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Integrodifferential equation in the multimode Jaynes-Cummings model
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We investigate the multimode Jaynes-Cummings model. The population of the excited state of an atom is
expressed by an integrodifferential equation. The exact solution is found in an idealized case by taking the
infinite limit of the number of modes. The solution shows a mathematical reason why the kinklike behavior of
the excited-state population appears. We also confirm that numerical calculations agree with the exact solution.
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I. INTRODUCTION

The Jaynes-Cummings model (JC model) was proposed
to investigate a system which consists of an atom and the
electromagnetic field in a cavity [1]. The atom is assumed to
be a two-level system (TLS), and the electromagnetic field
is assumed to have a single mode whose energy is close to
the resonance energy of the atom. The interaction consists of
a process in which the excited state transfers to the ground
state with an emission of photon and its inverse process. This
restriction of interaction is nowadays called the rotating-wave
approximation.

The JC model has been extended to apply various quantum
systems [2,3]. The multimode extension is introduced in a
study of spontaneous emission of an atom in a cavity [4,5].
The atom interacts with many modes of the electromagnetic
field. In these works, the model is solved by diagonalizing
the Hamiltonian in a few cases where the number of modes
is small, and the population of the excited state of the atom
is obtained. When the number of modes is large, the popu-
lation is estimated numerically. A TLS in a one-dimensional
electromagnetic field is studied in another approach [6], and
analytical expression of the population is shown in the case
where the number of modes is infinite. However, its explicit
form is not given and numerical results are shown in the case
of a finite number of modes.

In a subsequent work of the spontaneous emission in a
cavity, a kinklike behavior of the population of the excited
state is emphasized [7]. The kinks appear at every round-trip
time of the photon in the cavity (see also Figs. 1 and 2 in
this paper). A photon packet emitted by the atom is reflected
from the boundary of the cavity and is absorbed by the atom
again. The kinks originate in this reflected photon packet. The
profile of the motion of the photon packet is clearly depicted
in studies of the multimode JC model [8] and the Rabi model
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[9]. The interpretation is intuitively clear, but these results are
obtained by numerical calculations.

Another approach is often adopted to obtain the excited-
state population. In the case of a large number of modes, the
diagonalization of the Hamiltonian is difficult, and Volterra’s
integrodifferential equations are used to describe the popula-
tion of the excited state. A heat bath model, which is a model
for dissipation, is studied by this method [10]. In this model,
the system is one harmonic oscillator and the reservoir is many
harmonic oscillators. The decay of the system is expressed by
integrodifferential equations. A TLS in dissipative cavities is
also investigated by a similar method [11,12]. These systems
are described by a kind of multimode JC model including the
environment. It is shown that the revival, where the excited-
state population takes almost the same value as the initial
state, appears at every round-trip time. The appearance of
revival is clear also in a three-dimensional ellipsoidal cavity,
where the round-trip time takes a single value for all directions
[13]. In these works, authors investigate the case where the
number of modes is infinite, but they do not show the explicit
form of the solution.

In this paper the multimode JC model is investigated
analytically. We concentrate on the time evolution of the
excited-state population of the TLS. The amplitude of the
excited state satisfies an integrodifferential equation. The orig-
inal form of this equation cannot be exactly solved. However,
by taking an infinite limit of the number of modes, we can
find the exact solution with a recursive formula. In order to
validate the limit, we compare the solution with numerical
results which are obtained without taking the limit [7,10–12].
The solution supports the interpretation of the kinks due to
the boundary effect and gives an analytical expression for the
kinks.

The paper is organized as follows: In Sec. II, we present the
model and derive an integrodifferential equation. In Sec. III,
we solve the equation in the case where coupling constants
have the same value for all modes. The exact solution is
obtained in the infinite limit of the number of modes and is
given by a recursive formula. We also confirm the validity of

2469-9926/2022/106(6)/062201(6) 062201-1 ©2022 American Physical Society

https://orcid.org/0000-0002-9810-6027
https://orcid.org/0000-0001-8069-4775
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.062201&domain=pdf&date_stamp=2022-12-01
https://doi.org/10.1103/PhysRevA.106.062201


HASEBE, NAKAYAMA, OKUBO, AND YAMANOI PHYSICAL REVIEW A 106, 062201 (2022)

0

 0.5

1

0 1 2 3 4 5

exact
M=8

M=30

0

 0.5

1

0 1 2 3 4 5

exact
M=4

M=15

0

 0.5

1

0 1 2 3 4 5

exact
M=2
M=6

0

 0.5

1

0 1 2 3 4 5

exact
M=1
M=3

����

��(a)

(b)

(c)

(d)

t t

tt

��

FIG. 1. |χ |2 given by the exact solution and numerical calculations in the case of α = 0. Parameters are chosen as (a) g = 0.5 and M = 1
and 3, (b) g = 1.0 and M = 2 and 6, (c) g = 2.0 and M = 4 and 15, and (d) g = 5.0 and M = 8 and 30. The unit of time t is the round-trip
time L/c.

the solution numerically. Section IV is devoted to summary
and discussion.

II. JC MODEL AND VOLTERRA EQUATION

We investigate the time dependence of the excited-state
population of a TLS in a one-dimensional cavity. The TLS
is supposed to exist at the center of the cavity for simplicity.
The energy level of the photon in the cavity can be indicated
by an integer n. The energy of the nth mode is ωn = nω1,
where ω1 is the lowest energy. It is well-known that the TLS
at the center of the cavity interacts with the modes with the
odd number index n = 1, 3, 5, . . . Then we reassign the index
n to the (2n − 1)th mode. The energy of the nth mode is given
by ωn = (2n − 1)ω1.

The multimode JC model is described by the Hamiltonian

H = ω0
σz + 1

2
+

N∑
n=1

ωna†
nan +

N∑
n=1

gn(σ−a†
n + σ+an), (1)

where ω0 and ωn are energy levels for the TLS and the photon,
respectively. Because the TLS is similar to a spin, the Hamil-
tonian is written by Pauli matrices. The eigenstates of σz with
eigenvalues −1 and 1 represent the ground state |g〉 and the
excited state |e〉, respectively. σ± are defined by σ+ = |e〉〈g|
and σ− = |g〉〈e|. a†

n and an are creation and annihilation op-
erators for the nth mode of the photon. The number of modes
N should be infinite, but is tentatively considered to be finite.
The coupling constants gn are taken to be real without loss of
generality.

To simplify the expression, we choose the lowest energy
of the photon as the unit of energy. Moreover, we make it
dimensionless by setting ω1 = π . The excitation energy of the
TLS is rewritten by use of this unit:

ω0 = π (2J − 1), ωn = π (2n − 1), (2)

where n = 1, 2, 3, . . ., and J is not generally an integer. The
dimension for each variable is lost, but it can be restored in
final results if necessary.

We suppose that the TLS is initially in the excited state |e〉
and there are no photons in the cavity, and we investigate the
probability of the excited state. The state vector at the time t
can be expanded as

|ψ〉 = e−iω0tχ (t )|e〉 ⊗ |0〉 +
N∑

n=1

e−iωntηn(t )|g〉 ⊗ |1n〉, (3)

where |0〉 is the no-photon state and |1n〉 ≡ a†
n|0〉 is the one-

photon state of the nth mode. χ (t ) and ηn(t ) are coefficients
for these Fock states. The phase factors e−iω0t and e−iωnt

are introduced to simplify equations. Then the Schrödinger
equation i|ψ̇〉 = H|ψ〉 reduces to

iχ̇ =
N∑

n=1

gne−2π i(n−J )tηn, (4)

iη̇n = gn e2π i(n−J )tχ. (5)

Our purpose is to find the solution χ (t ) under the initial
conditions χ (0) = 1 and ηn(0) = 0. Equations (4) and (5) are
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formally solved as

ηn(t ) = −ign

∫ t

0
e2π i(n−J )sχ (s)ds (6)

and

χ̇ (t ) = −
N∑

n=1

g2
n

∫ t

0
e−2π i(n−J )(t−s)χ (s)ds

= −
N∑

n=1

g2
n

∫ t

0
e−2π i(n−J )τ χ (t − τ )dτ. (7)

When the parameter J is not an integer, the excited energy
of the TLS is not equal to any energy level of photon. The
difference between the excited energy of the TLS and the
nearest energy level of the photon is called detuning. We
rewrite J as

J = J0 + α (0 � α < 1), (8)

where J0 is the integer part of J and α is the detuning. Then
Eq. (7) becomes

χ̇ (t ) = −ετ

N∑
n=1

g2
n

∫ t

0
e−2π i(n−J0 )τ χ (t − τ )dτ, (9)

where ε = e2π iα .
Changing the order of the sum and the integral, we obtain

an integrodifferential equation:

χ̇ (t ) =
∫ t

0
K (τ )χ (t − τ )dτ, (10)

where

K (τ ) = −ετ

N∑
n=1

g2
ne−2π i (n−J0 ) τ . (11)

III. SOLUTION OF THE INTEGRODIFFERENTIAL
EQUATION

The kernel (11) for Eq. (10) is explicitly obtained for small
N , but is obtained only by numerical calculation for large N .
In this section we find the exact solution analytically in an
idealized case. The exact solution clarifies the reason why the
kinklike behavior of |χ |2 appears in numerical results for large
N .

A. Analytical solution

We investigate an idealized case gn = g and N = 2J0 − 1,
which means that the excited energy of the TLS exists in
the middle of the energy levels of the photon except for the
detuning. Then the kernel (11) is

K (τ ) = −g2ετ

M∑
m=−M

e−2π i m τ

= −g2ετ D(τ ), (12)

where M = J0 − 1, m = n − J0, and D(τ ) is the Dirichlet
kernel D(τ ) = sin[(2M + 1)πτ ]/ sin πτ . This expression is
shown in Ref. [7] for example.

Here we consider the large-M limit. The number of modes
becomes infinite but the excited energy of the TLS is always in
the middle of those levels. In such a case the Dirichlet kernel
approaches the Dirac comb:

M∑
m=−M

e−2π i m τ →
+∞∑

k=−∞
δ(τ − k), (13)

where k is an integer. The same expression is obtained in
Ref. [12], but the analytical solution of Eq. (10) is not given.

We note the meaning of the integer k. When the length of
the cavity is L, the wave number of the lowest mode is π/L
and the round-trip time of a photon packet in the cavity is L/c.
Because we have set the unit of energy as ω1 = π , the round-
trip time becomes L/c = 1. τ = k indicates the kth return of
a photon packet emitted at τ = 0.

We find the exact solution of Eq. (10) with Eqs. (12) and
(13) analytically. For this purpose, we divide the whole range
of time into the intervals 0 � t < 1, 1 � t < 2, and so on. If
t is in the jth interval ( j � t < j + 1), where j is a positive
integer, Eq. (10) is rewritten as

χ̇ (t ) = −g2
j∑

k=0

∫ t

0
εkδ(τ − k)χ (t − τ )dτ

= γ0χ (t ) + γ1χ (t − 1) + · · · + γ jχ (t − j), (14)

where

γ0 = − 1
2 g2, γ j = −ε jg2. (15)

In Eq. (15), we used
∫ 0+

0 δ(τ )dτ = 1/2.
The solution χ (t ) can be recursively found from the 0th

interval 0 � t < 1. When 0 � t < 1, Eq. (14) reduces to

χ̇ (t ) = γ0χ (t ), (16)

and the solution is

χ = eγ0t . (17)

In this interval the photon reflected from the boundary does
not arrive at the TLS. The behavior of the TLS is the same as
that in free space and shows the exponential decay.

When 1 � t < 2, the right-hand side of Eq. (14) contains
the second term χ (t − 1), but this term is equal to Eq. (17).
χ (t − 1) is interpreted as an effect of the photon reflected
from the boundary in the 0th interval.

To find a general expression, we consider the jth interval
( j � t < j + 1) and suppose that χ (t ) is already obtained
until the ( j − 1)th interval. We introduce a new function,
χk (τ ), with a new variable, τ = t − k (0 � τ < 1), for each
k (k � j). Then τ becomes common variable for all intervals
and all terms χ (t − k) can be rewritten by τ as χ (t ) = χ j (τ ),
χ (t − 1) = χ j−1(τ ), ..., χ (t − j) = χ0(τ ). Equation (14) be-
comes

χ̇ j (τ ) = γ0χ j (τ ) + γ1χ j−1(τ ) + γ2χ j−2(τ ) + · · · + γnχ0(τ )

=
j∑

k=0

γkχ j−k (τ ). (18)
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By the redefinition χk (τ ) = eγ0τ ζk (τ )(0 � k � j), we find

ζ̇ j (τ ) =
j∑

k=1

γkζ j−k (τ ), (19)

where ζ0(τ ) = 1 from Eq. (17). The general solution of
Eq. (19) is given by a polynomial up to the jth order of τ ,

ζ j (τ ) =
j∑

m=0

Ajmτm, (20)

where coefficients Ajk are recursively obtained as follows.
Substituting Eq. (20) into Eq. (19), we find

j∑
m=1

mAjmτm−1 =
j∑

k=1

γk

j−k∑
m=0

Aj−k mτm

=
j∑

m=1

j−m+1∑
k=1

γkA j−k m−1τ
m−1, (21)

where we changed the order of summations and replaced the
index m by m − 1. By comparing each coefficients of τm−1 in
Eq. (21) we obtain

mAjm =
j−m+1∑

k=1

γkA j−k m−1. (22)

Here Aj0 are determined by the continuity of the wave func-
tion χ j (0) = χ j−1(1), that is, ζ j (0) = eγ0ζ j−1(1):

Aj0 = eγ0

j−1∑
m=0

Aj−1 m, (23)

where A00 = 1 from Eq. (17).
We show the exact solution for a few intervals (see

Appendix):

χ0(τ ) = eγ0τ = e−g2τ/2,

χ1(τ ) = e−g2τ/2(A10 + A11τ ), (24)

χ2(τ ) = e−g2τ/2(A20 + A21τ + A22τ
2),

where coefficients Ajm are

A10 = eγ0 A00 = e−g2/2,

A11 = γ1A00 = −εg2,

A20 = eγ0 (A10 + A11) = e−g2/2(e−g2/2 − εg2),

A21 = γ1A10 + γ2A00 = −εg2e−g2/2 − ε2g2,

A22 = 1
2γ1A11 = 1

2ε2g4. (25)

This result shows that the amplitudes of the excited state
are continuous, χ0(1) = χ1(0) and χ1(1) = χ2(0), but their
derivatives with respect to τ are discontinuous. The exact
solution reveals the origin of kinklike behavior of the excited-
state population.

B. Comparison of analytical and numerical solutions

In this subsection, we compare the exact solution with
numerical calculations. The exact solution is obtained in the
limit M → ∞. Numerical calculations can be carried out only
for finite M, where the number of modes is 2M + 1. If we
take N = ∞ in Eq. (1), the range of summation in Eq. (12)
becomes −M � m � ∞. In the case of finite M, the contri-
bution from the modes M < m is discarded. In the case of
infinite M, the extra contribution from the modes m < −M
is included. If they agree with each other, both methods are
considered to be appropriate. Because we concentrate on the
kinklike behavior of the population in this work, we confirm
the validity of the analysis by the agreement of the behavior
for various g.

Figure 1 shows the exact solution and numerical results
for several values of M in the case of α = 0 (zero detuning).
When the coupling constant is small (g = 0.5), the numerical
result shows a good agreement with the exact solution even
for M = 3, i.e., seven modes. When the coupling constant g is
large, the numerical calculation requires larger M to reproduce
the exact solution. In the case of g = 5, M should be larger
than 30 at least.

Inversely, we can use the limit M → ∞ to solve the mul-
timode JC model in cases where the number of modes is
appropriately large. The limit M → ∞ means that there is no
lower bound of the Hamiltonian. However, when the energy
level of the TLS is appropriately larger than the lowest energy
of the photon, this limit is a good approximation for a finite
number of modes.

Figure 2 shows the exact solution and numerical results
for several values of M in the case of α = 1/2 (maximum
detuning). The dependencies on the number of modes are
quite similar to those in Fig. 1, though the profiles of |χ |2
are rather different from those in Fig. 1. We can find the
effect of detuning in the oscillation period of |χ |2 for small g.
The kinklike behaviors are seen in both figures. Our analysis
clarifies the mathematical reason why such kinks appear.

IV. SUMMARY AND DISCUSSION

In this paper we investigated the multimode JC model and
found the exact solution for the population of the excited state
of a TLS in an idealized case. The population is described
by an integrodifferential equation, which has already been ob-
tained in other works [7,10,12]. By supposing the number of
modes is infinite, the integrodifferential equation is converted
to a series of equations for time intervals 0 � t < 1, 1 � t <

2, and so on. The exact solution is recursively obtained for
each time interval, and its derivative with respect to time t has
discontinuities. This is the reason why the kinklike behavior
appears in the profile of the excited-state population [7].

We compare the exact solution with numerical results for
a finite number of modes. Numerical results agree with the
exact solution if the number of modes is appropriately large
depending on the coupling constant. When the coupling con-
stant is small, it is sufficient to take into account several
modes. On the other hand, several tens of modes are necessary
when the coupling constant is large. The infinite limit of the
number of modes is a good approximation when the energy
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FIG. 2. |χ |2 given by the exact solution and numerical calculations in the case of α = 1/2. Parameters are chosen as (a) g = 0.5 and M = 1
and 3, (b) g = 1.0 and M = 2 and 6, (c) g = 2.0 and M = 4 and 15, and (d) g = 5.0 and M = 8 and 30. The unit of time t is the round-trip
time L/c.

level of the TLS is large compared to the lowest energy of the
photon.

The exact solution is obtained under the condition that
the coupling constants gn take the same value for all modes.
This condition is essential to obtain the Dirichlet kernel and
the Dirac Comb in Eqs. (12) and (13). Therefore, we have
little freedom to make a change of the coupling constants.
For example, we cannot arbitrarily change the position of
the atom, which existed at the center of the cavity in this
work. It induces an involved n dependence of gn. However,
it may be possible to apply the method to a model with the
dipole coupling gn ∝ √

n, which is the standard interaction
between an atom and the electromagnetic field. In this case,
the present method requires some modifications. Such a case
will be investigated in the future.

On the other hand, our method is not applicable to the Rabi
model. The method relies on the feature of the multimode JC
model, where the Hilbert space is restricted to |e〉 ⊗ |0〉 and
|g〉 ⊗ |1n〉 under the rotating-wave approximation. Because
such a restriction does not exist in the Rabi model, it is diffi-
cult to find an integrodifferential equation similar to Eq. (10).

APPENDIX: EXACT SOLUTION

We show the exact solution until the 7th interval:

χ j (τ ) = e−g2τ/2
j∑

m=0

Ajmτm, (A1)

where j = 0, 1, . . . , 6. To simplify expressions, we define
new parameters as q ≡ −g2, μ ≡ e−g2/2, and ε = e2π iα . Then
the coefficients Ajm are

A00 = 1,

A10 = μ,

A11 = εq,
(A2)

A20 = εμq + μ2,

A21 = ε2q + εμq,

A22 = 1
2ε2q2,

A30 = 1
2 {ε2μ(q2 + 2q) + 4εμ2q + 2μ3},

A31 = ε3q + ε2μ(q2 + q) + εμ2q,
(A3)

A32 = 1
2 {2ε3q2 + ε2μq2},

A33 = 1
6ε3q3,

A40 = 1
6 {ε3μ(q3 + 6q2 + 6q)

+ 12ε2μ2(q2 + q) + 18εμ3q + 6μ4},
A41 = 1

2 {2ε4q + ε3μ(q3 + 4q2 + 2q)

+ 2ε2μ2(2q2 + q) + 2εμ3q},
(A4)

A42 = 1
2 {3ε4q2 + ε3μ(q3 + 2q2) + ε2μ2q2},

A43 = 1
6 {3ε4q3 + ε3μq3},

A44 = 1
24ε4q4,
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A50 = 1
24 {ε4μ(q4 + 12q3 + 36q2 + 24q)

+ ε3μ2(32q3 + 96q2 + 48q)

+ ε2μ3(108q2 + 72q) + 96εμ4q + 24μ5},
A51 = 1

6 {6ε5q + ε4μ(q4 + 9q3 + 18q2 + 6q)

+ ε3μ2(12q3 + 24q2 + 6q)

+ ε2μ3(18q2 + 6q) + 6εμ4q},
A52 = 1

4 {8ε5q2 + ε4μ(q4 + 6q3 + 6q2)

+ 4ε3μ2(q3 + q2) + 2ε2μ3q2},
A53 = 1

6 {6ε5q3 + ε4μ(q4 + 3q3) + ε3μ2q3},
A54 = 1

24 (4ε5 + ε4μ)q4,

A55 = 1
120ε5q5, (A5)

A60 = 1
120 {ε5μ(q5 + 20q4 + 120q3 + 240q2 + 120q)

+ ε4μ2(80q4 + 480q3 + 720q2 + 240q)

+ ε3μ3(540q3 + 1080q2 + 360q)

+ ε2μ4(960q2 + 480q) + 600εμ5q + 120μ6},
A61 = 1

24 {24ε6q

+ ε5μ(q5 + 16q4 + 72q3 + 96q2 + 24q)

+ ε4μ2(32q4 + 144q3 + 144q2 + 24q)

+ ε3μ3(108q3 + 144q2 + 24q)

+ ε2μ4(96q2 + 24q) + 24εμ5q},
A62 = 1

12 {30ε6q2 + ε5μ(q5 + 12q4 + 36q3 + 24q2)

+ ε4μ2(12q4 + 36q3 + 18q2)

+ ε3μ3(18q3 + 12q2) + 6ε2μ4q2},
A63 = 1

12 {20ε6q3 + ε5μ(q5 + 8q4 + 12q3)

+ ε4μ2(4q4 + 6q3) + 2ε3μ3q3},
A64 = 1

24 {10ε6q4 + ε5μ(q5 + 4q4) + ε4μ2q4},
A65 = 1

120 {5ε6q5 + ε5μq5},
A66 = 1

720ε6q6. (A6)
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