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Genuine multipartite nonlocality (GMN), the strongest form of multipartite nonlocality that describes fully
collective nonlocal correlations among all experimental parties, can be observed when different distant parties
each locally measure a particle from a shared entangled many-particle state. For the demonstration of GMN,
the experimentally observed statistics are typically postselected: Events for which some parties do not detect
a particle must be discarded. This coincidence postselection generally leads to the detection loophole that
invalidates a proper nonlocality demonstration. In this work, we address how to close the detection loophole for
a coincidence detection in demonstrations of nonlocality and GMN. We first show that if the number of detected
particles is conserved, i.e., using ideal and noiseless experimental devices, one can employ causal diagrams
and the no-signaling principle to prove that a coincidence postselection cannot create any detection loophole.
Furthermore, for realistic experimental devices with finite detection efficiencies, we show how a general Bell
inequality can be sharpened such that its new version is still valid after a postselection of the measurement data.
In this case, there are threshold detection efficiencies that, if surpassed in the experiment, lead to the possibility
of demonstrating nonlocality and GMN without opening the detection loophole. Our results imply that genuine
N-partite nonlocality can be generated from N independent particle sources even when allowing for nonideal
detectors.

DOI: 10.1103/PhysRevA.106.062202

I. INTRODUCTION

Bell nonlocality [1,2] is one of the most intriguing as-
pects of quantum systems and plays a central role in modern
research of foundational physics and the development of
quantum-enhanced technologies [3], such as quantum key
distribution and quantum random number generators. For a
proper experimental demonstration of nonlocality, it is essen-
tial to exclude any local-realist explanation of the observed
measurement results that appear to violate a Bell inequality,
including any possible “loopholes” that the explanation could
potentially utilize. Two main loopholes in Bell experiments
are (i) the locality loophole, if the different parts of exper-
imental configuration are not separated distantly enough to
exploit the principles of special relativity [4], and (ii) the
detection loophole, if the measured statistics must be post-
selected due to a nonideal detection efficiency or particle
losses [5,6], because of the possibility that the postselection
generates fake nonlocal correlation via the selection bias [7].

The most common way to address the detection loophole is
to assume fair sampling [8–11], i.e., to assume that the post-
selected statistics is a fair sample of the statistics that would
have been observed using ideal experimental tools. However,
the fair sampling assumption does not necessarily hold in real
experiments: The detection loophole has been exploited to
create false demonstrations of nonlocality [12–15], corrupting
the security of quantum technological applications [16,17].
Therefore, for an unambiguous demonstration of nonlocality,
the detection loophole has to be closed. To do so, one can

include the nondetection events in the statistics, i.e., one does
not discard any measurement data [6,18–20], such that there
is no effect due to postselection. The second approach is to
postselect data but, at the same time, to sharpen the Bell in-
equality accordingly [21–23]. Both of these approaches yield
a (minimal) threshold detection efficiency of the experimental
apparatus that must be achieved, and, in this way, the de-
tection loophole (and the locality loophole) was eventually
closed in recent experiments [24–29]. The precise values of
the threshold efficiencies depends on the Bell inequality in
question and has been subject to a long line of research
[19,21–23,30–36]. However, to our knowledge, there is no
analysis of how to close the detection loophole in demon-
strations of genuine multipartite nonlocality (GMN) [37–39].
GMN is the strongest form of multipartite nonlocality that
requires that the correlations cannot be explained by nonlocal
correlations shared only by some groups of the experimental
parties, and constitutes the quantum resource for different
quantum technologies [40–46]. Furthermore, in most studies,
threshold efficiencies were derived for setups where, in the
ideal noiseless limit, each party receives a single particle.
These results are not applicable to Bell scenarios in which
the particles’ destinations are prepared in a superposition [20],
such as, the proposal by Yurke and Stoler (YS) to generate
nonlocality from independent particle sources [47,48].

In this work, we consider a general N-partite Bell scenario
with a coincidence postselection, i.e., a postselection of events
for which each of the N parties detects a single particle. This
postselection may be necessary due to nonideal detectors and
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particle losses, or a random distribution of particles among
the parties, or both. We first examine an ideal experimental
apparatus where the number of detected particles is conserved.
In this case, we use causal diagrams and d-separation rules
[7], together with the no-signaling principle, to show that a co-
incidence postselection is valid for demonstrations of GMN,
extending the results of Refs. [49,50]. Second, we analyze
general Bell inequalities (testing for nonlocality or GMN)
if noisy experimental devices are employed, in which case
causal diagrams cannot prove a valid postselection anymore.
Instead, we derive sharpened Bell inequalities that must be
used to close the detection loophole when postselecting the
measurement results [22,23]. The sharpened inequalities yield
threshold detection efficiencies that, if surpassed in experi-
ments, enable a demonstration of multipartite nonlocality or
GMN. Our results can be used to demonstrate GMN also in
setups where the particles are randomly distributed among the
parties [20,47,48], showing that one can create genuine N-
partite nonlocality from N independent particle sources even
for nonideal detectors.

II. COINCIDENCE POSTSELECTION WITH IDEAL
DETECTORS: CAUSAL DIAGRAMS

Here, we consider a Bell scenario with ideal detectors
and no particle losses, and in which a constant number NT

of particles is shared among N parties. Thus, the number
of detected particles of each party is completely determined
by the number of detected particles of the remaining parties.
We can then employ causal inference and d-separation rules1

[7], together with the no-signaling principle,2 to show that
a coincidence postselection, i.e., a postselection of events in
which each of the parties receives a single particle, is valid for
demonstrations of nonlocality and GMN. We will focus on the
case that NT = N particles are distributed, and note that the
analysis also holds for NT > N if each party should receive a
fixed number of particles. The analysis can also be applied for
NT < N but, in this case, GMN cannot be observed because
not all parties receive a particle.

A. Bipartite nonlocality

For simplicity, we first analyze a bipartite Bell scenario,
consisting of two parties, Alice and Bob, who share two
parts of a quantum system and each perform local measure-
ments on their subsystem. Alice (Bob) can choose different

1The d-separation rules dictate how to infer the statistical depen-
dence between two nodes of a causal diagram, also if some of the
others variables are conditioned on. In general, any path of causal
arrows that connects two nodes of the diagram can lead to a depen-
dence. The d-separation rules say that (i) a path is blocked if there is
a collider (a node where the path’s arrows collide) along the path, (ii)
a path is blocked if along it there is a noncollider that is conditioned
on, and (iii; selection bias) a path is open if along it there is a collider
that is conditioned on.

2The no-signaling principle states that the measurement-setting
choice of any party cannot influence the results of any other
spacelike-separated party, even if all (hidden) variables of the system
were known [39,51,52]. For a formal definition, see Eq. (6).

FIG. 1. Causal diagram of a local hidden variable (LHV) model
in a bipartite Bell scenario where the kth party (k = 1, 2) can choose
a measurement setting xk and observes the outcomes ak and dk , where
dk is the number of detected particles. The statistics are then postse-
lected on coincidence events, i.e., on events for which d1 = d2 = 1,
as indicated by the boxes. Generally, one can allow for any causal
influence between Ak and Dk as indicated as the lines with circular
endings.

measurement settings, labeled by the variable X1 (X2), and
observes an outcome denoted as a random variable A1 (A2).
Furthermore, we indicate the number of detected particles at
Alice’s and Bob’s measurement station as the variables D1 and
D2, respectively. To derive a Bell inequality, one assumes that
the observed correlations can be described by a local hiden
variable (LHV) model [1,2],

pa1,a2,d1,d2|x1,x2 =
∫

dλ pλ pa1,d1|x1,λ pa2,d2|x2,λ, (1)

where � is a LHV and each probability pλ, pa1,d1|x1 , and
pa2,d2|x2 sums to 1. Note that we indicate the possible values of
a random variable X as lower-case letters x and write px for the
probability P(X = x). The causal diagram of this LHV model
is shown in Fig. 1: The LHV � can influence all measure-
ment outcomes, while the local setting Xk (k = 1, 2) can only
influence the outcomes Ak and Dk . Furthermore, we make no
restriction on possible causal influences between Ak and Dk ,
which we indicate as a bidirected arrow with circular ends;
this includes influences of the form Ak → Dk or Dk → Ak ,
and a hidden common cause between Ak and Dk (which can
be included in �).

Now consider a coincidence postselection of the statistics,
i.e., a postselection of events where each party detects a sin-
gle particle. We denote the detection of a single particle as
Dk = dk , while any other number of detected particles (e.g.,
Dk = 0 and Dk = 2) will be grouped to the outcome Dk = d̄k .
In Fig. 1, we indicate the coincidence postselection, i.e., the
conditioning on Dk = dk , as boxes around the variables Dk .
If the postselected statistics, pa1,a2|d1,d2,x1,x2 , can be written as
a LHV model similar to Eq. (1), they also fulfill the Bell
inequality and, thus, the postselection does not open any
detection or postselection loophole. Using pa1,a2|d1,d2,x1,x2 =∫

dλ pλ|d1,d2,x1,x2 pa1,a2|d1,d2,x1,x2,λ, we see that pa1,a2|d1,d2,x1,x2

can be described as a LHV model if the conditions

pλ|d1,d2,x1,x2 = pλ|d1,d2 , (2)

pa1,a2|d1,d2,x1,x2,λ = pa1|d1,d2,x1,λ pa2|d1,d2,x2,λ (3)

are satisfied [11,49].
Equation (3) can be inferred directly from Fig. 1 using

the d-separation rules1: Any path that connects (A1, X1) to
(A2, X2) passes through � and is blocked because � is a
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noncollider that is conditioned on. To show Eq. (2), we
must use the fact that a constant number of particles is dis-
tributed among the parties and that we employ ideal noiseless
(number-resolving) detectors. In this case, the value of D1 can
be inferred by the value of D2, and the other way around.
Now, to show the independence of X1 and � when condition-
ing on D1 and D2, we must consider the two possible paths
X1 → D1 ← � and X1 → A1 → D1 ← � that both appear
open as D1 is a collider that is conditioned on. However, if
there was a nonvanishing influence from X1 to D1 (along any
path), since D2 is completely determined by D1, there would
also be a nonvanishing influence from X1 to D2, in conflict
with the no-signaling principle.

B. (Genuine) multipartite nonlocality

To test for general nonlocality in the N-partite Bell sce-
nario, one must extend Eq. (1) to N parties. One again writes
the correlations as pa,d|x = ∫

dλ pλ pa,d|x,λ with the factoriza-
tion

pa,d|x,λ =
N∏

k=1

pak ,dk |xk ,λ, (4)

where the kth party can choose the measurement setting xk

and observes the outcomes ak and dk , and we have used the
notation a = (a1, . . . , aN ) and similarly for d and x. However,
for N > 2, one can also test for a stronger form of nonlo-
cality called genuine N-partite nonlocality. Here, one allows
for nonlocal correlations shared among subgroups of the N
parties. Thus, one only requires that pa,d|x,λ must factorize in
at least two factors, yielding a hybrid local-nonlocal hidden
variable (HLNHV) model [37–39]. For instance, one possible
factorization is given by

pa,d|x,λ = pak ,dk |xk ,λ pa\ak ,d\dk |x\xk ,λ (5)

for some 1 � k � N , where we introduced the notation
a\ak = (a1, . . . , ak−1, ak+1, . . . , aN ) and similarly for d and
x. In the HLNHV model, we furthermore assume that
all nonlocal correlations fulfill the no-signaling conditions3

[39,51,52], e.g.,

pa\ak ,d\dk |x,λ = pa\ak ,d\dk |x\xk ,λ, (6)

for any k. This ensures that the measurement setting Xk of the
kth party has no influence on the measurement outcomes of
the other parties, even if conditioned on the hidden variable
�.

We now focus on a coincidence postselection of a HLNHV
model and note that the N-partite LHV model, Eq. (4), can be
discussed in completely analogy to Sec. II A. In the case of

3We note that, in the literature, the no-signaling principle is some-
times also defined in an operational form, e.g., pa|xy = pa|x , i.e.,
excluding the hidden variable �. This definition is used, e.g., in the
discussion of Popescu-Rohrlich boxes [3,53]. In the context of GMN,
the no-signaling principle is usually defined as pa|xyλ = pa|xλ, i.e.,
that any party’s measurement choice cannot influence the outcome of
a second party even if the hidden variable � was known [39,51,52],
which implies the operational no-signaling principle.

FIG. 2. Causal diagrams of a hybrid local-nonlocal hidden vari-
able (HLNHV) model in a three-partite Bell scenario. (a) Besides
the commonly shared LHV �, any pair of parties can share nonlo-
cal quantum correlations (indicated as the light blue lines) that are
subject to the no-signaling fine-tuning conditions. (b) For a specific
value of the LHV � (i.e., conditioning on � as indicated by the box),
one of the three parties factorizes with the other two parties, while the
latter can still share nonlocal quantum correlations.

three parties, we sketch the causal diagram of the HLNHV
model in Fig. 2. We indicate the nonlocal correlations that
can be shared between any two of the three parties as light
blue lines. These correlations are subject to the no-signaling
conditions, Eq. (6), representing fine-tuning conditions for the
causal diagram [54,55]. Furthermore, if we condition on a
specific value λ, one of the three parties factorizes with the
other two; see, e.g., Fig. 2(b). Again, the postselection of
the events for which Dk = dk is indicated as boxes around
the variables Dk . Similar to the conditions Eqs. (2) and (3)
for nonlocality in the bipartite case, there are conditions on
the postselected statistics pa|d,x that, if fulfilled, validate the
postselection for a GMN demonstration [50]. The first condi-
tion is that if pa,d|x,λ factorizes in a specific way for a given
λ, e.g., into two groups of k and N − k parties as Eq. (5)
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for k = 1, then the probabilities pa|d,x,λ must factorize in the
same way. This can be shown directly with the d-separation
rules: For instance, in the case of Fig. 2(b), every possible
path that connects A3 and X3 to Alice’s and Bob’s settings and
outcomes passes through � and is thus blocked because � is
a noncollider that is conditioned on.

Second, we have to show the condition pλ|d,x = pλ|d, sim-
ilar to Eq. (2). Here, as in Sec. II A, we must use that a
constant number of particles is distributed among the parties,
and that we have ideal number-resolving detectors. Thus, the
number of detected particles of the kth measurement station
is determined by the number of detected particles at the other
stations, i.e., it can be written as a function dk = fk (d\dk ). For
instance, for three particles distributed among three parties,
we have d1 = 3 − d2 − d3.

To prove that, e.g., pλ|d,x = pλ|d,x\x1 , we first calculate that

pλ,d,x = pd1|d\d1,x,λ pd\d1|x,λ px,λ (7)

= δd1, f1(d\d1 ) pd\d1|x\x1,λ px,λ, (8)

where we have used that d1 = f1(d\d1) and the no-signaling
principle Eq. (6). Thus, we obtain

pλ|d,x = pλ,d,x

pd,x
(9)

= δd1, f1(d\d1 ) pd\d1|x\x1,λ px,λ∫
dλδd1, f1(d\d1 ) pd\d1|x\x1,λ px,λ

(10)

= pλ|d,x\x1 , (11)

where, in the last line, we have used the free-choice assump-
tion px,λ = px pλ to see that the dependence on the setting x1

cancels. Similarly, one can remove the influence of any Xk on
� when conditioning on D = d, and we obtain pλ|d,x = pλ|d.

We note that pλ|d,x = pλ|d can also be shown using the d-
separation rules, together with the no-signaling conditions and
that the number of detected particles is conserved. However,
these additional conditions on the causal diagram have the ef-
fect that using the d-separation rules does not provide a faster
way to demonstrate pλ|d,x = pλ|d than a direct application of
the conditions. For instance, to prove that pλ|d,x = pλ|d,x\x1 ,
we must check all possible paths that connect X1 and � when
conditioning on D = d and X\X1 = x\x1. As can be seen
in Fig. 2(b), all such paths that are potentially open begin
as X1 → D1 . . . , X1 → A1 → D1 . . . , X1 → A1 → Ak . . . , or
X1 → A1 → Dk . . . for k �= 1. The last two possibilities are
blocked due to the no-signaling principle, Eq. (6). The first
two possibilities instead appear open because of the possible
influence from X1 to D1. To show that there can be no such in-
fluence, we must employ that the number of detected particles
is conserved, yielding that

pd1|x,d\d1 = δd1, f1(d\d1 ). (12)

Since the right-hand side is independent of X1, X1 has no
influence on D1 if conditioned on D\D1 = d\D1 and X\X1 =
x\x1. We thus observe that pλ|d,x = pλ|d,x\x1 . Similarly, one
can show the independence of the other settings Xk for k > 1,
and one obtains pλ|d,x = pλ|d.

To conclude this section, we want to compare our result
to Refs. [49,50]. Reference [49] shows that a postselection
that can be equivalently decided when excluding any of the

N parties is valid for the demonstration of N-partite non-
locality. This can be applied to a coincidence postselection
in an ideal scenario as considered here: Any party can be
excluded in the postselection decision because its number of
detected particles is determined by the number of the detected
particles of the remaining parties. However, Ref. [49] cannot
be applied to demonstrations of GMN. In Ref. [50], it was
shown that, in an N-partite scenario, a collective postselection
that can be equivalently decided when excluding any half
of the parties is valid to demonstrate genuine N-partite non-
locality. The coincidence postselection in the noiseless case
considered here admits an additional structure such that it is
valid for demonstrating genuine N-partite nonlocality even if
all but one parties have to be included in the postselection:
The coincidence postselection can be written by conditioning
on N local variables Dk , which is not possible for a general
collective postselection.

III. COINCIDENCE POSTSELECTION
WITH INEFFICIENT DETECTORS:

THRESHOLD INEFFICIENCIES

We now consider the N-partite Bell scenario case with
nonideal detectors and transmission losses. In this case, the
number of detected particles is not conserved and we cannot
use the reasoning of the previous section. In particular, we
cannot follow that the parties measurement settings have no
influence on the postselection. However, one can limit the
strength of this influence using measurable quantities. As
causal diagrams make no statement about the strength of the
causal influences, they are not useful here. Instead, to close
the detection loophole, one can either include nondetection
events in the statistics [6,18–20], i.e., one does not discard
any results, or one can postselect on coincidence events but
must sharpen the corresponding Bell inequalities accordingly
[21–23]. Both approaches lead to threshold efficiencies that
must be surpassed in the experiment to demonstrate nonlocal-
ity [19,21–23,30–36]. In the following, we derive threshold
efficiencies that also apply for experiments in which the
particles are randomly distributed [20,47,48], and for Bell
inequalities that demonstrate GMN. Typically, even if we
assume perfect detectors and no losses in the setup, undesired
events occur with high probability. For instance, in the ideal
three-partite YS setup [48], the desired events occur only with
a probability of p = 1/4 and the remaining events show no
multipartite correlations (because one of the parties receives
no particle). Thus, when including all events, Bell inequalities
that test for GMN are not violated, even in an ideal setup.
We therefore take the second approach of sharpening the Bell
inequality and postselecting the desired events.

A general Bell inequality in the N-partite scenario can be
written as ∑

a,x

ca,x pa|x � I, (13)

where ca,x, I ∈ R, and the kth party can choose from Mk

different measurement settings xk ∈ {1, . . . , Mk} and observes
the outcome ak from a finite set of possible outcomes. Note
that this form includes Bell inequalities that, if violated,
demonstrate multipartite nonlocality [56] and GMN [37].
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As in Sec. II, we consider a coincidence postselection, i.e.,
the kth party additionally has the variable Dk , the number
of detected particles, where Dk = dk denotes the detection
of a single particle (or, more generally, the desired num-
ber of particles). We thus want to postselect the events for
which D = d, so we are left with the probabilities pa|d,x.
Since the probability of observing d may depend on the
measurement settings x, the distribution of the LHV � of
each summand of inequality (13) generally depends on x
as well. Thus, the Bell inequality is generally not valid for
the postselected statistics pa|d,x without further assuming fair
sampling [8–11] (see Appendix A for further details and
explanations).

We now follow the approach by Larsson [22] to sharpen
the multipartite Bell inequalities using a measurable detection
efficiency. In particular, for perfect detectors and no trans-
mission losses, and if the number of distributed particles is
constant, the sharpened Bell inequality should converge to
the initial Bell inequality (13). In this case, due to continuity,
there is some threshold detection efficiency above which the
sharpened Bell inequality can be violated by quantum me-
chanics (assuming there are quantum states that violate the
initial Bell inequality). Similarly to Ref. [22], we sharpen
the Bell inequality using the minimal conditional detection
efficiency

ηc = min
k,x

pdk |d\dk ,x = min
k,x

pd|x
pd\dk |x

. (14)

The efficiency ηc corresponds to the minimal probability of
the detection of a single particle by the kth party, given that
all other parties detect a single particle and given the measure-
ment settings x, minimized over the party k and all possible
settings x.

We emphasize why it is crucial to use the conditional de-
tection efficiency ηc to sharpen the Bell inequality if we want
to obtain a useful result for setups with a random distribution
of particles per party [20,47,48]. This is because, in the limit
of perfect detectors, we find that ηc = 1, while a detection
efficiency such as ηcoincidence = minx pd|x, that in the standard
scenario (one particle per party) yields ηcoincidence = 1, would
have a lower value (e.g., ηcoincidence = 1/4 in the ideal YS
scenario with N = 3 [48]). Thus, even in the ideal YS setup,
quantum mechanics could not violate the sharpened Bell in-
equality if the threshold efficiency η∗

coincidence is larger than
1/4.

The threshold conditional efficiency η∗
c depends on the Bell

inequality of interest, e.g., on the number of parties N and
on the number of measurement settings Mk . Furthermore, the
method of how to sharpen the Bell inequality differs if one
assumes an underlying LHV model (multipartite nonlocality)
or an underlying HLNHV model (GMN). In the case of an
underlying LHV model, one can directly generalize the proof
of Ref. [22] and find the sharpened Bell inequality

∑
a,x

ca,x pa|d,x � C + (I − C)

[
1 − 1 − ηc

ηc

(∑
k

Mk − N

)]
,

(15)

where we defined C = ∑
x maxa |ca,x|. Inequality (15) is

demonstrated in Appendix B and reduces to the results of

TABLE I. Threshold conditional efficiency η∗
c for the demonstra-

tion of nonlocality for N = 2 (CHSH) and N = 3 (Mermin), and for
the demonstration of GMN for N = 3 (Svetlichny). In the standard
setup where each party receives one particle (and assuming noiseless
transmission), one has a threshold detection efficiency η∗

det = η∗
c .

In the Yurke-Stoler (YS) setup [47,48], assuming perfect transmis-
sion and η1|2 = 2ηdet (1 − ηdet ), one finds the η∗

det listed in the right
column.

Bell inequality η∗
c η∗

det in YS setup

CHSH [8] 0.83 [18,21,22] 0.91 [20]
Mermin [56] 0.75 [33] 0.9
Svetlichny [37] 0.967 0.989

Ref. [22] for the corresponding Bell inequalities. We note that,
for ηc = 1, we recover the original Bell inequality (13).

In the case of an underlying HLNHV model, the technique
of Ref. [22] cannot be applied, but one can still demonstrate
the sharpened Bell inequality (see Appendix C for a detailed
derivation) ∑

a,x

ca,x pa|d,x � I + 4CN
(1 − ηc)

ηc
, (16)

which, again, for ηc = 1, reduces to the original Bell inequal-
ity (13). We note that, in inequality (16), one can slightly
optimize the sharpened Bell inequality by using a optimized
Copt instead of C4; see Appendix C.

Using the maximal value IQ predicted by quantum mechan-
ics that can be reached for the left-hand sides of inequalities
(15) and (16), one obtains a threshold conditional efficiency
η∗

c . For experiments with ηc > η∗
c , one can thus potentially

demonstrate (genuine) multipartite nonlocality while closing
the detection loophole. We emphasize that our results are de-
rived in a general setting. For specific Bell inequalities, there
may be more specialized approaches that yield smaller η∗

c ;
see, e.g., Ref. [33] for the Mermin inequality that we discuss
below. In this context, we note that the main objective of this
work is to find some threshold conditional efficiency η∗

c < 1
for Bell inequalities that certify GMN, such that the results
can be applied to setups with a random distribution of particles
among the parties [48].

We finally note that one often has an inequality of the form

∑
x

c̃x

〈
N∏

k=1

Ak

〉
x

� I, (17)

where 〈∏N
k=1 Ak〉x = ∑

a a1a2 · · · aN pa|x, for instance, the
CHSH inequality [8] for N = 2, and the Mermin inequality
[56] and Svetlichny inequality [37] for N = 3. In this case,
one has ca,x = a1a2 · · · aN c̃x. Usually, the results are binary,
ak ∈ {−1, 1}, and thus maxa |ca,x| = |c̃x|.

4The optimized Copt is defined as Copt =
miny

∑
x maxa |ca,x|D(x, y)/N , where D is a discrete distance

defined as D(x, y) = ∑
k δxk ,yk . Since D(x, y) � N , we have

Copt � C.
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A. Application to standard Bell scenarios

We now discuss our results for different Bell experiments
with N = 2 and N = 3 parties, as summarized in the second
column of Table I. In the bipartite case, we consider the
CHSH inequality [8], and for N = 3 we consider the Mermin
inequality [56] for three-partite nonlocality and the Svetlichny
inequality [37] for genuine three-partite nonlocality. For the
CHSH inequality, we have C = 4, I = 2, and IQ = 2

√
2. We

obtain η∗
c = 2(

√
2 − 1) ≈ 0.83, similarly to Ref. [22]. We

note that we could also use the sharpened Bell inequality (16)
instead, yielding η∗

c = 8/(7 + √
2) ≈ 0.95. Thus, inequality

(15) yields a smaller η∗
c than inequality (16). For the Mer-

min inequality, we have C = 4, I = 2, and IQ = 4, such
that we find η∗

c = 3/4, similarly to Ref. [23]. Finally, for
the Svetlichny inequality, we must use inequality (16), and
with Copt = 4, I = 4, and IQ = 4

√
2 we find η∗

c = 12/(11 +√
2) ≈ 0.967.
In the standard Bell scenario, one particle is sent to each

party. If one party does not detect its particle, this might be
due to a nonideal detection efficiency ηdet, or due to a loss in
the transmission of the particles described by the transmission
efficiency ηtra. Assuming that ηdet and ηtra are the same for
any party, one has ηc = (ηdetηtra )N/(ηdetηtra )N−1 = ηdetηtra. In
the case of ηtra = 1, we have thus η∗

det = η∗
c and we recover

the results of Refs. [18,21,22] for N = 2 and of Refs. [23,33]
for N = 3. Note that, using a precertification of the pres-
ence of the particle in their respective measurement stations
[57,58], one can use ηtra = 1 even for noisy transmissions.
For the N-partite Mermin inequality for N odd (C = 2(N−1),
I = 2(N−1)/2, and IQ = 2(N−1)), we find η∗

det = N/(N + 1),
which is larger than the (optimal) η∗

det = N/(2N − 2) found in
Ref. [33] for N > 3. This is because, in the derivation of η∗

det
of Ref. [33], further structure [in the form of Greenberger-
Horne-Zeilinger (GHZ) correlations] is used, while, in our
derivation, we specified no further information about the ob-
served correlations or the Bell inequality.

B. Application to the Yurke-Stoler scenario

Finally, we consider the N-partite YS setup [48] that dis-
tributes N independent particles among the N parties. The
parties are arranged in a circular configuration, where each
two neighboring parties share a single-particle source between
them. In the ideal noiseless case, each particle ends up at either
of the parties with a probability p = 1/2. Therefore, the prob-
ability of each party detecting a single particle is p = 2/2N ,
and the quantum state corresponding to these events is a N-
partite GHZ state that displays genuine N-partite nonlocality
[50,59,60]. However, for the remaining events that occur with
a probability of p = 1 − 2/2N , at least one party does not
receive a particle, such that these events show no GMN, and
we must employ a coincidence postselection to violate the
Bell inequalities.

Since N particles are shared among the N parties, if one
party detects two particles, a second party does not receive
a particle. We thus have ηc = 1 in the noiseless case, and,
using the coincidence postselection and the sharpened Bell
inequality (16), we can demonstrate GMN using the appro-
priate Bell inequality [37,59,60]. This recovers the results of
Sec. II. If we assume a constant transmission inefficiency ηtra,

and that all detectors have the same detection efficiency ηdet

to detect an incoming particle and a probability η1|2 to detect
a single particle if two particles arrive, one calculates that (see
Appendix D)

ηc = 2ηdetηtra

2 + (N − 1)[ηtraη1|2/ηdet + 2(1 − ηtra )]
. (18)

Note that in the ideal case, i.e., ηdet = ηtra = (1 − η1|2) = 1,
we have ηc = 1.

For the case of N = 2 [η∗
c = 2(

√
2 − 1)], if we assume

ηtra = 1, and that the particles are detected independently,
i.e., η1|2 = 2ηdet (1 − ηdet ), we find that η∗

det = 4/(3 + √
2) ≈

0.906, in accordance with Ref. [20]. For an experiment that
only employs on-off detectors, i.e., detectors that cannot dif-
ferentiate between one and two particles, then even in the
noiseless case (ηdet = ηtra = η1|2 = 1), we obtain ηc = 2/3 <

η∗
c . We thus find that if no number-resolving detectors are

available, the detection loophole cannot be closed even in
the noiseless bipartite scenario, and fair sampling must be
assumed to demonstrate nonlocality [11].

Finally, for the three-partite case with ηtra = 1 and η1|2 =
2ηdet (1 − ηdet ), we obtain ηc = ηdet/(3 − 2ηdet ). Thus, for the
demonstration of three-partite nonlocality (η∗

c = 3/4), we find
η∗

det = 9/10. For the demonstration of genuine three-partite
nonlocality [η∗

c = 12/(11 + √
2)], we find η∗

det = 36/(35 +√
2) ≈ 0.989. We note that, using GMN Bell inequalities for

N > 3 [59,60], one obtains η∗
det < 1 for any N > 3. Thus, we

observe that genuine N-partite nonlocality can be created from
N independent particle sources, even if nonideal detectors are
used.

IV. CONCLUSIONS

We have considered a coincidence postselection in Bell
experiments, i.e., a postselection of measurement results for
which each measurement party detects a single particle. For
this postselection, we have shown how to close the detection
loophole that is created due to the selection bias [7]. If the
number of detected particles is constant (requiring an ideal
noiseless experimental apparatus), we have shown how to
use causal diagrams and d-separation rules, together with the
no-signaling principle, to validate a coincidence postselection
for the demonstration of nonlocality and genuine multipartite
nonlocality (GMN). In a realistic experiment with nonideal
detection efficiencies, we have shown how to sharpen the
Bell inequalities for both nonlocality and GMN such that
they are still valid for the postselected statistics. This re-
sults in threshold detection efficiencies that, if reached in
experiments, enable a demonstration of nonlocality and GMN
while closing the detection loophole. Finally, we have applied
our results to the N-partite Yurke-Stoler (YS) setup [48] to
demonstrate that genuine N-partite nonlocality can be created
from N independent particle sources, even if nonideal detec-
tors are employed.
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APPENDIX A: HIDDEN VARIABLE MODELS
OF POSTSELECTED STATISTICS

Here, we discuss why, generally, the postselected statis-
tics pa|d,x do not fulfill the Bell inequality (13). The Bell
inequality

∑
a,x ca,x pa|x � I is proven by assuming that the

probabilities pa|x can be written as a hidden variable model
pa|x = ∫

dλ pλ pa|x,λ, where pa|x,λ must factorize as Eq. (4)
for a LHV model or as Eq. (5) for a HLNHV model. We can
always write

pa|d,x =
∫

dλ pλ|d,x pa|d,x,λ. (A1)

The probabilities pa|d,x,λ again factorize in the desired way:
For instance, if in the HLNHV model for a specific value λ,
we have that pa,d|x,λ = pak ,dk |xk ,λ pa\ak ,d\dk |x\xk ,λ, Eq. (5), one
shows that

pa|d,x,λ = pa,d|x,λ

pd|x,λ

(A2)

= pak ,dk |xk ,λ pa\ak ,d\dk |x\xk ,λ

pdk |xk ,λ pd\dk |x\xk ,λ

(A3)

= pak |dk ,xk ,λ pa\ak |d\dk ,x\xk ,λ. (A4)

However, the distribution pλ|d,x of the hidden variable � gen-
erally depends on the setting x, such that we cannot write
pa|d,x = ∫

dλ qλ pa|d,x,λ for some distribution qλ and, thus, we
cannot prove the Bell inequality.

In the following sections, we will define a fixed distribution
qλ (the distribution q(MN)

λ for LHV models and the distribution
q(GMN)

λ for HLNHV models) such that we can bound the
difference between pa|d,x and

pa|d,x,q =
∫

dλ qλ pa|d,x,λ, (A5)

for any measurement setting x, using the experimentally mea-
surable ηc, Eq. (14). We then find new Bell inequalities for
the postselected statistics pa|d,x by using the fact that the
probabilities pa|d,x,q, being written in a setting-independent
distribution qλ, fulfill the original Bell inequality,∑

a,x

ca,x pa|d,x,q � I. (A6)

We finally want to note that, in this context, one can easily
see the effect of the fair sampling assumption pd|x,λ = pd|λ
[9–11]. First note that the fair sampling assumption also im-
plies that pd|x = ∫

dλ pλ|x pd|x,λ = pd, where we have used
the free will assumption px,λ = px pλ. Therefore, one finds
that

pλ|d,x = pλ,d,x

pd,x
= pd|x,λ px,λ

pd px
= pd|λ pλ

pd
= pλ|d. (A7)

Thus, the distributions pλ|d,x are independent of x and the
postselected statistics pa|d,x fulfill the original Bell inequality.

APPENDIX B: SHARPENED BELL INEQUALITIES
FOR MULTIPARTITE NONLOCALITY

In this Appendix, we derive the sharpened Bell inequality
(15) that can be used to demonstrate multipartite nonlocality.
We thus consider an underlying LHV model, such that pa,d|x,λ

factorizes as in Eq. (4). In the following, we generalize the
approach of Larsson [22] to a general multipartite Bell sce-
nario with N parties, Mk settings for the kth party and a finite
number of possible outcomes for each party. In contrast to
Ref. [22], we do not assume a deterministic LHV model. We
note that, for a LHV model, this restriction can be made with-
out loss of generality [3,61]. For the HLNHV model discussed
in the next section, this restriction is generally not valid [54].

We first define the LHV distribution

q(MN)
λ = pλ pprod

λ

pprod
, (B1)

where we defined pprod
λ = ∏N

k=1

∏Mk
xk=1 pdk |xk ,λ and pprod =∫

dλ pλ pprod
λ , and pλ is the initial LHV distribution. Further-

more, as in Ref. [22], we define

δ = min
x

pprod

pd|x
. (B2)

Now, after introducing the notation pprod\x
λ = pprod

λ /pd|x,λ

and C = ∑
x maxa |ca,x|, and using the triangle inequality, we

can calculate

∑
a,x

ca,x pa|d,x = δ
∑
a,x

ca,x pa|d,x,q(MN) +
∑
a,x

ca,x(pa|d,x − δpa|d,x,q(MN) ) (B3)

� δ
∑
a,x

ca,x pa|d,x,q(MN) +
∣∣∣∣∣
∑
a,x

ca,x(pa|d,x − δpa|d,x,q(MN) )

∣∣∣∣∣ (B4)

� δI +
∣∣∣∣∣
∑
a,x

ca,x pa|d,x,q(MN)

(
pprod

pd|x
− δ

)
+

∑
a,x

ca,x

∫
dλ pλ pa|d,x,λ pd|x,λ

1 − pprod\x
λ

pd|x

∣∣∣∣∣ (B5)

� δI +
∑

x

max
a

|ca,x|
(

pprod

pd|x
− δ

) ∑
a

pa|d,x,q(MN) +
∑

x

max
a

|ca,x|
∫

dλ pλ pd|x,λ

1 − pprod\x
λ

pd|x

∑
a

pa|d,x,λ (B6)

= δI + C

(
pprod

pd|x
− δ

)
+ C

(
1 − pprod

pd|x

)
(B7)

= C + (I − C)δ. (B8)
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In the third line, we have used that pλ|d,x = pλ pd|x,λ/pd|x. In the fourth line, we have used that δ � pprod/pd|x and that |ca,x| �
maxa |ca,x|. In the fifth line, we have used that

∑
a pa|d,x,q(MN) = 1 and

∑
a pa|d,x,λ = 1.

Finally, we have to find an upper bound for δ using the experimentally measurable ηc = mink,x pd|d\dk ,x, Eq. (14). We first
derive some useful relations. Using the LHV factorization, Eq. (4), we calculate

pprod\x
λ = pprod

λ

pd|x,λ

=
N∏

k=1

Mk∏
yk=1
yk �=xk

pdk |yk ,λ �
N∑

k=1

Mk∑
yk=1
yk �=xk

pdk |yk ,λ −
(∑

k

Mk − N

)
+ 1, (B9)

where, in the last step, we have used that for pi ∈ [0, 1] one has
∏L

i=1 pi �
∑L

i=1 pi − L + 1, which can be proven by induction
over L: For L = 2, we have that p1 + p2 − 1 = p1(1 − p2) + p2 − 1 + p1 p2 � 1 − p2 + p2 − 1 + p1 p2. Then, assuming that∏L

i=1 pi �
∑L

i=1 pi − L + 1 holds for some L, we find that

L+1∏
i=1

pi = pL+1

L∏
i=1

pi � pL+1 +
L∏

i=1

pi − 1 � pL+1 +
L∑

i=1

pi − L + 1 − 1 =
L+1∑
i=1

pi − (L + 1) + 1. (B10)

Next, we calculate that, for any k and yk ,∫
dλ pλ pd|x,λ pdk |yk ,λ

pd|x
=

∫
dλ pλ pd\dk |x\xk ,λ pdk |xk ,λ pdk |yk ,λ

pd|x
(B11)

�
∫

dλ pλ pd\dk |x\xk ,λ(pdk |xk ,λ + pdk |yk ,λ − 1)

pd|x
(B12)

= 1 + pd\dk |x\xk

pd|x

∫
dλ pλ pd\dk |x\xk ,λ(pdk |yk ,λ − 1)

pd\dk |x\xk

(B13)

� 1 + 1

ηc
(ηc − 1) (B14)

= 2 − 1

ηc
, (B15)

where, in the second line, we have used again that p1 p2 � p1 + p2 − 1 for pi ∈ [0, 1], and, in the fourth line, we have used that
pdk |yk ,λ � 1 and that ηc � pd|d\dk ,x = pd|x/pd\dk |x\xk for any k and x.

Finally, we combine the results of Eqs. (B9) and (B11)–(B15) to derive that

pprod

pd|x
=

∫
dλ pλ pd|x,λ pprod\x

λ

pd|x
(B16)

�
∑N

k=1

∑
yk �=xk

∫
dλ pλ pd|x,λ pdk |yk ,λ

pd|x
−

(∑
k

Mk − N

)
+ 1 (B17)

�
(∑

k

Mk − N

)(
2 − 1

ηc

)
−

(∑
k

Mk − N

)
+ 1 (B18)

= 1 − 1 − ηc

ηc

(∑
k

Mk − N

)
. (B19)

We therefore find that δ � 1 − 1−ηc

ηc
(
∑

k Mk − N ) and, inserting this bound into Eq. (B8), we obtain the sharpened Bell inequality
for LHV models, inequality (15).

APPENDIX C: SHARPENED BELL INEQUALITIES FOR GENUINE MULTIPARTITE NONLOCALITY

Here, we derive the sharpened Bell inequality (16) that can be used for demonstrations of GMN. We thus consider an under-
lying HLNHV model, Eq. (5), such that we cannot use the LHV factorization structure of the coincidence detection probability,
i.e., we cannot assume that pd|x = ∫

dλ pλ

∏
k pdk |xk ,λ. Therefore, we cannot use the previously defined HV distribution q(MN)

λ to
approximate the pa|d,x with pa|d,x,q(MN) using the conditional detection efficiency ηc. In particular, the derivation of Appendix B
breaks down at Eqs. (B9) and (B11)–(B15). Instead, here we use the hidden variable distribution defined as

q(GMN)
λ = pλ|d,y = 1

pd|y
pλ pd|y,λ, (C1)
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where y is an arbitrary fixed measurement setting. Since q(GMN)
λ is independent on the measurement settings, the Bell inequality∑

a,x ca,x pa|d,x,q(GMN) � I holds; see Eq. (A6).
To sharpen the Bell inequality, we first compute that, for any measurement setting x,∫

dλ pλ

∣∣∣∣ pd|x,λ

pd|x
− pd\dk |x\xk ,λ

pd\dk |x\xk

∣∣∣∣ = 1

pd|x

∫
dλ pλ

∣∣∣∣pd|x,λ − pd\dk |x\xk ,λ

pd|x
pd\dk |x\xk

∣∣∣∣ (C2)

� 1

pd|x

∫
dλ pλ

[
|pd|x,λ − pd\dk |x\xk ,λ| + pd\dk |x\xk ,λ

(
1 − pd|x

pd\dk |x\xk

)]
(C3)

� 1

pd|x

∫
dλ pλ[pd\dk |x\xk ,λ − pd|x,λ + pd\dk |x\xk ,λ(1 − ηc)] (C4)

� 1

pd|x
[pd\dk |x\xk − pd|x + pd\dk |x\xk (1 − ηc)] (C5)

� 2(1 − ηc)

ηc
. (C6)

In the second line we have used that, for a, b, c ∈ [0, 1], it holds that |a − bc| = |a − b + b(1 − c)| � |a − b| + b(1 − c). In
the third line, we have used that pd|x,λ = pdk |d\dk ,x,λ pd\dk |x,λ < pd\dk |x,λ = pd\dk |x\xk ,λ [note the use of the no-signaling principle,
Eq. (6)] and that ηc � pd|x/pd\dk |x\xk , which we again used twice in the last line.

It follows that for any two measurement settings x and x̃ that differ only in the kth entry, one has∫
dλ pλ

∣∣∣∣ pd|x,λ

pd|x
− pd|x̃,λ

pd|x̃

∣∣∣∣ �
∫

dλ pλ

[∣∣∣∣ pd|x,λ

pd|x
− pd\dk |x\xk ,λ

pd\dk |x\xk

∣∣∣∣ +
∣∣∣∣ pd|x̃,λ

pd|x̃
− pd\dk |x\xk ,λ

pd\dk |x\xk

∣∣∣∣
]
� 4(1 − ηc)

ηc
, (C7)

where we have used that pd\dk |x\xk ,λ = pd\dk |x̃\x̃k ,λ and pd\dk |x\xk = pd\dk |x̃\x̃k due to the no-signaling principle and x̃\x̃k = x\xk .
Next, we find that for any measurement setting x,∫

dλ pλ

∣∣∣∣ pd|x,λ

pd|x
− pd|y,λ

pd|y

∣∣∣∣ �
∫

dλ pλ

[∣∣∣∣ pd|x,λ

pd|x
− pd|xD(x,y)−1,λ

pd|xD(x,y)−1

∣∣∣∣ + · · · +
∣∣∣∣ pd|x1,λ

pd|x1

− pd|y,λ

pd|y

∣∣∣∣
]
� 4D(x, y)(1 − ηc)

ηc
, (C8)

where D is a discrete distance defined as D(x, y) = ∑
k δxk ,yk , and we have used the sequence xi [i = 0, . . . , D(x, y) − 1] starting

from x0 = y, where xi is obtained from xi−1 by changing the kith component from yki to xki , where ki is the ith entry where x and
y differ. Thus, any xi and xi−1 only differ in only one entry, which also holds for xD(x,y)−1 and x, and for x1 and y.

We now finally obtain ∑
a,x

ca,x pa|d,x =
∑
a,x

ca,x pa|d,x,q(GMN) +
∑
a,x

ca,x(pa|d,x − pa|d,x,q(GMN) ) (C9)

�
∑
a,x

ca,x pa|d,x,q(GMN) +
∣∣∣∣∣
∑
a,x

ca,x(pa|d,x − pa|d,x,q(GMN) )

∣∣∣∣∣ (C10)

� I +
∑

x

max
a

|ca,x|
∫

dλ pλ

∣∣∣∣ pd|x,λ

pd|x
− pd|y,λ

pd|y

∣∣∣∣∑
a

pa|d,x,λ (C11)

� I + 4
1 − ηc

ηc

∑
x

max
a

|ca,x|D(x, y). (C12)

In the third line, we have again used that |ca,x| � maxa |ca,x|, and in the last line, we have used Eq. (C8) and that
∑

a pa|d,x,λ = 1.
This bound can be optimized by a minimization of

∑
x maxa |ca,x|D(x, y) over y. Finally, if we use that D(x, y) � N , we obtain

the sharpened Bell inequality for GMN, Eq. (16).

APPENDIX D: DETECTION PROBABILITIES
IN THE YURKE–STOLER SETUP

In this section, we derive the detection probabilities and
the conditional detection efficiency in the N-partite Yurke-
Stoler (YS) setup [48]. First, to compute the probabilities
of different particle distributions at the measurement parties,
we consider the simplified version of the YS setup in which
each the kth party only measures the number of incoming
particles Dk . In this setup, there are N single-particle sources

Sk that are arranged in a circular configuration. The particle
created at Sk is sent in an equal superposition to the (k − 1)th
and the kth measurement party (the particle created at S1 is
divided between the first and the N th party), e.g., using a
beam splitter if the particles are photons. The kth party then
measures the number of particles, labeled as Dk . This setup
is sketched in Fig. 3. We note that to generate nonlocality,
the kth party must also measure a second observable Ak; see
Fig. 2.

062202-9



VALENTIN GEBHART AND AUGUSTO SMERZI PHYSICAL REVIEW A 106, 062202 (2022)

FIG. 3. Sketch of the particle distribution in the N-partite Yurke-
Stoler (YS) scenario [48]. Each of N single-particle sources Sk

distributes its particle with equal probability (in an equal superposi-
tion) to the (k − 1)th and kth measurement parties (S1 is distributed
to the first and N th party). The kth party measures the number of
incoming particles Dk , while for a nonlocality experiment, the kth
party should also measure a second observable Ak ; see Fig. 2.

If the particle sent from the kth source is detected by the
(k − 1)th party, we indicate this configuration as Sk = l (left),
and Sk = r (right) otherwise. For a coincidence detection,
i.e., Dk = 1 for all k, we have the two possible configura-
tions S = (l, l, . . . , l ) and S = (r, r, . . . , r). Since there are 2N

configurations in total that all have the same probability, the
probability for a coincidence in the ideal setup with no losses
is

pcoin = 2

2N
. (D1)

To calculate ηc, Eq. (14), we must also compute pd\dk |x,
where we note that in the YS setup, we have pd\dk |x = pd\dk

so we discard the measurement settings in the following.
The possible configurations that can contribute to this event
are a configuration where all parties receive a particle and
a configuration where the kth party receives no particle and
one of the other (k − 1) parties receives two (but only detects
one). Therefore, we must calculate the probability pm2,k̄ that
the mth party receives two particles and the kth party receives
none, while the remaining parties each receive one particle.
If, e.g., the first party receives two particles, m = 1, we must
have had a configuration with S1 = r and S2 = l; see Fig. 3.

For the kth party receiving no photon, we must have Sk = l
and Sk+1 = r. Finally, for the remaining parties to detect a
single photon, we must have that Sn = l for n = 3, . . . , k − 1,
and Sn = r for n = k + 2, . . . , N . A similar reasoning holds
also for m �= 1. Thus, there is only one configuration that con-
tributes to the probability pm2,k̄ and, in the ideal noiseless case,
we have

pm2,k̄ = 1

2N
. (D2)

Finally, we can compute pd and pd\dk when including a
finite transmission efficiency ηtra, a finite single-particle de-
tection efficiency ηdet, and a probability η1|2 for the detection
of only one particle if two particles are received. Since a
coincidence detection can only occur if every party receives
and detects a single particle, we have

pd = pcoinη
N
detη

N
tra. (D3)

Next, to observe d\dk could first have a single particle per
party (p = pcoin), and all N − 1 parties detect their particle
with probability p = ηN−1

det ηN−1
tra . Second, one could have that

the kth party receives no particle and the mth (m �= k) party
receives two while the remaining parties receive and detect
a single particle (p = pm2,k̄η

N−2
det ηN−2

tra ). Furthermore, the mth
party must only detect a single particle, which may happen
because one particle is lost in transmission and the other
one is detected [p = 2ηdetηtra (1 − ηtra )], or both particles are
received but only one is detected (p = η2

traη1|2). Since there
are N − 1 possibilities for m (that are all equally probable),
we obtain

pd\dk = pcoinη
N−1
det ηN−1

tra + (N − 1)pm2,k̄η
N−2
det ηN−2

tra

× [
η2

traη1|2 + 2ηdetηtra (1 − ηtra )
]

(D4)

After some simplifications, we find Eq. (18) of the main
text,

ηc = pd

pd\dk

= 2ηdetηtra

2 + (N − 1)[ηtraη1|2/ηdet + 2(1 − ηtra )]
.
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