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The notion of classicality of quantum evolution of light is an object of both conceptual and practical
importance. The main goal of this work is to derive the exact conditions for the classicality of quantum Gaussian
evolution, i.e., the evolution of Gaussian states of light and their convex combinations, a model which is of great
significance in quantum optics and information. According to our findings, quantum Gaussian evolution should
be considered classical if the Hamiltonian and Lindblad operators generating it correspond to passive optical
transformations. This is illustrated with several explicit examples, ranging from Gaussian thermal operations
to entanglement-maximizing dissipative engineering. Our results are obtained using the recently introduced
mesoscopic formalism of the reduced state of the field, which was originally devised as as a description of
macroscopic quantum fields. Here, to make the framework suitable for our goal, we redevelop it as a tool for
probing classicality, which constitutes our second main contribution.
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I. INTRODUCTION

Classicality of light has been a subject of an ongoing
debate at least since Einstein’s work on photoelectric effect
[1] and the discovery of wave-particle duality [2]. While it
is generally believed that, e.g., Glauber’s coherent states [3]
are more classical than pure Fock states with the same mean
particle number [4], there exists no widely accepted criterion
for classicality of multiphoton states of light. Even classicality
of a single photon continues to be vividly discussed [5,6].

Similar considerations concern the time evolution of the
electromagnetic field. Quantum particles evolve under the
von Neumann equation, while classical particles evolve under
Liouville’s equation. The degree to which the latter ap-
proximates the former is quantified by the relation between
the energy scales in the system and the Planck’s constant.
However, the evolution of both the classical and quantum elec-
tromagnetic fields is given by the same set of four Maxwell’s
equations [7,8].

In modern quantum optics, the electromagnetic field is typ-
ically described by second quantization, with the occupation
numbers of photons of a given frequency described by the
density operator in an infinitely-dimensional Hilbert space
[8,9]. Currently available experimental operations, which de-
scribe the time evolution of this density operator, consist
primarily of Gaussian operations and measurements [10,11],
prominent in, e.g., quantum key distribution and other infor-
mation processing tasks [12–14].

To this day, the classicality of Gaussian evolution and,
more broadly, quantum evolution of light and Gaussian wave
packets, was investigated using a number of methods: Relying
on phase-space and the Winger distribution, hybridization of
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quantum and classical theories, and path integrals [15–18].
Besides its conceptual significance, identifying classicality
of evolution of light is important in practice, since classical
description is typically much simpler than quantum theory
[19–21].

In this article, we approach the problem from the point of
view of the reduced state of the field (RSF) [22], a recent
mesoscopic theory [23] of many-particle bosonic systems.
Relying solely on the first two moments of the mode cre-
ation and annihilation operators, the description reduces the
infinitely-dimensional density operator of the N mode field to
an N-dimensional matrix defining the aforementioned RSF.
Originally, RSF was designed to describe the quantum fea-
tures of macroscopic fields of a single particle type, including
light fields. In particular, the formalism was successfully ap-
plied to polarization optics, bridging the Mueller and Jones
calculi, as well as to shock wave generation [22].

Here, we employ RSF to isolate the classical subclass of
quantum Gaussian evolution, defined as evolution preserving
the set of Gaussian states and their convex combinations. We
do this in two steps. First, we investigate the formalism itself
to show that, complementarily to its original goal, RSF also
captures the classical aspects of quantum fields. In particular,
we prove that RSF contains limited information about bipar-
tite entanglement, if any, and that the entropic description in
terms of RSF closely resembles that given by the semiclassical
Wehrl entropy [24,25]. In this way, we establish RSF as a tool
for studies of classicality within quantum mechanics.

Second, we compare quantum Gaussian evolution with
the time evolution model built into the RSF framework,
deriving in this fashion the explicit subset of Gaussian evo-
lution which is classical with respect to the RSF toolbox. The
classicality of the obtained evolution is intuitive, as it consists
exclusively of passive transformations, which correspond to
experimental operations that can be successfully understood
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by treating light as a classical wave, such as beam-splitters and
phase-shifters. On the contrary, evolution employing quantum
squeezing does not fit in the RSF framework.

This work is organized as follows. In Sec. II, we briefly
summarize the main subject of our work–quantum Gaussian
evolution. Over the course of the next three sections, we
introduce the formalism of RSF and investigate its various as-
pects with respect to their classicality: Correlations in Sec. III,
entropy in Sec. IV, and time evolution in Sec. V. Finally, in
Sec. VI, we use the RSF formalism to derive the classical sub-
set of the quantum Gaussian evolution family. We conclude in
Sec. VII.

Notational remark

In this work, we employ three different formalisms: The
standard, density operator picture, the symplectic picture and
the RSF framework. For clarity, we use different notation for
operators in each of these pictures. Operators associated with
the the standard picture are denoted by hats, e.g., ρ̂. Operators
associated with the symplectic picture are denoted by capital
letters with no hats, e.g., V . Operators associated with the RSF
framework are denoted by small letters, also with no hats, e.g.,
r.

II. QUANTUM GAUSSIAN EVOLUTION OF LIGHT

We begin by introducing the main subject of our consid-
erations: Quantum Gaussian evolution. To this end, we also
briefly summarize the notions of Gaussian states and sym-
plectic picture, which will serve as important tools in the
derivation of our findings.

A. Gaussian states and symplectic picture

We consider an N-mode Hilbert space spanned by the set
of N pairs of mode quadratures collected in the vector

�̂ξ := (x̂1, p̂1, . . . , x̂N , p̂N )T , (1)

where x̂k and p̂k fulfill the canonical commutation relations:

[x̂k, p̂k′ ] = iδkk′ , [x̂k, x̂k′ ] = [ p̂k, p̂k′ ] = 0, (2)

where we set h̄ = 1. Since the mode quadratures form a basis
of operators acting on the N-mode Hilbert space, the state of
the system is fully described by the complete collection of
correlation functions of the form

〈ξ̂l1 . . . ξ̂ln〉 := Tr[ρ̂ ξ̂l1 . . . ξ̂ln ]. (3)

In the case of Gaussian states, defined as states with nor-
mal (Gaussian) characteristic functions and quasiprobability
distributions [8,26,27], the complete information about the
system is contained within only the one- and two-point cor-
relation functions, i.e., with n = 1, 2 in the equation above.
The former are contained in the vector of means

|ξ 〉 :=
2N∑

k=1

〈ξ̂k〉 |k〉, (4)

while the latter are encoded in the matrix of second moments

V := 1

2

2N∑
k,k′=1

〈{ξ̂k, ξ̂k′ }〉 |k〉〈k′|. (5)

Often, instead of V , one uses the covariance matrix, defined
as Vcov = V − |ξ 〉〈ξ |.

Any valid covariance matrix has to fulfill the Heisenberg
uncertainty principle:√〈

x̂2
k

〉 − 〈x̂k〉2
√〈

p̂2
k

〉 − 〈p̂k〉2 � 1

2
, (6)

where k ∈ {1, . . . , N}, equivalent to [26]

Vcov − i

2
J � 0. (7)

Here, J is the symplectic form, defined as

J := −i
2N∑

k,k′=1

[ξ̂k, ξ̂k′ ]|k〉〈k′|, (8)

and explicitly equal to

J =
N⊕

k=1

J2, J2 :=
[

0 1
−1 0

]
. (9)

The symplectic form defines the symplectic group Sp(2N,R)
consisting of matrices S of size 2N×2N , such that SJST = J .

As a matter of fact, the pair (V, |ξ 〉) contains the same
information as (Vcov, |ξ 〉), and both in the same way define the
symplectic picture of quantum states (sometimes referred to as
covariance matrix picture), which is a convenient description
of the first two moments of the system, particularly in the
case of Gaussian states and dynamics. Here, we employ the
pair (V, |ξ 〉), since, as we will see in the next section, it is
by construction closer to the reduced state of the field than
(Vcov, |ξ 〉).

B. Quantum Gaussian time evolution

The time evolution of quantum open systems is typically
modeled by the Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) equation (also known as the Lindblad equation)
[28–30], which in the diagonalized form reads:

d

dt
ρ̂ = − i[Ĥ, ρ̂] +

∑
k

(
L̂k ρ̂L̂†

k − 1

2
{L̂†

k L̂k, ρ̂}
)

, (10)

where Ĥ denotes the system Hamiltonian and L̂k are the Lind-
blad operators.

One of the main sources of motivation for studying Gaus-
sian states is that, due to technical limitations, in practice we
are often restricted to Hamiltonians that are polynomials of at
most second degree in mode quadratures:

Ĥ = 1
2
�̂ξT G�̂ξ, (11)

where G is a 2N×2N , real, symmetric matrix. The structure-
preserving evolution of Gaussian states is driven by precisely
such Hamiltonians.

Similarly, to preserve Gaussianity of an initial state along
the course of time evolution, the Lindblad operators need to
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be linear in mode quadratures [31]:

L̂k = �ck · �̂ξ, �ck ∈ C2N , (12)

so that the resulting dissipator is a polynomial of second
degree in mode quadratures, like the Hamiltonian.

However, the same experimental tools that let one create
and manipulate Gaussian states can be used to create and
manipulate convex combinations of Gaussian states. In fact,
according to recent theories of non-Gaussianity [10,11], from
the point of view of useful non-Gaussianity, there is no differ-
ence between Gaussian states and their convex combinations.
Only states that cannot be written as a convex combination
of Gaussian states are genuinely non-Gaussian, or quantum
non-Gaussian [32–34]. Consequently, states that are either
Gaussian or can be written as a convex combination of Gaus-
sian states are called quantum Gaussian.

For this reason, in addition to linear Lindblad operators,
which preserve the set of Gaussian states, we also consider
unitary Lindblad operators

L̂k = √
γkÛk, (13)

where γk � 0,
∑

k γk = 1 and Ûk are unitary operators such
that Ûk = exp(iĝk ) with ĝk being polynomials of at most sec-
ond degree in the mode quadratures. The dynamics induced by
such Lindblad operators does not preserve the set of Gaussian
states, but preserves the set of quantum Gaussian states [35].
Dissipators of this form are most well-known for describing
random scattering, see Refs. [36–38].

Written in the symplectic picture, the evolution given by
the Hamiltonian (11) and Lindblad operators (12), (13) reads
[39–41]

d

dt
V = FG(V ) + FL(V ) + FU (V ),

d

dt
|ξ 〉 = fG(|ξ 〉) + fL(|ξ 〉) + fU (|ξ 〉). (14)

Here,

FG(V ) := JGV − V GJ,

fG(|ξ 〉) := JG|ξ 〉, (15)

are the Hamiltonian terms, while [42]

FL(V ) := JICV + V ICJ + JRCJT ,

fL(|ξ 〉) := JIC |ξ 〉, (16)

with RC ≡ reC†C, IC ≡ imC†C and Ckl := (�ck )l stem from
linear Lindblad operators (12). We remark that the
Gaussianity-preserving time evolution given by these func-
tions is known to have exact solutions [43–45] and is
well-studied using Green functions [46,47] and, in particular,
the symplectic picture [39–41].

The final terms

FU (V ) :=
∑

j

γ j
(
KjV KT

j − V
)
,

fU (|ξ 〉) :=
∑

j

γ j (Kj |ξ 〉 − |ξ 〉), (17)

where Kj are symplectic, stem from the unitary Lindblad op-
erators (13) and represent a relatively novel type of dynamics
that preserves only the set of quantum Gaussian states [35].

Equation (14) defines the quantum Gaussian evolution. The
ultimate goal of our article is to identify the subclass of semi-
classical evolution consistent with this equation. Before we
can do that, however, we need to develop the necessary tools
to achieve this goal, namely, the framework of the reduced
state of the field (RSF).

III. REDUCED STATE OF THE FIELD AS A CLASSICAL
DESCRIPTION OF BOSONIC FIELDS

In this section, we summarize the relevant information
about RSF and simultaneously investigate it to show that it
provides a semiclassical description for bosonic many-particle
fields, thus constituting a viable tool for our main goal.

A. Reduced state of the field (RSF)

The main idea behind RSF was to describe many-particle,
or macroscopic, quantum fields. In such a case, instead of
using the mode quadratures, it is often more convenient to use
the annihilation and creation operators

âk := 1√
2

(x̂k + i p̂k ), â†
k = 1√

2
(x̂k − i p̂k ), (18)

with the canonical commutation relations (2) now reading

[âk, â†
k′ ] = δkk′ , [âk, âk′ ] = [â†

k, â†
k′ ] = 0. (19)

An arbitrary n-particle state in the many-body Hilbert space
can be then constructed by acting on the vacuum state with n
appropriate creation operators.

In the case of macroscopic fields, typically modeled
as noninteracting fields with dynamics governed by field
equations linear in creation and annihilation operators with
possible external coherent sources, the fundamental observ-
ables are either additive, like energy [22],

Ô =
N∑

k,k′=1

okk′ â†
k âk′ , (20)

or linear, like momentum,

σ̂ =
N∑

k=1

(σ ∗
k âk + σkâ†

k ). (21)

One can easily check that the expectation values of such
observables can be equivalently rewritten as

Trρ̂ Ô = trro, Trρ̂ σ̂ = 〈σ |α〉 + 〈α|σ 〉 , (22)

where

r :=
N∑

k,k′=1

Tr[ρ̂ â†
k′ âk]|k〉〈k′| (23)

defines the single-particle density matrix,

|α〉 :=
N∑

k=1

Tr[ρ̂ âk]|k〉 (24)

062204-3



TOMASZ LINOWSKI AND ŁUKASZ RUDNICKI PHYSICAL REVIEW A 106, 062204 (2022)

defines the averaged field, while

o =
N∑

k,k′=1

okk′ |k〉〈k′|, |σ 〉 =
N∑

k=1

σk|k〉 (25)

are the reduced observables corresponding to Ô and σ̂ .
The single-particle density matrix contains information

about mode occupation and coherence in the state. In partic-
ular, its diagonal elements equal the mean particle numbers:
rkk = 〈â†

k âk〉 = 〈n̂k〉 and, consequently, the matrix is normal-
ized to the mean total particle number: trr = ∑N

k=1 〈n̂k〉 ≡
〈n̂〉. Note that, by construction, the single-particle density
matrix is nonnegative.

The averaged field contains information about local phases
of the field. For example, in the case of a pure Fock state,
the phase is undefined, yielding no such information, with the
opposite situation in the case of a pure coherent state.

Together, the single particle density matrix and the av-
eraged field constitute the reduced state of the field (RSF)
associated with the density operator ρ̂ [22]. A major advan-
tage of the RSF formalism is that it is, to a large degree,
self-contained, in the sense that it allows for study of a variety
of phenomena without having to refer to other frameworks.
In particular, it comes equipped with its own definition of
entropy and a time evolution model, both of which are inves-
tigated by us in the subsequent sections.

In the case of additive and linear observables (20), (21),
the RSF description is complete. In the case where the ob-
servables of interest are more general, RSF describes a subset
of degrees of freedom of the system. We now proceed to give
a physical interpretation for the degrees of freedom contained
within RSF.

B. Physical meaning of correlations within the RSF framework

To see what physical information is associated with the
degrees of freedom contained within RSF, we begin by ob-
serving that RSF is related to the symplectic picture of
quantum states via

r = RVR† − 1
2 1N , |α〉 = R|ξ 〉, (26)

where we use 1N to denote the identity matrix of size N×N ,
and

R := 1√
2

N∑
k=1

|k〉[〈2k − 1| + i〈2k|] (27)

defines the reduction matrix. The Heisenberg uncertainty prin-
ciple (7) translates to nonnegativity of the correlation matrix:

rα := r − |α〉〈α| � 0, (28)

which was defined already in Ref. [22]. Note that it follows
immediately from Eq. (26) that

rα = R(V − |ξ 〉〈ξ |)R† − 1

2
1N = RVcovR† − 1

2
1N . (29)

The relations (26) and (28) are derived by us in Appendix A.
The input of the reduction matrix belongs to a 2N-

dimensional space, while the output is only N-dimensional.
Clearly, then, the reduction matrix cuts some of the infor-
mation from the symplectic picture. As we will now show,

this missing information is relevant for practical scenarios
requiring bipartite quantum entanglement. For a given entan-
gled state to be useful for any such task, e.g., quantum code
encryption or teleportation, it first needs to be distilled [48].

Crucially, not every entangled state is distillable. A neces-
sary condition for bipartite entanglement distillation is given
by the positive partial transpose (PPT) criterion [49,50], orig-
inally stated as a necessary condition for separability. Adopted
to the language of distillable entanglement, the PPT criterion
states that if the partial transposition of the state with respect
to a given bipartition is positive semidefinite, then the state
does not contain distillable entanglement with respect to this
bipartition [48].

In the symplectic picture, partial transposition of arbi-
trary chosen modes is performed by replacing the covariance
matrix by

Vcov,�q = Q�qVcovQ�q, (30)

with

Q�q = diag(1, q1, . . . , 1, qN ), (31)

where qk = −1 for modes that are being transposed and qk =
1 otherwise.

From the perspective of distillable entanglement, the
PPT criterion for continuous variable systems states that if
[cf. Eq. (7)]

Vcov,�q − i

2
J � 0, (32)

then the state does not contain distillable entanglement with
respect to the bipartion given by �q [48,50]. Therefore, vi-
olation of Eq. (32) indicates its presence. Note that if this
inequality holds, then the state may still contain so-called
bound entanglement. This type of entanglement is, however,
much less useful in practice.

We will now show that in the RSF picture, the PPT criterion
is undecidable. In turn, the formalism contains no information
about distillable entanglement. To this end, it is enough to
limit our considerations to the correlation matrix (28), since
the averaged field contains only local information and is there-
fore irrelevant for entanglement.

The key observation is that among all the covariance ma-
trices corresponding to a given correlation matrix rα through
Eq. (29), there is one that equals

V̄cov = rα ⊗ 12 + 1
2 12N . (33)

This can be seen as follows. First, as is easy to compute,
R(rα ⊗ 12)R† = rα , from which it immediately follows that
the correlation matrix corresponding to V̄cov is indeed equal to
rα . Second, V̄cov fulfills the Heisenberg uncertainty principle
(7), since

V̄cov − i

2
J = rα ⊗ 12 + 1

2
(12N − iJ ). (34)

By construction, rα is nonnegative, and thus so is the first
term on the right-hand side (r.h.s.). The second term, however,
can be decomposed into N blocks of size 2×2 as 12N − iJ =⊕N

j=1(12 − iJ2). It is straightforward to calculate that each
of these blocks is nonnegative, making the whole matrix
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nonnegative. Therefore, Eq. (34) is nonnegative and V̄cov is
a valid covariance matrix.

Crucially, all variants of partial transposition of V̄cov satisfy
the condition (32). Indeed, for any �q we have

V̄cov,�q − i

2
J = Q�q(rα ⊗ 12)Q�q + 1

2
(12N − iJ ), (35)

where we used the fact that Q2
�q = 12N . As before, the second

term is nonnegative. However, the same is also true for the
first term since, due to unitarity and Hermiticity of Q�q, the
eigenvalues of Q�q(rα ⊗ 12)Q�q are the same as the eigenvalues
of rα ⊗ 12.

Consequently, every RSF description corresponds to at
least one symplectic description of a system that fulfills the
PPT criterion, making this criterion trivial from the point
of view of the RSF framework. This leads to the following
proposition.

Proposition 1. The RSF framework contains no informa-
tion about bipartite distillable entanglement.

This proposition has special consequences for two-mode
Gaussian states, for which the PPT criterion is equivalent to
the presence of any form of entanglement, not only distillable
entanglement [48]:

Corollary 2. In the case of two-mode Gaussian states, the
RSF framework contains no information about any form of
entanglement.

We conjecture that these findings hold in general, i.e., RSF
contains no information about any type of quantum entangle-
ment in any quantum state. Irrespectively, Proposition 1 and
Corollary 2 show that the ability to describe entanglement
within the RSF formalism is severely limited, strongly sug-
gesting the framework to be semiclassical.

IV. CLASSICALITY OF RSF ENTROPY

The fact that RSF contains limited information about en-
tanglement strongly suggests it is a semiclassical formalism.
To further reinforce this interpretation, in this section, we
analyze the entropic description in terms of RSF, showing
that it is similar to the one given by the semiclassical Wehrl
entropy.

A. Reduced entropy

The standard choice for quantum (information) entropy is
given by the von Neumann entropy [51]

SV (ρ̂) := −Trρ̂ ln ρ̂, (36)

where we set kB = 1. Because of its information-theoretic
origin as a generalization of the Shannon entropy, the von
Neumann entropy is most easily interpreted as a measure of
uncertainty about the state of the system. The von Neumann
entropy is invariant under all unitary transformations and it
attains its minimum value—zero—for all pure states.

To describe entropy within the RSF formalism, one needs
to find a way to derive a valid entropy measure that de-
pends only on the components of RSF. In Ref. [22], this was
done with the use of the maximum entropy principle [52,53].
According to this principle, given only a partial knowledge
about a physical system, one should assume the highest

possible value of entropy consistent with this knowledge.
Interpreting entropy as the amount of uncertainty about the
state of the system, the maximum entropy principle means
simply that one should not presume to be more certain about
the system’s state than their knowledge lets them.

For example, if one has absolutely no knowledge about
which quantum state the system is in, one should assume it
to be maximally mixed, i.e., ρ̂ = 1̂�/�, where � denotes the
number of possible orthogonal system states, or equivalently
the dimension of the Hilbert space. This is because such
density operator is the only one for which all system states
are equally probable.

In this case, it is easy to calculate that the von Neumann
entropy coincides with the classical Boltzmann entropy

SB = SV (1̂�/�) = ln�. (37)

Viewed from the perspective of the maximum entropy princi-
ple, the Boltzmann entropy is simply the maximum value of
the von Neumann entropy consistent with having no knowl-
edge about the quantum state of the system.

In the RSF formalism, the only information we have about
the system is its RSF. Thus, according to the maximum
entropy principle, we should assume that the system’s von
Neumann entropy has the highest value possible for a system
with that specific RSF. As was calculated in Ref. [22], among
all the quantum states with the same RSF (r, |α〉), the von
Neumann entropy is maximal for the thermal-like state

ρ̂r,|α〉 = 1

z
D(�α) exp

(
−

N∑
k,k′=1

rkk′ â†
k′ âk

)
D†(�α), (38)

where

z = Tr exp

(
−

N∑
k,k′=1

rkk′ â†
k′ âk

)
(39)

and

D(�α) = exp

[
N∑

k=1

(α∗
k âk − αkâ†

k )

]
(40)

is the (unitary) N-mode displacement operator.
Thus, the RSF entropy can be defined as [22]

sv (ρ̂ ) := SV (ρ̂r,|α〉)

= tr[(rα + 1N ) ln(rα + 1N ) − rα ln rα], (41)

with the correlation matrix rα as in Eq. (28). In accordance
with the maximum entropy principle, such entropy, dubbed
reduced entropy [22], is simply the maximum value of the von
Neumann entropy consistent with having no knowledge about
the quantum state of the system except for its RSF.

The reduced entropy satisfies the natural condition
sv (ρ̂) � 0, with equality if and only if the correlation matrix is
equal to zero, which happens only when the density operator
of the field is given by a coherent state. In contrast, the von
Neumann entropy vanishes for any pure state.

While based on sound principles, the reduced entropy lacks
a clear physical interpretation. We now proceed to investi-
gate the qualitative and quantitative features of this entropy,
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showing that is has a semiclassical character akin to the Wehrl
entropy.

B. Reduced Wehrl entropy and its classical features

The Wehrl entropy [24] is defined as the continuous Shan-
non entropy of the Husimi Q representation of the quantum
state:

SW (ρ̂ ) := −
∫

d2N �β
πN

Q(�β ) ln Q(�β ). (42)

Here, Q(�β ) = 〈�β|ρ̂|�β〉 is the Husimi Q representation [54] of
the state ρ̂, |�β〉 is an N-mode coherent state and the integration
is over the real and imaginary parts of every component of the
complex vector �β.

The Wehrl entropy is typically considered to be a semiclas-
sical approximation to the von Neumann entropy, since it is
constructed by replacing the quantum density operator in the
definition of the von Neumann entropy by its representation
Q(�β ) in the phase-space [25,55]. The two entropies differ
significantly. Unlike the von Neumann entropy, the Wehrl
entropy attains its minimum value, N , only for coherent states
[56]. Furthermore, it is not invariant under all unitary trans-
formations of the state.

Looking at the reduced entropy (41), we can see that it
possesses the same qualities. The fact that it is minimized
by coherent states was already discussed. As for invariance
under unitary operations, consider, e.g., the transformation
Û †âkÛ = cosh μ âk + sinh μ â†

k with μ �= 0. From the defini-
tions (23), (24), we can calculate that r transforms to r′ =
cosh2 μ r + f (μ) �= r, where f (μ) depends solely on correla-
tions not included in the RSF formalism. Notably, the reduced
entropy of r′ differs from that of r. Finally, we note that by
construction, the reduced entropy provides an upper bound
to the von Neumann entropy, another quality shared with the
Wehrl entropy.

As seen, the reduced entropy resembles the Wehrl entropy
more than the von Neumann entropy. To make this point
even stronger, we will now construct a new entropy of RSF
based on the Wehrl entropy and show that for the majority
of states it has approximately the same value as the reduced
entropy. In other words, despite being based on the quantum
von Neumann entropy, the reduced entropy gives the same
quantitative results as RSF entropy based on the semiclassical
Wehrl entropy.

Making use of the maximum entropy principle, analo-
gously to the case of the original reduced entropy, we derive
the reduced Wehrl entropy,

sw(ρ̂) := tr ln(rα + 1N ) + N. (43)

See Appendix B for details.
Just like the reduced entropy (41) maximizes the von Neu-

mann entropy for a fixed RSF, the reduced Wehrl entropy
maximizes the Wehrl entropy for a fixed RSF. We note that
it has similar qualitative properties to the original reduced
entropy, e.g., it is invariant under the same unitary transfor-
mations and is minimized by coherent states.

More importantly, the two entropies can also be linked
quantitatively.

Proposition 3. The following relation between the RSF
entropies holds:

0 < sw(ρ̂) − sv (ρ̂) � N. (44)

Proof. We begin with the left-hand side (l.h.s.) inequality.
Rearranging Eq. (41) we obtain

sv (ρ̂ ) = tr{rα[ln(rα + 1N ) − ln rα]}
+ tr ln(rα + 1N ). (45)

By definition of the reduced Wehrl entropy, the second term is
equal to −N + sw(ρ̂). In the first term, we apply the eigende-
composition rα = ∑N

k=1 λk|k〉〈k|, where λk � 0. Using basic
properties of the logarithm, we arrive at

sv (ρ̂) =
N∑

k=1

ln (1 + 1/λk )λk − N + sw(ρ̂). (46)

Clearly, the first term is maximized in the limit λk → ∞,
in which, by definition of the Euler’s number, it approaches
N . Then, the first and second terms cancel, leaving sv (ρ̂) <

sw(ρ̂), as in the l.h.s. inequality.
To prove the r.h.s. inequality, we observe that, since rα � 0:

sv (ρ̂ ) � tr[(rα + 1N ) ln(rα + 1N )

− rα ln(rα + 1N )] = sw(ρ̂) − N, (47)

which is equivalent to the r.h.s. inequality. �
Crucially, for states with mean particle number much big-

ger than the effective number of modes trr = 〈n̂〉 � N , the
term N is vanishing in comparison to sw, sv . Therefore, it
follows from Eq. (44) that for most many-particle states, the
two reduced entropies are effectively equal. Combining this
with our previous analysis of the qualitative aspects of the
two entropies, we see that in the RSF formalism, entropic
descriptions based on the “quantum” von Neumann and on
the “classical” Wehrl entropy are nearly identical to each
other and akin to the Wehrl entropy [57]. This cements the
classicality of the RSF description.

V. REDUCED KINETIC EQUATIONS

Having established the classicality of RSF, we can use the
framework to derive and characterize the classical subset of
Gaussian evolution. To do this, we will employ the final com-
ponent of the formalism—reduced kinetic equations—which
we summarize in this section.

Let us go back to the GKLS equation (10) and consider its
general, nondiagonal form:

d

dt
ρ̂ = −i[Ĥ, ρ̂] +

∑
k,k′

Bkk′

(
Ĵk ρ̂Ĵ†

k′ − 1

2
{Ĵ†

k′ Ĵk, ρ̂}
)

. (48)

Here, Ĵk are the jump operators and B is a nonnegative ma-
trix. By diagonalizing the non-Hamiltonian part, the original
equation (10) is obtained.

In the formalism of RSF, it is assumed that to correctly
describe the dynamics of a macroscopic field, it is enough to
treat it as a set of individual particles subject to spontaneous
decay and production, as well as interaction with coherent
classical sources and random scattering by the environment.
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In such a setting, the following Hamiltonian arises [22]:

Ĥ =
N∑

k=1

(ωkâ†
k âk + iζkâ†

k − iζ ∗
k âk ). (49)

Here, the first term is the base Hamiltonian for bosonic fields,
with the positive frequencies ωk defining the energy levels
of the system. The remaining two terms coincide with the
Hermitian generator of the displacement operator (40) with
argument �ζ , which is experimentally realized by combining
the input state with an N-mode coherent state |�ζ 〉 in an asym-
metric beam-splitter [58]. Hence, this part of the Hamiltonian
can be interpreted as an interaction with a coherent classical
source with complex amplitudes ζk .

As for the dissipator, three families of jump operators were
considered:

(1) Ĵk = âk , that describe spontaneous decay of particles
in the field at rates given by matrix Bkk′ = �k′k

↓ ,

(2) Ĵk = â†
k , that describe spontaneous production of par-

ticles in the field at rates given by matrix Bkk′ = �kk′
↑ ,

(3) Ĵk = Ûk , with Ûk being a unitary operator. For a large
number of unitary operators, this family describes random
scattering [35–38] with rates given by Bkk′ = ηkδkk′ , ηk � 0,∑

k ηk = 1 [59].
Note that, while it is not explicitly stated in the original

work [22], the results stated there imply that the unitaries Ûk

must each transform the annihilation operators as

Û †
k âmÛk =

N∑
l=1

(uk )ml âl , (50)

where uk have to be unitary to preserve the canonical commu-
tation relations (19).

Under the collective influence of all these phenomena, the
evolution of the density operator reads [22]

d

dt
ρ̂ = −i

N∑
k=1

ωk[â†
k âk, ρ̂] +

N∑
k=1

[ζkâ†
k − ζ ∗

k âk, ρ̂]

+
N∑

k,k′=1

�k′k
↓

(
âk ρ̂ â†

k′ − 1

2
{â†

k′ âk, ρ̂}
)

+
N∑

k,k′=1

�kk′
↑

(
â†

k ρ̂ âk′ − 1

2
{âk′ â†

k, ρ̂}
)

+
∑

k

ηk
(
Ûk ρ̂ Û †

k − ρ̂
)
. (51)

Note that the number of unitaries Ûk is arbitrary.
Tracing both sides of Eq. (51) with â†

l ′ âl and âl yields
the reduced kinetic equations for RSF. As the resulting
equations slightly differ from the ones derived originally in
Ref. [22], where minor errors appear [60], we provide them in
full in the following proposition, with proof in Appendix C.

Proposition 4. The time evolution of RSF is governed by
the reduced kinetic equations:

d

dt
r = −i[h, r] + |ζ 〉〈α| + |α〉〈ζ |

+ 1

2
{γ↑ − γ↓, r} + γ↑

+
∑

k

ηk (ukru†
k − r),

d

dt
|α〉 = −ih|α〉 + 1

2
(γ↑ − γ↓)|α〉 + |ζ 〉

+
∑

k

ηk (uk − 1)|α〉. (52)

Here,

h :=
N∑

k=1

ωk|k〉〈k|, (53)

|ζ 〉 :=
N∑

k=1

ζk|k〉, (54)

γ� :=
N∑

k,k′=1

�kk′
� |k〉〈k′| (55)

are the single-particle counterparts to Ĥ , �ζ , and ��, respec-
tively, while uk are fixed by Eq. (50).

The assumptions behind the model are best justified by its
applicability. In the original work [22], the reduced kinetic
equations were successfully used to describe macroscopic
fields in thermal environments, as well as polarization optics,
notably making an explicit connection between the Mueller
and Jones calculi.

VI. CLASSICALITY OF QUANTUM
GAUSSIAN EVOLUTION

Due to their full compatibility with RSF, the reduced ki-
netic equations necessarily constitute a semiclassical model
of evolution. In this section, we use them as a tool for identi-
fying the semiclassical subset of quantum Gaussian evolution,
fulfilling the main goal of our work. For clarity, we consider
each of the three terms entering the quantum Gaussian evo-
lution equations (14) separately. All proofs are contained in
Appendix D.

We begin with the Hamiltonian term.
Proposition 5. Let (V, |ξ 〉) denote the symplectic descrip-

tion of a system undergoing Gaussian Hamiltonian evolution

d

dt
V = FG(V ),

d

dt
|ξ 〉 = fG(|ξ 〉) (56)

as given by Eq. (15). The evolution can be written as reduced
kinetic equations (52) and is thus classical with respect to the
RSF formalism if and only if

0 = [J, G]. (57)

The corresponding reduced kinetic equations are governed by

h = iRJGR†, (58)

with the remaining terms vanishing.
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Proof. See Appendix D. �
To see what the condition (57) means, we make use of the

matrix representation of the symplectic form (9). Substituting
it into Eq. (57), we compute that the allowed Hamiltonians
consist of 2 × 2 block matrices of the form

Gkk′ = GT
k′k = akk′12 + (1 − δkk′ )bkk′J2, (59)

where k, k′ enumerate the blocks and akk′ , bkk′ ∈ R. Making
use of Eq. (11) we check that Eq. (59) allows only for particle
number-preserving or passive interactions.

In standard optical implementations, passive transforma-
tions correspond to experimental operations with classical
analogues, such as beam splitters and phase shifters. Ac-
cording to standard notions of nonclassicality, such as
nonpositivity of the Glauber P representation or the presence
of entanglement, the output of passive transformations can
be nonclassical only if given nonclassical input [61,62]. The
remaining active transformations, such as squeezing, have
no classical analogues. Moreover, they can be a source of
quantum advantage, e.g., in metrology [63,64]. Such transfor-
mations are forbidden by Eq. (59).

In short, Gaussian Hamiltonians are classical with respect
to the reduced kinetic equations if they correspond to passive
transformations.

Let us illustrate this with an example. Among the key
ingredients in the resource-based approach to quantum
thermodynamics are thermal operations, defined as energy-
preserving operations on continuous variable systems coupled
to a thermal environment. Due to the prevalence of quadratic
Hamiltonians in experimental setups, special emphasis is put
on Gaussian thermal operations (GTOs), which are thermal
operations that preserve the set of Gaussian states.

Recently, a complete characterization of GTOs has been
provided in Ref. [65]. Here, we focus on a natural subclass of
GTOs generated by time-independent, nondegenerate Hamil-
tonians. Such GTOs are effectively reduced to single-mode
transformations [65] of the form

V (t ) = S[Q(t )S−1V (0)(S−1)T QT (t ) + P]ST , (60)

where S is a 2×2 symplectic matrix, P := (1 − p)ν1, and

Q(t ) := √
p

[
cos φ(t ) sin φ(t )

− sin φ(t ) cos φ(t )

]
. (61)

Here, ν := coth βω/2, ω is the Hamiltonian eigenvalue asso-
ciated with the considered mode, β is the inverse temperature,
while p ∈ [0, 1].

Taking the time derivative of Eq. (60) we get

G = dφ

dt
JSST JT , (62)

which, according to Proposition 6, governs classical evolu-
tion if

0 = [J, SST ]. (63)

One can easily solve this condition explicitly, from which we
find that S must be orthogonal in addition to being symplectic,
meaning that it is passive [65].

Similar considerations concern Gaussian dissipative evolu-
tion based on Lindblad operators linear in mode quadratures.

Proposition 6. Let (V, |ξ 〉) denote the symplectic descrip-
tion of a system undergoing Gaussian dissipative evolution
stemming from Lindblad operators linear in mode quadratures
(12):

d

dt
V = FL(V ),

d

dt
|ξ 〉 = fL(|ξ 〉) (64)

as given by Eq. (16). The evolution can be written as reduced
kinetic equations (52) and is thus classical with respect to the
RSF formalism if and only if

0 = [J, IC] (65)

and

γ↑ = R(ICJ − JRCJ )R† � 0, (66)

γ↓ = −R(ICJ + JRCJ )R† � 0. (67)

The corresponding reduced kinetic equations are governed by
γ� as above with the remaining terms vanishing.

Proof. See Appendix D. �
Through Eq. (66) we can see that the matrix IC describes

the difference between particle creation and annihilation rates,
i.e., particle flow: RICJR† = γ↑ − γ↓. Thus, the first condi-
tion (65), by full analogy to the one for the Hamiltonian (57)
means that the particle flow operator has to be passive. The
second condition (66) simply requires nonnegative particle
creation and annihilation rates.

As an example, let us consider stabilizability in two-mode
entangled Gaussian systems. In quantum open systems, it is
sometimes desirable to counteract the effects of dissipation by
using an appropriate Hamiltonian. In the framework of stabi-
lizability, one can check whether this is possible by solving a
finite set of conditions rather than checking every Hamiltonian
separately [41,66].

Recently, stabilizability was used to investigate the robust-
ness of two-mode Gaussian states against three classes of
dissipation [67]:

(1) local damping: L̂k := âk ,
(2) global damping: L̂ := (â1 + â2),
(3) dissipators engineered to preserve two-mode squeezed

states:

L̂1 := cosh χ â1 − sinh χ â†
2,

L̂2 := cosh χ â2 − sinh χ â†
1, (68)

where χ � 0 denotes the amount of squeezing.
It is straightforward to check that while all the dissipators

fulfill Eq. (65), only the first two fulfill the positivity condition
(66), unless no squeezing is considered in the third model
(α = 0). This, of course, makes sense from the point of classi-
cality, since squeezing is a purely quantum resource, while the
Lindblad operators appearing in the first two models merely
describe particle loss in the system.

In addition, we remark that in the first and third models,
the maximum amount of entanglement was stabilized in the
system when using the Hamiltonian

Ĥsq := −iω(â1â2 − â†
1â†

2), (69)
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while in the second model the entanglement-maximizing
Hamiltonian read

Ĥ = Ĥcas := − iω

2
[(â1 + â2)2 − (â†

1 + â†
2)2]. (70)

As expected, neither Hamiltonian fulfills the classicality con-
dition (57).

Finally, we consider Gaussian dissipative evolution based
on unitary Lindblad operators.

Proposition 7. Let (V, |ξ 〉) denote the symplectic descrip-
tion of a system undergoing quantum Gaussian dissipative
evolution stemming from unitary Lindblad operators (13):

d

dt
V = FU (V ),

d

dt
|ξ 〉 = fU (|ξ 〉) (71)

as given by Eq. (17). The evolution can be written as reduced
kinetic equations (52) and is thus classical with respect to the
RSF formalism if and only if each Kj fulfills

0 = RKjRT and RKjR† is unitary. (72)

The corresponding reduced kinetic equations are governed by

u j = RKjR†, η j = γ j (73)

with the remaining terms vanishing.
Proof. See Appendix D. �
Similar to previous results, the condition (72) is fulfilled

only when the summation is over operations Kj , which are
orthogonal in addition to being symplectic. From the physical
point of view, they also correspond to passive transformations
only [65].

Once again, we illustrate our result with an example. Let us
consider the family of two-mode symplectic transformations
Kj = exp[JS j] generated by

S j = w j

[
0 Oj

Oj 0

]
, Oj =

[
cos φ j sin φ j

sin φ j − cos φ j

]
, (74)

where w j � 0, φ j ∈ [0, 2π ). For φ = π/2, Kj coincide with a
transformation used for creation of highly entangled mixtures
of Gaussian states in the asymptotic time limit in Ref. [35].
We can easily calculate that for all j, RKjR† = cosh(w j )12,
which is unitary only in the trivial case w j = 0. Thus, accord-
ing to Proposition 7, the evolution is not classical, as expected
given its entangling properties.

VII. CONCLUDING REMARKS

We studied the classicality of quantum Gaussian evo-
lution, a model of time evolution relevant especially in
modern quantum optics and continuous variables-based infor-
mation processing. We derived an explicit set of conditions
under which the evolution is classical, as summarized in
Propositions 5–7 in Sec. VI. The derived conditions for-
bid Hamiltonians and Lindblad operators corresponding to
so-called active optical transformations, such as squeezing,
instead allowing only passive transformations, which have an
intuitive experimental interpretation in terms of operations
treating macroscopic light as a classical wave. Our results
were obtained using the recent mesoscopic formalism of the
reduced state of the field (RSF), which we redeveloped as a
tool for classical description of many-particle bosonic fields.

Based on our findings, we suggest the following directions
for further research. To start with, our investigations into the
RSF framework could be generalized. For example, it would
be interesting to see if our conjecture regarding lack of en-
tanglement description via RSF can be proved (or disproved).
Furthermore, the RSF formalism is based on one- and two-
point correlation functions. Can a self-consistent mesoscopic
framework based on higher-order correlations be designed?
If so, then what new insights does it offer, in particular, with
respect to classicality?

ACKNOWLEDGMENTS

We thank P. Mazurek, M. Karczewski, G. Leuchs, and
S. Cusumano for discussion. We acknowledge support by
the Foundation for Polish Science (International Research
Agenda Programme project, International Centre for Theory
of Quantum Technologies, Grant No. 2018/MAB/5, cofi-
nanced by the European Union within the Smart Growth
Operational program).

APPENDIX A: DERIVATION OF REDUCTION MAP (26)

In this Appendix, we derive the relation (26) between the
RSF and covariance matrix pictures (52).

Beginning with the definition of the single-particle density
matrix (23) and the annihilation and creation operators (18)
we quickly obtain

rkk′ = 1
2 Tr[ρ̂(x̂k′ x̂k + ix̂k′ p̂k − i p̂k′ x̂k + p̂k′ p̂k )]. (A1)

Looking at Eqs. (1) and (5), we can see that

V2k′−1,2k−1 = V2k−1,2k′−1 = Tr[ρ̂ x̂k′ x̂k],

V2k′−1,2k = V2k,2k′−1 = 1

2
Tr[ρ̂(x̂k′ p̂k + p̂k x̂k′ )],

= Tr[ρ̂ x̂k′ p̂k] − i

2
δkk′ ,

V2k′,2k−1 = V2k−1,2k′ = 1

2
Tr[ρ̂( p̂k′ x̂k + x̂k p̂k′ )],

= Tr[ρ̂ p̂k′ x̂k] + i

2
δkk′ ,

(A2)
V2k′,2k = V2k,2k′ = Tr[ρ̂ p̂k′ p̂k],

where we made use of the canonical commutation relations
(2). Substituting this into Eq. (A1), we quickly find that it
is equivalent to the relation between r and V in Eq. (26).
The relation between |α〉 and |ξ 〉 is derived in an analogous
fashion.

The Heisenberg uncertainty principle (28) is derived by
acting on the original Eq. (7) from the left with R and from the
right with R†, and using the easy-to-derive identity RJR† =
−i1N , along with the previously derived Eq. (26).

APPENDIX B: DERIVATION OF REDUCED
WEHRL ENTROPY

In this Appendix, we derive the reduced Wehrl entropy
(43), defined as the maximum Wehrl entropy among all the
states with a fixed RSF.
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First, let us observe that RSF has the following representa-
tion in terms of the Husimi Q function:

rkk′ =
∫

d2N �β
πN

(βkβ
∗
k′ − δkk′ )Q(�β ),

αk =
∫

d2N �β
πN

βkQ(�β ). (B1)

The maximum Wehrl entropy among all the states with fixed
RSF can then be found by finding the extremum of the follow-
ing functional with respect to Q:

SW [Q] − λ f [Q] −
N∑

k,k′=1

μk′kgkk′ [Q]

+
N∑

k=1

t∗
k hk[Q] +

N∑
k=1

skh∗
k [Q], (B2)

where SW is the Wehrl entropy (42) and the three constraints

f [Q] :=
∫

d2N �β
πN

Q(�β ) − 1 = 0,

gkk′ [Q] :=
∫

d2N �β
πN

(βkβ
∗
k′ − δkk′ )Q(�β ) − rkk′ = 0,

hk[Q] :=
∫

d2N �β
πN

βkQ(�β ) − αk = 0 (B3)

fix the normalization and the RSF of the state to (r, |α〉)
[cf. Eq. (B1)]. Finally, λ, μk′k , tk , and sk are the Lagrange
multipliers. Note that the signs, as well as the notation (e.g.,
t∗
k instead of tk) in Eq. (B2) are arbitrary. Therefore, we made

a choice that anticipates the final result best.
The solution to the variational problem is given by

Q̃(�β ) := Ae−�β†μ�β+�t† �β+�β†�s, (B4)

where A is a normalization constant. Substituting the solution
into the three constraints (B3) and making use of the integra-
tion formula [68]∫

d2N �β
πN

e−�β†μ�β+�t† �β+�β†�s = 1

det μ
e�t†μ−1�s (B5)

yields

A = det μ e−�t†μ−1�s, μ−1 = rα + 1N , �t = �s = μ�α, (B6)

and in turn

Q̃(�β ) = 1

det(rα + 1N )
e−(�β−�α)†(rα+1N )−1(�β−�α). (B7)

Plugging this into the definition of Wehrl entropy (42) leads
to Eq. (43).

APPENDIX C: DERIVATION OF REDUCED
KINETIC EQUATIONS

In this Appendix, we derive the reduced kinetic equations
(52) from the GKLS equation for macroscopic fields (51).

By definition, the single-particle density matrix evolves as

d

dt
rll ′ = Tr

(
d

dt
ρ̂ â†

l ′ âl

)
=

5∑
n=1

(�n)ll ′ , (C1)

where [cf. Eq. (51)]

(�1)ll ′ := −i
N∑

k=1

ωkTr([â†
k âk, ρ̂]â†

l ′ âl ), (C2)

(�2)ll ′ :=
N∑

k=1

Tr([ζkâ†
k − ζ ∗

k âk, ρ̂]â†
l ′ âl ), (C3)

(�3)ll ′ :=
N∑

k,k′=1

�k′k
↓ Tr

[(
âk ρ̂ â†

k′ − 1

2
{â†

k′ âk, ρ̂}
)

â†
l ′ âl

]
,

(C4)

(�4)ll ′ :=
N∑

k,k′=1

�kk′
↑ Tr

[(
â†

k ρ̂ âk′ − 1

2
{âk′ â†

k, ρ̂}
)

â†
l ′ âl

]
,

(C5)

(�5)ll ′ :=
∑

k

ηkTr[(Ûk ρ̂ Û †
k − ρ̂ )â†

l ′ âl ]. (C6)

Let us focus on the first term, �1. From the cyclic property
of the trace

(�1)ll ′ = −i
N∑

k=1

ωkTr(ρ̂[â†
l ′ âl , â†

k âk]). (C7)

The commutator can be easily calculated with the use of
the canonical commutation relations (19) and the well-known
property

[Ô1Ô2, Ô3Ô4] = Ô1[Ô2, Ô3]Ô4 + [Ô1, Ô3]Ô2Ô4

+ Ô3Ô1[Ô2, Ô4] + Ô3[Ô1, Ô4]Ô2, (C8)

valid for arbitrary Ô j .
We obtain

(�1)ll ′ = −i(ωl − ωl ′ )Tr(ρ̂ â†
l ′ âl ). (C9)

Using the definitions (23) and (53), it is easy to show that the
above is equivalent to

(�1)ll ′ = −i
N∑

j=1

(hl jr jl ′ − rl jh jl ′ ), (C10)

or simply

�1 = −i[h, r]. (C11)

This shows that the first term on the r.h.s. of Eq. (51) trans-
forms into the first term on the r.h.s. of Eq. (52).

In an analogous way, we can show that

�2 = |ζ 〉〈α| + |α〉〈ζ |, (C12)

�3 = − 1
2 {γ↓, r}, (C13)

�4 = 1
2 {γ↑, r} + γ↑. (C14)

As for �5, due to normalization of ηk to one, the second term
under the trace in Eq. (C6) gives rise to simply rll ′ . The first
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term can be rewritten using the cyclic property of the trace and
the fact that ÛkÛ

†
k = 1̂:

(�5)ll ′ =
∑

k

ηkTr[ρ̂ (Û †
k â†

l ′Ûk )(Û †
k âlÛk )] − rll ′ . (C15)

Making use of the assumption (50), we quickly find that

�5 =
∑

k

ηk (ukru†
k − r). (C16)

This finishes the derivation of the reduced kinetic equa-
tion (52) for r. The corresponding equation for |α〉 is derived
in the same way.

APPENDIX D: DERIVATION OF CLASSICAL
GAUSSIAN EVOLUTION

In this Appendix, we prove Propositions 5, 6, and 7, i.e.,
we derive the conditions under which Gaussian evolution is
equivalent to the reduced kinetic equations.

To this end, it will be useful to define an auxiliary field,
which we call conjugate RSF:

c :=
N∑

k,k′=1

Tr[ρ̂ âk′ âk]|k〉〈k′|,

|α∗〉 :=
N∑

k=1

Tr[ρ̂ â†
k]|k〉. (D1)

Mirroring the derivation of the relation (26) between RSF and
the symplectic picture, one can show that

c = RVRT , |α∗〉 = R∗|ξ 〉. (D2)

We will also make heavy use of the following property of the
reduction matrix:

R†R = 1
2 (1 + iJ ). (D3)

Notably,

R†R + RTR∗ = 1. (D4)

1. Proof of Proposition 5

We begin with the Hamiltonian evolution (56). Making
extensive use of the identity (D4), along with relations (26)
and (D2), we obtain the corresponding evolution equations for
RSF:

d

dt
r = yGr − ry†

G + zGc† + cz†
G + 1

2
(yG − y†

G),

d

dt
|α〉 = yG|α〉 + zG|α∗〉, (D5)

where

yG := RJGR†, zG := RJGRT . (D6)

Unlike the reduced kinetic equations, this evolution equa-
tion for RSF couples it to the conjugate field. Therefore, if
the two equations are to coincide for arbitrary input states, the
c-dependent terms must vanish. This implies zG = 0 and in
turn 0 = R†zGR∗, which is equivalent to the condition (57),
as we intended to show.

Under this condition yG is Hermitian, and hence the final
equations read

d

dt
r = [yG, r]

d

dt
|α〉 = yG|α〉. (D7)

Clearly, they have the form of the reduced kinetic equa-
tions (52) with Eq. (58) at the input.

2. Proof of Proposition 6

In the case of the dissipative evolution stemming from
linear Lindblad operators (64), using Eqs. (26), (D2), and (D4)
as previously yields

d

dt
r = yLr + ry†

L + zLc† + cz†
L + 1

2
(yL + y†

L ),

d

dt
|α〉T = yL|α〉 + zL|α∗〉, (D8)

where

yL := RJICR†, zL := RJICRT , w := RJRCJTR†.

(D9)

Once again, we must require the equation to be c-independent.
This implies zL = 0 and in turn 0 = R†zLR∗, which is the
same as the condition (65) that we wanted to derive.

Under this condition yL is Hermitian, and hence the final
equations read

d

dt
r = {yL, r} + yL + w,

d

dt
|α〉 = yL|α〉. (D10)

It is not difficult to show that these equations have the form of
the reduced kinetic equations (52) with Eq. (66) at the input.
Note that for this identification to have a physical meaning, the
particle creation and annihilation rates have to be nonnegative.

3. Proof of Proposition 7

Finally, we consider the dissipative evolution stemming
from unitary Lindblad operators (71). Once again making use
of Eqs. (26), (D2), and (D4) we obtain

d

dt
r =

∑
j

γ j

[
q jrq†

j + s jr
T s†

j − r + q jcs†
j + s jc

∗q†
j ,

+ 1

2
(q jq

†
j + s js

†
j − 1)

]
,

d

dt
|α〉 =

∑
j

γ j[(q j − 1)|α〉 + s j |α∗〉], (D11)

where

q j = RKjR†, s j = RKjRT . (D12)
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Calculating analogously as in the previous cases, we find that
the equation is c-independent if for all j

0 = RKjRT . (D13)

To get a correspondence with the reduced kinetic equations,
we must additionally require all q j to be unitary. The two
conditions are collectively captured by Eq. (72), finishing the
proof.

The final equations read

d

dt
r =

∑
j

γ j (q jrq†
j − r),

d

dt
|α〉 =

∑
j

γ j (q j |α〉 − |α〉), (D14)

which have the form of the reduced kinetic equations (52) with
Eq. (73) at the input.
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