ = 0.5}
(bottom panel). (e) The chiral currents Jσ as a function of φ at times
in (c) and (d) for γ = 0 [solid gray (dashed gray) line for σ = A
(σ = B)] and γ = 0.5 [blue line with squares (red line with circles)
for σ = A (σ = B)]. (f) The population differences δJ between the
A and B legs as a function of φ at times in (c) and (d) for γ = 0 (red
line with circles) and γ = 0.5 (black line with squares), respectively.
In (c)–(f), the wave functions of the system are normalized.

two sites per unit cell, which is a simplified version of the
Harper-Hofstadter model. In this case, Eq. (2) becomes

HT(k) = −2t2[σ0 cos(φ/2) cos(k)

+ σz sin(φ/2) sin(k)] − t1σx. (5)

The flux allows us to engineer an analog of “spin-momentum
locking” in such a ladder structure.

In Figs. 4(a) and 4(b), we plot the band structures of
HT(k) with the “spin texture” 〈σz〉 (color) for φ = 0 and φ =
π/2, respectively. For φ = 0 [Fig. 4(a)], the bands exhibit no
chirality with 〈σz〉 = 0. However, for φ = π/2 [Fig. 4(b)],
an interesting correlation between the dispersion and 〈σz〉
emerges. For example, in the lower band, the eigenstates that
have a positive (negative) dispersion concentrate on the A (B)
leg, while the upper band exhibits the opposite case. This is
the essence of the chiral edge currents; that is, excitations
on different edges or with different spin states move in op-

posite directions. We study the single-particle dynamics to
demonstrate the chiral currents of this system. In the limit
that t1 > t2 > 0, we can excite the lower band by choosing
an initial state with symmetric superposition on the central
rung sites [blue shaded region in Figs. 4(c) and 4(d)], which
is the ground state of the isolated rung subsystem [69]. We
then investigate the propagation dynamics of the system under
this initial state. Figure 4(c) shows the density distributions
at time t = 4 with γ = 0 for φ = 0 and φ = π/2. At zero
flux [top panel of Fig. 4(c)], the wave packet travels to the
left and to the right from the initial rung with symmetric tra-
jectories. However, for φ = π/2 [bottom panel of Fig. 4(c)],
the population demonstrates asymmetric propagation through
which rightward (leftward) motion is correlated with a bias
towards the A (B) leg of the ladder, as illustrated by the blue
(red) arrow. This indicates the chiral dynamics is associated
with the chiral bands. Figure 4(c) also shows that the group
velocities of the wave-packet evolution are different for φ = 0
and φ = π/2. This is because the bands of φ = 0 have a
steeper dispersion (i.e., a larger group velocity) compared to
φ = π/2, as shown in Figs. 4(a) and 4(b). Remarkably, by
choosing the initial state with antisymmetric superposition on
the central rung sites, we can excite the upper band shown in
Fig. 4(b), giving rises to the opposite case. Here, we focus on
the symmetric initial state.

We now consider the effects of dissipation with γ = 0.5.
As shown in the upper panel of Fig. 4(d), when φ = 0,
the population is symmetric about the initial rung without
chirality. However, for φ = π/2, the system exhibits the non-
Hermitian skin effect, which significantly influences the chiral
dynamics. From Sec. III, the eigenstates of the lower band
with Re(E ) < 0 are localized on the right side of the open
system, which may hinder the chiral dynamics. As shown in
the bottom panel of Fig. 4(d), the populations for both the
upper and lower legs are moved in the right direction, which
is dramatically different from the bottom panel of Fig. 4(c).
To quantify the amount of chirality, we define the chiral
current as

Jσ = PR,σ − PL,σ , (6)

where Pd,σ (d ∈ L, R, σ = A, B) denotes the total population
at the σ leg in half of the system (L, left; R, right) with respect
to the central rung. Figure 4(e) shows the calculated Jσ versus
the phase φ for γ = 0 and γ = 0.5. For γ = 0, JA and JB

are symmetric around Jσ = 0 with JA + JB = 0. However,
for γ = 0.5, JA and JB have the same sign at the same φ.
From these results, it is found that the combination of the
dissipation (γ �= 0) and flux (φ �= nπ , with n being the integer
number) causes the breakdown of the chiral dynamics due to
the presence of the non-Hermitian skin effect, which can be
conveniently captured by the single-particle dynamics. Note
that, due to the different dissipation rates of the two legs,
the population between the A and B legs is not symmetric,
as shown in Fig. 4(d). This can be described by defining the
population difference between the A and B legs, i.e., δJ =
PA − PB, where Pσ denotes the total population at the σ leg.
Figure 4(f) shows δJ as a function of φ for γ = 0 (black line
with squares) and γ = 0.5 (red line with circles). One can
find that δJ > 0 and varies with φ for γ = 0.5, indicating
the unbalanced population between these two legs.
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FIG. 5. The (a) real and (b) imaginary parts of the energy spec-
trum of the Hamiltonian (1) as a function of γ for t1 = 1.5, t2 = 1,
t3 = 0.2, φ = π/2, and N = 40, with t2 = 1 being taken as the unit
of energies. (c) The distribution of the twofold-degenerate edge states
[Re(E ) = 0] with γ = 2. The inset shows the corresponding real-
energy spectrum. (d) The calculated hidden Chern number C (blue
dots) as a function of γ with the same parameters as in (a) and
(b). The inset shows the band structure of the Hamiltonian (7) at
γc ≈ ±1.11.

V. NON-HERMITICITY-INDUCED TOPOLOGICAL
INSULATING PHASE

In this section, we show that the non-Hermitian on-site
gain and loss can drive the system from the trivial to topo-
logical insulating phases, which is associated with the flux.
It should be emphasized that, unlike the general model of
non-Hermiticity-induced topological transitions [77,83–86],
the conventional Bloch band theory is not applicable here due
to the non-Hermitian skin effect.

In Figs. 5(a) and 5(b), we plot the real and imaginary parts
of the energy spectrum under the OBC as a function of γ

with t1 = 1.5, t2 = 1, t3 = 0.2, and φ = π/2. We see that
as |γ | increases, the bulk gap closes and reopens (the small
derivation arises from the finite-size effect) at a critical point
γc ≈ ±1.11 (black dashed lines), leading to a topological
phase transition with the emergence of two midgap states with
Re(E ) = 0 (red lines). The density distributions of these two
midgap edge states are well localized at the boundary of the
ladder, as shown in Fig. 5(c).

For non-Hermitian systems without the skin effect, it has
been shown that the topology can be described by introducing
the complex Berry phase in the k space. However, for systems
with the non-Hermitian skin effect and sublattice symmetry,
the topology can be explored through the GBZ (non-Bloch

FIG. 6. Phase diagrams of C in the γ -t3 plane with t1 = 2 and
t2 = 1 for (a) φ = 0 and (b) φ = π/2, respectively. Each phase is
associated with a value of the Chern number taking the values C =
{0, ±1}.

winding number). Instead of considering the complex GBZ
in Fig. 3, here, we show that a hidden Chern number can
be used to characterize the emergence of a topological phase
transition in Fig. 5(a). This Chern number is described by an
effective two-dimensional Hermitian Hamiltonian involving
the imaginary part of the energy [87].

For a one-dimensional non-Hermitian chiral-symmetric
Hamiltonian, i.e., H (k) = −�H†(k)�, the topology can be
captured by the corresponding effective Hermitian Hamilto-
nian H(k, η) = �[η − iH (k)], with η being the imaginary part
of the eigenenergies, which holds for both the absence and
presence of the non-Hermitian skin effect. From Eq. (2), the
effective Hermitian Hamiltonian is obtained as

H(k, η) =

⎛
⎜⎜⎝

η + γ it1 0 −ih1

−it1 −η + γ ih2 0
0 −ih2 η − γ it1

ih1 0 −it1 −η − γ

⎞
⎟⎟⎠. (7)

Accordingly, a Chern number can be defined in the
two-dimensional (k-η) space. To overcome the antiperiodicity
in the η direction, we define H′(k, η) = RηH(k, η)R†

η,
with Rη = exp[i π

4 (1 + tanh η)G] and G = σx ⊗ σ0. In this
case, H′(k, η → −∞) = H′(k, η → +∞) = −|η|� as
R−∞ = σ0 ⊗ σ0 and R+∞ = iG [87]. Then, the Chern number
of H′(k, η) can be obtained as

C = 1

2π

∫ +∞

−∞
dη

∫ π

−π

dk�k,η, (8)

with the Berry curvature

�k,η =
∑
m�2
m′>2

Im
2
〈
ψm

k,η

∣∣∂kH′∣∣ψm′
k,η

〉〈
ψm′

k,η

∣∣∂ηH′∣∣ψm
k,η

〉
(
Em

k,η
− Em′

k,η

) . (9)

Here, |ψm
k,η〉 are the eigenstates of H′(k, η) with energies Em

k,η.
In Fig. 5(d), we numerically calculate C (blue dots) as a

function of γ . It is clear that a topological transition from
C = 0 to C = −1 emerges at γc ≈ ±1.11, which agrees with
those in Fig. 5(a). At the critical point γc, the middle two
bands of H′ close at (k = 0, η = 0). Note that H′ and H
have the same energy spectrum. According to bulk-boundary
correspondence, the zero-energy edge states can also be ob-
tained from the Hamiltonian H under the OBC, i.e., Hobc (see
Appendix B).

In Figs. 6(a) and 6(b), we plot the hidden Chern numbers
C in the γ -t3 plane for φ = 0 and φ = π/2, respectively. One
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FIG. 7. Experimental implementation of the Hamiltonian (1) in
Fig. 1 using coupled-ring-resonator arrays. The gain (loss) sites are
denoted by the red (green) rings. The neighboring main resonators
are coupled by link resonators (gray rings).

can observe that the non-Hermiticity can drive a topological
transition from C = 0 to C = −1 when φ = 0. However, for
φ = π/2, it can induce transitions from C = 0 to C = ±1. The
topological phase diagram can be changed by tuning the flux.
In fact, these topological phases and transitions are related to
the corresponding topological phases of the Hermitian case.
As mentioned above, the Hamiltonian (1) describes a long-
range SSH model with winding numbers w = {0,±1} [76].
The non-Hermiticity induces a topological insulating phase if
{t1, t2, t3} is chosen in the trivial phase (w = 0).

VI. POSSIBLE EXPERIMENTAL IMPLEMENTATION

The key points of the experiment are to realize the flux
and on-site dissipations. A possible experimental generation
of such a dissipative two-leg ladder model can be achieved
in arrays of coupled ring resonators [61,88–90], as shown
in Fig. 7. Within this system, each site is represented by a
main ring resonator (in red or green), which is coupled to
its neighboring resonators through antiresonant link rings (in
gray). The amplitudes of the coupling strengths between the
lattice sites are controlled by adjusting the gap between the
site-ring and link-ring waveguides. The link rings can be used
to manipulate the phase of the coupling between the site rings
and introduce a synthetic gauge flux threading each square
plaquette. Specifically, when the link ring coupling two site
rings is vertically shifted, the photons hopping towards the
right travel a slightly longer path compared to those hopping
towards the left. This path length difference results in an
effective hopping phase φ. In an active photonic platform,
the on-site loss comes from the intrinsic material loss without
pumping, while the gain is obtained by external pumping [91].
In the experiment, the spatial intensity profile in the ladder
can be directly imaged by using a microscope objective and
an infrared camera. To probe the presence of topological edge
states in the ladder, we can fabricate a waveguide coupler at
the end of the ladder and measure the power absorption at this
location as a function of the laser frequency.

It should be noticed that the physics discussed above are
also present in a loss-only system, i.e., a nonactive system.
In addition to the coupled arrays of ring resonators, other
platforms such as ultracold atoms [69,73], superconducting
circuits [92–94], electric circuits [95–100], and photonic res-
onator networks with synthetic dimensions [75,101] are also
promising systems for investigating the physical effects dis-
cussed here.

VII. CONCLUSION

In summary, we have studied the non-Hermitian skin ef-
fect and topological phase of a dissipative two-leg ladder
model with a uniform flux on each plaquette. The skin effect
emerges when the flux is not an integer multiple of π in the
presence of nonvanishing dissipation, displaying bipolar lo-
calization. By studying the single-particle dynamics, we have
also demonstrated the breakdown of the chiral currents due
to the presence of the skin effect. Moreover, we have shown
that the non-Hermiticity can drive a flux-dependent topolog-
ical transition from trivial to topological phases, which can
be characterized by a hidden Chern number. Our paper may
pave the way for the study of the non-Hermitian skin effect
and non-Hermitian topological states and provides potential
applications in tunable lasers, light manipulation, and signal
processing.
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APPENDIX A: THE EXPRESSION OF f (β, E )

Based on Eqs. (2) and (4), we obtain

f (β, E ) =
4∑

n=0

rnβ
n, (A1)

with

r0 = r4 = t2
2 t2

3 , (A2)

r1 = 2 cos (φ)
(
t3
2 t3 + t2t3

3 + t2t3γ
2 − E2t2t3

)
− t2

1 t2
2 − t2

1 t2
3 + 4Et2t3γ sin (φ), (A3)

r2 = E4 + t4
1 + t4

2 + t4
3 + 2γ 2

(
E − t2

1 + t2
2 + t2

3

)
+ 2t2

2 t2
3 [1 + cos (2φ)] − 2E2

(
t2
1 + t2

2 + t2
3

)
+ γ 4 − 4t2

1 t2t3 cos (φ), (A4)

r3 = 2 cos(φ)
(
t3
2 t3 + t2t3

3 + t2t3γ
2 − E2

) − t2
1 t2

2

− t2
1 t2

3 − 4Et2t3γ sin (φ). (A5)

By substituting the eigenvalues E under the OBC into
f (β, E ) = 0, one can get four solutions of βi with |β1| �
|β2| � |β3| � |β4|. The GBZ is given by the trajectory of β2

and β3 satisfying |β2| = |β3|.

APPENDIX B: THE ENERGY SPECTRUM OF Hobc

In this Appendix, we show that the topological edge state
in Fig. 5(a) can also be clarified by the effective Hamiltonian
(7). If H(k, η) is topological with a nontrivial Chern number,
boundary modes crossing the energy gap under the OBC exist.
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FIG. 8. The energy spectra of Eq. (B1) as a function of η for
(a) γ = 0.5 and (b) γ = 2. The dot-dashed lines denote the zero-
energy level, and the red lines denote the in-gap boundary states.
The other parameters are the same as those in Fig. 5.

The open boundary Hamiltonian of H(k, η) is given by [87]

Hobc = �obc[η − iHobc], (B1)

where �obc = IN ⊗ �, with IN being the N × N iden-
tity matrix, and Hobc is the corresponding open boundary
Hamiltonian of H (k).

In Fig. 8, we plot the energy spectra of Hobc for γ = 0.5
and γ = 2. We see that, for the trivial case [Fig. 8(a)], there
are no boundary states in the energy gap. However, in the
nontrivial case [Fig. 8(b)], two states (red lines) appear in
the middle gap. They cross the zero-energy level at the same
values of η, which corresponds to the two degenerate edge
states of Hobc. These results agree with those in Fig. 5.
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