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Full time-dependent counting statistics of highly entangled biphoton states
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Highly entangled biphoton states, generated by spontaneous parametric processes, find wide applications in
many experimental realizations. There is an increasing demand for accurate prediction of their time-dependent
detection. Unlike approaches that have emerged so far, this paper presents an approach providing full time-
dependent counting statistics in terms of efficiently computable formulas, valid for a wide range of entanglement
and arbitrary interaction times. General spatial modes are taken into account to describe free space and fiber
propagation. The time intervals that correspond to the statistics are classified according their widths. Apart from
large and small widths compared to the temporal correlation width, intermediate interval widths give access to
accidental correlations between separated time intervals. Moreover, the approach is easily applicable to a modular
array of arbitrary optical components and external influences. This is demonstrated on phase-time coding, where
the detuning of the interferometers affecting Franson interference is investigated. An acceptable range for the
detuning is estimated, such that the security of the key is not compromised.
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I. INTRODUCTION

Quantum entanglement is one of the most useful resources
in quantum information technologies and is fundamental for
secure information processing and communications. In partic-
ular, a high degree of entanglement is attractive for its high
data capacity and error resilience [1]. Bipartite states with
continuous variables (CV) enable a degree of entanglement,
which might be much higher than the maximal achievable
degree of entanglement with respect to (w.r.t.) discrete vari-
ables [2]. One of the most conventional methods in CV is
presently the generation of entangled photons by sponta-
neous parametric processes, such as spontaneous parametric
down-conversion (SPDC) and spontaneous four-wave mixing
(SFWM). These processes generate photon pairs with a strong
spectral and temporal correlation, where each photon is trans-
mitted to a party (conventionally referred to as Alice and Bob).
It plays a major role in quantum cryptography (QC) since
the detection of one photon heralds the presence of the other.
Highly entangled biphoton states find a wide application in
many experimental realizations. Frequency-bin entanglement
[3], frequency multiplexing [4], nonlocal dispersion cancel-
lation (NDC) [5], and quantum electro-optic circuits [6] were
recently investigated using a continuous-wave pump laser. Al-
though perfect frequency entanglement can thus be achieved
[7], it is inadequate for many applications requiring tim-
ing information since the emission time of the photon pairs
is completely random [8]. Hence, pulsed pumps with well-
defined emission times were recently realized to generate
highly entangled photon pairs, where entanglement properties
[8] and NDC [9–11] have been investigated. Pulsed pumps
have also found great applications in areas such as arrayed

*nauth@posteo.de

waveguide grating [12], on-chip generation [13], time-bin
implementation [14], and quantum key distribution systems
[15,16].

A specific application of pulsed pumps is phase-time cod-
ing, which was first proposed by Brendel et al. [17] and
has been experimentally realized [18]. This is a promising
approach for QC since coding in time basis is particularly
stable and the coherence length of the pump laser is not critical
[19]. The setup includes a Franson arrangement, which com-
prises two unbalanced Mach-Zehnder interferometers (MZIs)
and is widely used in several applications, such as gate
operations [20], superdense coding [21], and chip-based mi-
croresonators [22]. The key bits are first established based on
the photon pair’s temporal correlation. Hence, there is a strong
demand for an accurate prediction of this correlation with
ever-increasing precision [23]. A second basis to establish the
key bits is implemented using Franson interference, which can
be achieved by adjusting the phases of the MZIs. To ensure
perfect correlation, the optical path lengths of the MZIs must
differ less than the coherence length of the entangled photons
[24]. Otherwise, Franson interference is affected, culminating
in its complete disappearance if the detuning of the MZIs
exceeds the coherence length. Since the security of the key
relies on perfect correlation, full knowledge of this influence
is indispensable. In particular, an acceptable range of the
detuning without compromising the security of the key is of
substantial interest for experimental realizations of phase-time
coding. For a detailed description, however, many kinds of
temporal information must be taken into account, such as
the width of the pulsed pump, required for coding in time
basis, and the detailed temporal correlation, which determines
Franson interference in the case of small detuning. At the
same time, a precise description of detecting multiple photon
pairs should be provided since uncorrelated photons cause
accidental coincidences, which must be discarded during key
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distillation [19,25]. Due to wide applications and decisive
advantages of high entanglement, an arbitrarily high degree
of entanglement should also be allowed, in particular the limit
of perfect entanglement.

A detailed description of Franson interference for small
detuning, however, has only been poorly addressed yet. Al-
though many different approaches have emerged so far, none
of them is suitable for this task since they do not fulfill all
aforementioned requirements at the same time. For instance,
modeling each pulse as orthogonal states [14,20,26–29] ne-
glects many kinds of temporal information. Another way in
which they are taken into account is the perturbative limit of
low mean photon number [1,7–9,30–33]. Although this ap-
proach was recently used to investigate Franson interference
for increasing detuning of the MZIs [34,35], the generation
of multiple photon pairs is neglected. This, however, is of
particular importance for phase-time coding due to serious
consequences on the security of the key [19].

Another approach is to assume perfect entanglement [36]
or to approximate the strong temporal and spectral correlation,
respectively, by a diagonal matrix of discrete bins [13,37].
This approach has been applied to investigate spatial quantum
correlations [38] and to derive full counting statistics [25,39].
The detailed temporal correlation between entangled photons,
however, is neglected. This is incompatible with modeling of
Franson interference for small detuning of the MZIs. Fur-
ther approaches, such as Schmidt decomposition [40] and
general optical modes [41], provide full knowledge of the
quantum state [42,43]. Although the latter approaches include
all physical information, even pump field depletion [44], the
computational effort increases significantly for higher entan-
glement since more modes contribute, hence an exceedingly
time and resource consuming approach. Many experimental
realizations can thus not be modeled suitably since improving
the degree of entanglement is of broad interest. In particular,
the limit of perfect entanglement remains an open problem.

In this paper, a theoretical approach is presented provid-
ing full time-dependent counting statistics of photon pairs
generated by spontaneous parametric processes in terms of
efficiently computable formulas. The joint amplitude may
be chosen arbitrarily. General spatial modes and two widely
adopted communication channels, free space and fiber prop-
agation [45], are discussed. For the latter channel, the
corresponding time intervals are classified into two types:
Their widths are much smaller and their widths are much
larger than the temporal correlation width. The first case
provides the computation of general correlation functions,
whereas the second case is important for coding in time basis.
Intermediate interval widths are investigated by expanding the
latter liming cases, giving access to a more precise prediction
of accidental correlations between separated time intervals.
The approach is valid for a high degree of entanglement
and likewise for a low degree if the mean photon number
is bounded by 〈N̂〉 � Nmax. The higher the entanglement,
the larger Nmax. In the case of low entanglement, the mean
photon number is restricted by Nmax ≈ 1, which corresponds
to the perturbative limit. In the case of high entanglement, the
limitation can be neglected due to Nmax � 1. The first steps
of this approach were derived in a previous work [46] and the
present paper shows it completely.

In the case of further optical components and external
influences, the approach can be generalized by simple mod-
ifications of the derived formulas. To this end, a general
procedure is presented, which can be easily applied to a
modular array of arbitrary components and influences. This is
applied to the setup of phase-time coding. To demonstrate the
usefulness of this approach, full counting statistics of Franson
interference are derived and detection probabilities are pre-
sented for increasing detuning of the MZIs. By means of these
results, an acceptable range for the detuning is estimated,
such that the security for practical QKD installations is not
compromised. This could not be achieved before since, unlike
previous approaches, the requirements to accurately describe
Franson interference for increasing detuning are fulfilled. All
temporal information and multiple photon pairs effects are
taken into account. Since the derived formulas are efficiently
computable, they can be easily applied to an arbitrarily high
degree of entanglement.

The paper is organized as follows: After the description
of biphoton states generated by spontaneous parametric pro-
cesses in Sec. II, the general photoelectric counting statistics
are presented in Sec. III. Even though there is no systematic
numerical treatment of the general statistics, Sec. IV provides
the statistics in terms of efficiently computable formulas,
which are the central results of this paper. At the very heart
of the derivation lies a theorem to evaluate the operators
occurring in the general statistics. In Sec. V, a general proce-
dure to generalize the derived formulas to setups and external
influences is presented. This is applied to phase-time coding
and the detuning of the MZIs affecting Franson interference is
investigated. Section VI concludes the paper by summarizing
the main results.

II. BIPHOTON STATES

The approach of this paper deals with squeezed bipho-
ton states, which are generated by spontaneous parametric
processes under certain assumptions. The pump pulse is as-
sumed to be bright enough to apply the undepleted pump
approximation, where appreciable attenuation due to down-
conversion events can be neglected [47]. To treat frequencies
continuously, the crystal is considered to be large compared
to the optical wavelengths [47]. For the sake of simplicity, the
polarizations of input and output photons are considered to be
fixed, determining the type of the process. Although omitted
here, the results of this paper can be easily extended to general
polarization. Within these assumptions and the usual rotating
wave approximation, the Hamiltonian of SPDC processes in
the interaction picture reads as [47,48]

Ĥ (t ) ∝
∫
R3

d3kA d3kB d3kP â†
A(kA)â†

B(kB)

× F (kA, kB, kP)ei(ωA+ωB−ωP )t + H.c.,

F (kA, kB, kP) := αk (kP)
∫

V
d3r χ (2)(r, ωA, ωB, ωP)

× e−i(kA+kB−kP )·r, (1)

where V , αk , and χ (2) denote the crystal volume, the mo-
mentum amplitude of the pump field, and the nonlinear
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susceptibility. The frequencies ωi are determined by the corre-
sponding momenta ki. The mean momenta of both parties can
be neglected if the photons are not mixed and the propagation
is devoid of nonlinear dispersion effects. Hence, they will be
set to zero, as well as the mean frequencies of fiber cou-
pled photon pairs. To obtain the Hamiltonian of the SFWM
process, it suffices to make the substitution [49]

F (kA, kB, kP) :=
∫
R3

d3k′αk1(k′)αk2(kP − k′)
∫

V
d3r

× χ (2)(r, ωA, ωB, ω′)e−i(kA+kB−k′ )·r (2)

with the corresponding pump fields αk1 and αk2. Due to the
dependence χ (2)(r), techniques such as quasi-phase-matching
are included in this approach [6,11,39,50,51]. An expression
of the time evolution operator for general interaction times t
can be achieved using the Magnus expansion [52,53]

Û = exp

[
1

ih̄

∫ t/2

−t/2
dt ′ Ĥ (t ′) − 1

2h̄2

∫ t/2

−t/2
dt ′

×
∫ t ′

−t/2
dt ′′ [Ĥ (t ′), Ĥ (t ′′)] + . . .

]
. (3)

Since [âiâ j, â†
i â†

j , â†
i â j, I]i, j forms a Lie algebra, Û can be

disentangled to a rotation operator R̂ and a squeezing operator

Ŝ = exp

[∫
R3

d3kA d3kB ψ (kA, kB)â†
A(kA)â†

B(kB) − H.c.

]
,

(4)

where ψ (kA, kB) designates the joint amplitude (JA). Initial
vacuum states of Alice and Bob eliminate R̂ to give

Û |0〉A|0〉B = ŜR̂|0〉A|0〉B = Ŝ|0〉A|0〉B, (5)

which gives proof that for each order of the Magnus expan-
sion, even for the exact solution, the quantum state can be
written in terms of a squeezing operator Ŝ, determined by a JA
ψ (kA, kB) as in Eq. (4). For the first-order term of the Magnus
expansion, the JA is given by

ψ (kA, kB) ∝
∫
R3

d3kPF (kA, kB, kP)

× t sinc
[
t
ωA + ωB − ωP

2

]
, (6)

where time ordering effects are neglected and the limit of
long interaction times results in energy conservation. Further
orders of the Magnus expansion are discussed in [52], where
an explicit expression of ψ (kA, kB) is derived in dependence
on F (kA, kB, kP).

Despite the closed-form expression of the quantum state,
the continuous character of the JA renders it difficult to
compute the state exactly. Therefore, many approximations
pertaining to the aforementioned approaches, such as the
perturbative limit, perfect entanglement, and Schmidt decom-
position, have been applied to Eq. (4). In this manner, the
approach of this paper is based on a suitable expression of
the JA, aiming to apply approximations that are appropriate
for highly entangled biphoton states and still lead to analytical
expressions for the counting statistics. To this end, it is worth-
while to distill crucial features of high entanglement and to

correspondingly rewrite the JA ψ (kA, kB). First, it should be
noted that it depends distinctly on kA + kB and ωA + ωB and
thus exhibits a diagonal shape. Therefore, it is plausible to
express the JA in rotating coordinates kA + kB and kA − kB.
Secondly, the amplitudes along the rotating coordinates deter-
mine spatial and momentum detection of each party’s pulse.
This motivates the definition of the function φ(χ, κ), where
normalized (dimensionless) spatial and momentum coordi-
nates χ and κ represent the spatial and momentum amplitude,
respectively, of each party’s pulse. As derived in Sec. IV,
spatial and momentum detection can simply be obtained by
integration w.r.t. the other variable, similar to the Wigner
function. It should be pointed out that φ(χ, κ) is only assumed
to have normalized widths in all variables and otherwise can
be chosen arbitrarily. In particular, φ(χ, κ) does not need to
decouple, which allows the approach of this paper to include
nontrivial phase mismatches.

It is envisioned that the sought-after expression for the JA
explicitly reproduces each party’s spatial and momentum am-
plitude in its respective basis. The JA ψ (kA, kB) in momentum
basis and ψ (xA, xB) in spatial basis can be related by inserting

â(x) = 1
√

2π
3

∫
R3

d3k â(k)e−ix·k (7)

in Eq. (4). Due to the scaling property of the Fourier trans-
formation, it is apparent that high momentum anticorrelation
corresponds to high spatial correlation and vice versa. In the
case of momentum anticorrelation, each party’s spatial and
momentum amplitudes are thus determined by the JA along
xA − xB and kA + kB, respectively. The need to relate these
coordinates to the normalized variables χ and κ suggests
the introduction of three-dimensional momentum and spatial
widths. This can be written as

χ = �−1
x

2
(xA + xB), κ = δx

2
(kA − kB) (8)

with positive-definite 3 × 3 matrices δx and �x, the eigen-
values of which designate the spatial correlation widths and
the spatial full widths at half maximum (FWHM) of the
pulses at each party’s side, respectively. Since δx and �x do
not need to be diagonal, the approach of this paper includes
general elliptical shapes of the JA, essential for noncollinear
geometries [54].

In keeping with this modeling, the relation between the JA
and φ(χ, κ) is set to be

ψ (kA, kB) = det

(
�x√
2π

)

× F−1
χ

[
φ

(
χ,

δx

2
(kA − kB)

)]
(�x(kA + kB)),

ψ (xA, xB) = det

(
δ−1

x√
2π

)

× Fκ

[
φ

(
�−1

x

2
(xA + xB), κ

)]
(δ−1

x (xA − xB)),

(9)

where F denotes the Fourier transformation w.r.t. the sub-
scripted variable. It becomes apparent that these expressions
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for ψ (kA, kB) and ψ (xA, xB) indeed represent the respective
amplitudes of each party’s pulse. The prefactors are chosen in
such a way that the structure of Eq. (9) will be preserved at
best, as presented in Sec. IV. After the photon pairs have been
coupled into fibers, it suffices to consider the temporal corre-
lation width δt and the temporal FWHM �t of each party’s
pulse, defined in Sec. IV, where fiber coupling is discussed.
It should be kept in mind that δt and �t are scalars since
fiber coupling reduces the spatial and momentum modes to
one dimension.

In the case of collinear degenerate phase matching, where
transverse momenta are negligible, the JA in Eq. (9) can be
expressed in time and frequency basis as

ψ (ωA, ωB) = �t√
2π

× F−1
χ

[
φ
(
χ, δt

ωA − ωB

2

)]
(�t (ωA + ωB)),

ψ (tA, tB) = 1√
2πδt

Fκ

[
φ
( tA + tB

2�t
, κ
)]( tA − tB

δt

)
, (10)

where φ(χ, κ ) is intended to represent the temporal and spec-
tral amplitude of each party’s pulse and, once again, is only
assumed to have normalized widths. All results of this paper
can be reduced to this case by replacing the matrices δx and
�x by the scalars δt and �t , respectively. Needless to say,
determinants of δt and �t can be dropped.

Quantitative results will be computed for type-II SPDC
with collinear degenerate phase matching and long interaction
time, neglecting time ordering effects, where

ψ (ωA, ωB) ∝ F (ωA, ωB, ωA + ωB). (11)

Moreover, the phase mismatch is assumed to be dominated
by ωA − ωB, whereas ωA + ωB ≈ 0 compared to αω. This
enables to decouple the function φ(χ, κ ) as

φ(χ, κ ) ∝ α(χ ) sinc
(κ

2

)
, (12)

where the scale factor depends on the mean photon number
and the degree of entanglement, as discussed in Sec. IV. This
determines the JA in time basis to be

ψ (tA, tB) ∝ α
( tA + tB

2�t

)
rect
( tA − tB

δt

)
, (13)

where the rectangular function rect(x) originates from the
crystal geometry. The temporal pump amplitude α will be
considered as Gaussian, where |α|2 has normalized FWHM.
It can be noted that δt and �t correspond to their introduced
interpretation.

In this paper, momentum anticorrelation and spatial corre-
lation, that is, �x > δx, are discussed. In the opposite case,
the following results can be obtained in the same way, but
this might be discussed elsewhere. Conventionally, the degree
of entanglement is characterized by the Schmidt number K
[43], a measure for the number of effectively contributing op-
tical modes [40]. Another important entanglement quantifier
is given by the parameter R, defined as the ratio of widths of
single-particle and coincidence wave packets, which is rather
easily experimentally measurable [2]. In three dimensions, the
latter corresponds to the matrix �xδ

−1
x , which is intended to

characterize the entanglement of the spatial (transverse and

longitudinal) modes in this paper. The Schmidt number K
turns out to be proportional to det(�xδ

−1
x ), as discussed in

Sec. IV. Entanglement of transverse modes is mainly deter-
mined by the pump beam waist, in particular for large beam
sizes [54], and the transverse correlation length, recently esti-
mated in [47]. Both quantities can be obtained by projection
of �x and δx onto the transverse plane, respectively. Various
values of their ratio are used in experimental realizations: 3.8
[30], 13–79 [38], and 140 [55] up to 360 [56].

For fiber coupled photon pairs, the degree of entanglement
simplifies to �t/δt , which is particularly determined by the
longitudinal modes. Experimental realizations of entangled
biphoton states deal with various values of �t/δt : 3.6 [12],
5.2 [16], and 10 [14,27] up to 103 [29] and 105 [11]. The ap-
proach of this paper is valid for a wide range of entanglement,
where �xδ

−1
x is related to an upper bound of the mean photon

number 〈N̂〉 � Nmax. The larger �xδ
−1
x , the larger Nmax, as

discussed in Sec. IV.

III. PHOTOELECTRIC COUNTING STATISTICS

In this section, the photoelectric counting statistics of Alice
and Bob are addressed. Their photodetectors are first assumed
to be perfect. As communication channels, free space and fiber
propagation are discussed, which are both widely adopted
[45].

In the case of fiber propagation, the counting statistics
of Alice and Bob are referred to time intervals IA, IB. The
probability of n counts at the time interval I is given by [57]

p(n, I ) =
〈
:

(
N̂I
)n

n!
e−N̂I :

〉
= 1

n!
g(n)(0), (14)

where N̂I = ∫I dt â†
t ât denotes the photon number at I , the

colons signify normal ordering, and

g(y) := 〈: e−(1−y)N̂I :〉 = 〈yN̂I 〉 (15)

denotes the probability generating function (PGF) [58]. This
can be extended to two parties as

g(yA, yB) := 〈yN̂A,IA
A y

N̂B,IB
B

〉
. (16)

In the case of biphoton states generated by spontaneous para-
metric processes, this turns out to be

g(yA, yB) = det

[
I + P(yA, yB)

(
σf − 1

2
I

)]− 1
2

,

P(yA, yB) :=
(

(1 − yA)PIA 0
0 (1 − yB)PIB

)
, (17)

where I, PI , and σf are the identity operator, the projection
onto I in time basis, and the covariance σ of the biphoton
state projected onto the transverse modes that are selected
by the fiber [59], respectively. The derivation of Eq. (17) is
presented in Appendix A. The Fredholm determinant included
in this result covers the correlations of all combinations of
parties and time values, except for time values outside of the
intervals, which are eliminated by the projection operators.
It should be emphasized that Fredholm determinants have no
systematic numerical treatment in general [60], which renders
an exact computation virtually impossible. In the case of free
space propagation, the counting statistics of Alice and Bob are
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referred to volumes VA,VB ⊆ R3. Similarly, the PGF is given
by

g(yA, yB) = det

[
I + P(yA, yB)

(
σ − 1

2
I

)]− 1
2

,

P(yA, yB) :=
(

(1 − yA)PVA 0
0 (1 − yB)PVB

)
(18)

with the projection PV onto V in spatial basis.
These results can be generalized to real photodetectors.

Dark counts can be modeled by additional radiation with Pois-
son or thermal distributed counting statistics [61]. Quantum
efficiencies ηA, ηB can be taken into account by modifying
the photon number operator N̂q,Iq �→ ηqN̂q,Iq of both parties
q = A, B [62], which leads to an effective replacement

g(yA, yB) �→ g(1 − ηA + ηAyA, 1 − ηB + ηByB). (19)

It can be shown that attenuation in fibers leads to the same
result, which can be modeled by beam splitters (BSs), where
the reflected outcomes are eliminated [28].

The covariance operator σ of the biphoton state describes
the correlation between two arbitrary time values within each
party and among both parties. Expressed in terms of the JA
ψ (xA, xB), given by Eq. (9), the covariance reads as [63]

σ =
(

σAA σAB

σBA σBB

)
, (20)

where each entry can be written as

σAB = σBA
T = 1

4

(
su + (s̃ũ†)T −isu + i(s̃ũ†)T

−isu + i(s̃ũ†)T −su − (s̃ũ†)T

)
,

σAA = 1

4

(
c + cT ic − icT

−ic + icT c + cT

)
,

σBB = 1

4

(
c̃ + c̃T ic̃ − ic̃T

−ic̃ + ic̃T c̃ + c̃T

)
(21)

using the abbreviations c := cosh(2r), c̃ := cosh(2r̃), s :=
sinh(2r), s̃ := sinh(2r̃) and the polar decomposition of

ψ = ru = ũr̃ (22)

in Hermitian parts r, r̃ and unitary parts u, ũ. It may be worth
noting that ψ can be seen as an integral operator, where the

JA ψ (xA, xB) determines the kernel. As one might have antic-
ipated, the squeezing process leads to hyperbolic functions of
the JA, occurring in Eq. (21).

IV. ANALYTICAL RESULTS

A crucial problem for the quantification of general PGFs
as in Eq. (17) is the computation of the covariance σ . There
is a strong demand for a simple, analytical expression of the
operators occurring in Eq. (21).

Before embarking on the crucial theorem of this paper
providing a satisfactory solution, the first, nonzero order of
the PGF is addressed separately. For IA = IB = R, expanding
the PGF in r and r̃, defined in Eq. (22), reveals the quadratic
order, which can be computed without any simplifications as

Tr[r2] = Tr[r̃2] = det

(
�xδ

−1
x

2π

)
‖φ‖2

2, (23)

where ‖.‖p denotes the Lp(R6) norm. It should be emphasized
that Eq. (23) is devoid of any assumption of �x and δx. Hence,
the perturbative limit 〈N̂〉 � 1 is covered by the following
results for any choice of �x and δx whatsoever. Moreover, this
order can be bounded by the mean number of photons leaving
the crystal at one party’s side (e.g., Alice) [58]:

〈N̂〉 = ∂Ag(1, 1) = 1
2 Tr[c − I] � Tr[r2], (24)

where the PGF g(yA, yB) is given by Eq. (17). Provided that
〈N̂〉 < ∞, it can be seen that r and r̃ are Hilbert-Schmidt
operators [60]. Under further assumptions that are physically
reasonable, r and r̃ can even be shown to be trace class
operators [60].

A detailed quantification of the PGFs should also include
higher orders of r and r̃. To this end, the expression of the JA,
as introduced in Eq. (9), benefits the following theorem pro-
viding a pointwise evaluation of f (r) and f (r̃) in spatial and
momentum basis. It reveals the major advantage of Eq. (9),
which consists in the fact that its structure is completely
preserved and functions of the JA simplify to functions of
φ(χ, κ).

Theorem 1. Let r, r̃, u, and ũ be as defined in Eq. (22) and let f (x) be an analytic function fulfilling f (0) = 0.
If the terms of order n � nlim := 2/‖�−1

x δx‖σ of its power series can be neglected for all

|x| � xmax :=
√

det(2π�−1
x δx)〈N̂〉‖φ‖∞

‖φ‖2
, (25)

where ‖.‖∞, ‖.‖p, and ‖.‖σ are the supremum norm, the Lp(R6) norm, and the spectral norm, respectively, the following holds:

[ f (r)](x, x′) = [ f (r̃)](x, x′) = det

(
δ−1

x√
2π

)
Fκ

{
f

[∣∣∣∣φ
(

�−1
x

2
(x + x′), κ

)∣∣∣∣
]}(

δ−1
x (x − x′)

)
,

[ f (r)u](x, x′) = det

(
δ−1

x√
2π

)
Fκ

{
f̃

[
φ

(
�−1

x

2
(x + x′), κ

)]}(
δ−1

x (x − x′)
)
,

[
f (r̃)ũ†

]
(x, x′) = det

(
δ−1

x√
2π

)
Fκ

{
f̃

[
φ

(
�−1

x

2
(x + x′), κ

)∗]}(
δ−1

x (x − x′)
)
,
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[ f (r)](k, k′) = [ f (r̃)](−k,−k′) = det

(
�x√
2π

)
F−1

χ

{
f

[∣∣∣∣φ
(

χ,
δx

2
(k + k′)

)∣∣∣∣
]}

(�x(k − k′)),

[ f (r)u](k, k′) = det

(
�x√
2π

)
F−1

χ

{
f̃

[
φ

(
χ,

δx

2
(k − k′)

)]}
(�x(k + k′)),

[ f (r̃)ũ†](k, k′) = det

(
�x√
2π

)
F−1

χ

{
f̃

[
φ

(
χ,

δx

2
(−k + k′)

)∗]}
(�x(−k − k′)), (26)

where f̃ (x) := f (|x|)x/|x| and φ(χ, κ) is defined in Eq. (9).

The proof can be found in Appendix B. Owing to this theorem,
the covariance σ can be evaluated pointwise in spatial basis as[

σ − 1

2
I

]
(x, x′)

= det

(
δ−1

x√
2π

)
Fκ

[
S

(
�−1

x

2
(x + x′), κ

)](
δ−1

x (x − x′)
)
(27)

in terms of the matrix

S(χ, κ) =
(

SAA(χ, κ) SAB(χ, κ)
SBA(χ, κ) SBB(χ, κ)

)
. (28)

The entries are given by

SAA(χ, κ) = SBB(χ, κ) =1

4

∑
±

φc(χ,±κ)

(
1 ±i
∓i 1

)
,

SAB(χ, κ) = SBA(χ, κ)∗ =1

4

∑
±

φs(χ,±κ)±
(

1 ∓i
∓i −1

)
,

(29)

where z± := Rez ± iImz is intended to abbreviate z ∈ C itself
and the complex conjugate z∗, respectively. Moreover, the
abbreviations

φc(χ, κ) := cosh[2|φ(χ, κ)|] − 1,

φs(χ, κ) := sinh[2|φ(χ, κ)|] φ(χ, κ)

|φ(χ, κ)| (30)

are used throughout this paper, where φ(χ, κ) is defined in
Eq. (9). In the case of collinear degenerate phase matching,
φc(χ, κ ) and φs(χ, κ ) are defined in the same way, where
φ(χ, κ) needs to be replaced by φ(χ, κ ), defined in Eq. (10).

Further interesting quantities, such as the Schmidt number
K [2], can also be calculated as

K = Tr[r2]2

Tr[r4]
= det

(
�xδ

−1
x

2π

)(‖φ‖2

‖φ‖4

)4

, (31)

which reveals the aforementioned relation to �xδ
−1
x . In the

case of Eq. (12) with collinear degenerate phase matching, K
and �t/δt even share the same magnitude:

K

�t/δt
= 1

2π

(‖φ‖2

‖φ‖4

)4

= 3

2
√

2π ln(2)
≈ 0.72. (32)

Based on Theorem 1, the spatial and momentum distribution
of each party’s pulse can be obtained as

〈N̂A(x)〉 = 〈N̂B(x)〉 = 1

2
det

(
δ−1

x

2π

)∫
R3

d3κ φc
(
�−1

x x, κ
)
,

〈N̂A(k)〉 = 〈N̂B(−k)〉 = 1

2
det

(
�x

2π

)∫
R3

d3χ φc(χ, δxk).

(33)

These relations corroborate the interpretation of δx and �x as
well as the motivation of introducing φ(χ, κ), namely, repre-
senting the spatial and momentum amplitude of each party’s
pulse. Integrating Eq. (33) gives the mean photon number of
one party as

〈N̂〉 = 1

2
det

(
�xδ

−1
x

2π

)∫
R3

d3κ d3χ φc(χ, κ). (34)

It should be kept in mind that this relation serves to determine
the scale factor of φ(χ, κ) in dependence on the mean pho-
ton number and the degree of entanglement, as pointed out
for Eq. (12). This can be done numerically or by expanding
φc(χ, κ) in terms of φ(χ, κ).

The condition of Theorem 1 reveals the regime of validity
of the approach that is presented in this paper: The higher the
entanglement �xδ

−1
x and the lower the mean photon number

〈N̂〉, the better is the condition fulfilled. The required degree
of entanglement is thus related to the mean photon number,
which can be expressed by an upper bound 〈N̂〉 � Nmax. The
relation between the degree of entanglement and Nmax is pre-
sented in Table I and evaluated in the case of Eq. (12). To
derive this relation, the condition of Theorem 1 can be adapted
to collinear degenerate phase matching as

nlim = 2�t

δt
, xmax =

√
2π〈N̂〉 δt

�t

‖φ‖∞
‖φ‖2

. (35)

In view of Eq. (30), the remainder of the power series of
f (x) := cosh(2x) − 1 and sinh(2x) needs to be estimated. The
remainder of the order n � nlim has thus to be much smaller
than the quadratic and linear order for all |x| � xmax, respec-
tively. This can be achieved by

cosh(2xmax)

n!
(2xmax)n � min

{
xmax, 2x2

max

}
. (36)

TABLE I. Upper bound Nmax of the mean photon number for
given degree of entanglement �t/δt , such that the approach of this
paper is still valid. This relation was evaluated in the case of Eq. (12).

�t/δt 2 3 4 5 7 10 15 20

Nmax 2.9 8.7 18 34 85 229 715 1619
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Since Nmax � 〈N̂〉 exceeds the regime of validity, the variable
x̃ � xmax is introduced, which is defined as√

2πNmax
δt

�t

‖φ‖∞
‖φ‖2

:= x̃ (37)

and fulfills

cosh(2x̃)

nlim!
(2x̃)nlim = min{x̃, 2x̃2}. (38)

Computing x̃ for fixed �t/δt gives Nmax, which is presented in
Table I. It should be pointed out that the computation of the
quadratic order is valid for any choice of �t and δt , as shown
in Eq. (23).

Moreover, Theorem 1 paves the way towards a simple,
analytical expression of the general PGF in Eq. (17), which
will be derived for fiber propagation. Although omitted in this
paper, the same results can be easily obtained for free space
propagation by extending the formulas to three-dimensional
spatial basis, which might be discussed elsewhere. In the case
of fiber propagation, the covariance needs to be modified due
to fiber coupling as[

σf − 1

2
I

]
(x, x′) =

∫
R3

d3q d3q′Pf(x, q)Pf(x
′, q′)T

⊗
[
σ − 1

2
I

]
(q, q′), (39)

occurring in Eq. (17), where Pf denotes the projection onto
transverse modes of the fiber (e.g., Laguerre Gaussian modes
or Hermite Gaussian modes) [59]. It may be worth noting
that Pf(x, q)Pf(x′, q′)T is generally a matrix representing all
combinations of transverse modes selected by the fiber. This
extends σ − I/2 to an additional mode structure, hence the
tensor product. More precisely, a continuous number of trans-
verse modes simplifies to a finite number. Equation (39) can
be expressed in time basis and can be put in the form[

σf − 1

2
I

]
(t, t ′) = 1√

2πδt

Fκ

[
S

(
t + t ′

2�t
, κ

)](
t − t ′

δt

)
,

(40)

which defines the matrix S(χ, κ ) and determines δt and �t

since S(χ, κ ) is once again assumed to have normalized
widths. In the case of collinear degenerate phase matching,
fiber coupling in Eq. (39) is redundant and S(χ, κ ) coincides
with Eq. (28) depending on φ(χ, κ ), defined in Eq. (10),
instead of φ(χ, κ).

As discussed in Sec. III, the counting statistics w.r.t. fiber
propagation are referred to time intervals IA, IB. An ana-
lytical expression of the general PGF, however, can hardly
be achieved for general IA, IB. Therefore, they are classified
according to their widths into two types: |IA|, |IB| � δt and
|IA|, |IB| � δt , discussed in Secs. IV A and IV B, respectively.
The first case provides the computation of general correlation
functions, whereas the second case is important for coding
in time basis. The remainder of this section addresses in-
termediate interval widths, paving the way towards a more
precise prediction of accidental correlations between sepa-
rated time intervals. The following results can also be obtained
in frequency basis, that is, IA, IB would designate frequency

intervals, but this is omitted here and might be discussed
elsewhere.

A. Small interval widths

The intervals are now assumed to satisfy |IA|, |IB| � δt . In
order to facilitate the PGF in Eq. (17), the projection operators
PIA , PIB and the covariance σf are addressed. According to
Eq. (40), σf varies at most in the magnitude of δt . Therefore,
PIA and PIB cause approximately a pointwise evaluation at
some arbitrary value in the interval. This can be written as

PIq ≈ |Iq〉〈Iq|,
〈Iq|A|Iq′ 〉 ≈ √|Iq||Iq′ |A(Tq, Tq′ ) (41)

for any operator A = c, c̃, s, s̃ occurring in Eq. (21), and
party q, where Tq ∈ Iq is an arbitrary time value and 〈t |Iq〉 :=
1t∈I/

√|Iq| denotes the L2-normalized indicator function of Iq.
Inserting Eq. (40) into the PGF gives

g(yA, yB) = det

[
I − 1

2πδt

(
τA(yA) 0

0 τB(yB)

)

×
∫ ∞

−∞
dκ

(
S̃AA(TA, TA) S̃AB(TA, TB)
S̃BA(TB, TA) S̃BB(TB, TB)

)]− 1
2

,

S̃(T, T ′) := S

(
T + T ′

2�t
, κ

)
e−iκ (T −T ′ )/δt , (42)

where τq(yq) := (yq − 1)|Iq| and Tq ∈ Iq can be chosen arbi-
trarily for each party q. It should be noted that Eq. (42) can
be evaluated with moderate computational effort. Due to the
reduction to one time value per interval, only the correlation
between the parties is taken into account. The Fredholm de-
terminant thus shrinks to a determinant of a 4 × 4 matrix.
Moreover, the Fourier transform, occurring in the entries AB
and BA, can be computed efficiently by fast Fourier transfor-
mation. Unlike approaches based on Schmidt decomposition
or general optical modes, the computation of the determinant
does not grow indefinitely for increasing entanglement.

Equation (42) serves to generalize the counting statistics
to further components and external influences, as discussed in
Sec. V A, and provides the computation of correlation func-
tions 〈

N̂A(TA1) . . . N̂A
(
TAmA

)
N̂B(TB1) . . . N̂B

(
TBmB

)〉
(43)

of general order mA, mB ∈ N. To relate correlation functions
to general PGFs, defined in Eq. (16), it is pertinent to replace
the photon number operators as

N̂q(Tq) = ∂|Iq|∂yq

(
y

N̂q,Iq
q

∣∣
yq=1,|Iq|=0, (44)

where Iq = [Tq − |Iq|/2, Tq + |Iq|/2] for each party q. Since
the PGF in Eq. (42) only depends on τA and τB, the derivatives
in Eq. (44) simplify to ∂τq evaluated at τq = 0. The second-
order correlation function can thus be written as

〈N̂A(TA)N̂B(TB)〉 = ∂τA∂τB g(τA = 0, τB = 0). (45)

To derive higher-order correlation functions as in Eq. (43),
IA and IB can be considered as a union of disjoint subinter-
vals IA1 . . . IAmA and IB1 . . . IBmB containing the time values
TA1 . . . TAmA and TB1 . . . TBmB , respectively. The subintervals
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designate independent modes, such that the approximation in
Eq. (41) can be generalized to

PIq ≈
⎛
⎝|Iq1〉〈Iq1| 0

. . .

0 |Iqmq〉〈Iqmq |

⎞
⎠. (46)

Reproducing the derivation of the PGF in Eq. (42) shows that
it suffices to make the substitutions

τq �→
⎛
⎝τq1 0

. . .

0 τqmq

⎞
⎠ (47)

and

S̃qq′ (Tq, Tq′ ) �→

⎛
⎜⎝ S̃qq′ (Tq1, Tq′1) · · · S̃qq′ (Tq1, Tq′mq′ )

...
. . .

...

S̃qq′ (Tqmq , Tq′1) · · · S̃qq′ (Tqmq , Tq′mq′ )

⎞
⎟⎠

(48)

for each party q, q′ in Eq. (42). It can be seen that the correla-
tions between all time values TA1 . . . TAmA and TB1 . . . TBmB are
taken into account. This exactly reveals a discretized version

of the Fredholm determinant in Eq. (17). By means of these
substitutions, general correlation functions in Eq. (43) can be
computed as

∂τA1 . . . ∂τAmA
∂τB1 . . . ∂τBmB

g(τA1 = 0, . . . , τAmA = 0,

τB1 = 0, . . . , τBmB = 0). (49)

B. Large interval widths

The intervals are now assumed to satisfy |IA|, |IB| � δt .
The PGF in Eq. (17) can be written as

g(yA, yB) = exp

{
−1

2
Tr ln

[
I + P(yA, yB)

(
σf − 1

2
I

)]}
(50)

using the identity ln det = Tr ln [60]. According to Eq. (40),
the covariance σf behaves approximately diagonally com-
pared to IA and IB. Hence, it commutes with the projection
operators PIA and PIB , occurring in P(yA, yB). Powers of
P(yA, yB)(σf − I/2) in Eq. (50), however, give rise to the
combination PIA PIB = PIA∩IB in some terms, where IA and IB

might be different. This problem is solved by the statement

f

[(
PIA 0
0 PIB

)(
σf − 1

2
I

)](
PIA 0
0 PIB

)
≈
(

PIA\IB f [(σf − I/2)AA] 0
0 PIB\IA f [(σf − I/2)BB]

)
+ PIA∩IB f

[
σf − 1

2
I

]
(51)

for analytic functions f (x) fulfilling f (0) = 0, which can be
proven for the power series of f (x) by induction. Setting
f (x) := ln(1 + x) in Eq. (51) leads to a decomposition

g(yA, yB) = gIA\IB

A (yA) gIB\IA
B (yB) gIA∩IB

j (yA, yB) (52)

of the PGF in Eq. (50). The total counting statistics are thus
determined by the mutually uncorrelated statistics of Alice’s
counting at IA \ IB, Bob’s counting at IB \ IA, and their cor-
relation at IA ∩ IB. The PGFs of each party can be written
as gI

A(yA) = gI
j (yA, 1) and gI

B(yB) = gI
j (1, yB) in terms of the

joint PGF, given by

gI
j (yA, yB) = exp

[
−1

2

∫
I

dt Tr

({
ln

[
I +

(
1 − yA 0

0 1 − yB

)

×
(

σf − 1

2
I

)]}
(t, t )

)]
. (53)

In order to evaluate the operator at (t, t ), Eq. (40) can be
generalized to

[
f

(
σf − 1

2
I

)]
(t, t ′)

= 1√
2πδt

Fx

{
f

[
S

(
t + t ′

2�t
, x

)]}(
t − t ′

δt

)
(54)

using Theorem 1. It should be pointed out that fiber coupling
might have changed the degree of entanglement and thus the
conditions of Theorem 1. Applying Eq. (54) to Eq. (53) gives

the desired result

gI
j (yA, yB) = exp

{
− �t

4πδt

∫
I/�t

dχ

∫ ∞

−∞
dκ

× ln det

[
I +

(
1 − yA 0

0 1 − yB

)
S(χ, κ )

]}
,

(55)

where S(χ, κ ) is determined by Eq. (40). In contrast to
Eq. (42), the integrals are outside of the determinant and the
logarithm. Some insights in this observation may be gained by
extracting the integrals from the exponential function, which
would reveal a product integral (a continuous version of a
product) of the determinant. Hence, the correlations of all
combinations of parties and values for χ, κ are taken into
account. As in Sec. IV A, this formula is efficiently com-
putable due to limited size of S(χ, κ ), even for increasing
entanglement. Moreover, Eq. (55) again serves to generalize
the counting statistics to further components and external
influences, as discussed in Sec. V A. If the phase matching
is collinear degenerate and the entangled photon pairs are
detected without further influences, the PGF in Eq. (55) sim-
plifies to

gI
j (yA, yB) = exp

{
− �t

2πδt

∫
I/�t

dχ

∫ ∞

−∞
dκ

× ln

[
1 + 1 − yAyB

2
φc(χ, κ )

]}
, (56)

where φc(χ, κ ) is defined in Eq. (30). It can be inferred that
the statistics are strictly correlated since the PGF only depends
on the product yAyB, which matches with [40,41].
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For one party (e.g., Alice) and collinear degenerate phase
matching, the statistics become Poissonian in the case of per-
fect entanglement. An expansion about this case gives

gA(y) ≈ exp

[
(y − 1)〈N̂〉 + (y − 1)2

2

〈N̂〉2

K

]
(57)

revealing the Schmidt number K and the mean photon number
〈N̂〉, determined by Eqs. (31) and (34), respectively. This
succinctly describes how far the degree of entanglement in-
fluences the counting statistics of one party.

C. Intermediate interval widths

The remaining case, where the approximations applied
to the projection operators PIA , PIB in the latter sections are
not sufficient anymore, turns out to be more difficult. Since
an analytical solution without any approximations is hardly
possible, intermediate interval widths can only be investigated
by expanding the limiting cases in terms of interval widths,
benefiting a more detailed description of the counting statis-

tics. In particular, large interval widths, modeled by σf being
approximately diagonal compared to PIA , PIB and discussed
in Sec. IV B, immediately lead to the fact that correlations
solely exist between overlapping intervals, as presented in
Eq. (52). Due to finite temporal correlation widths δt , how-
ever, correlated photons are able to overcome the interval
borders and to be detected at separated time intervals, most
significantly if the intervals are neighbored. Hence, counting
statistics that cover this influence are of considerable interest
for experimental applications. It is envisioned to extend the
PGF in Eq. (52) by expansion about the approximation for
large interval widths and to gain potential correlations be-
tween separated time intervals. It should be mentioned that
this expansion is inaccessible to approaches based on Schmidt
decomposition or general optical modes since diagonal σf

corresponds to perfect entanglement.
In view of Eq. (50), it is worthwhile to express the loga-

rithm in its power series and to consider each power n ∈ N
as

Tr

{[
P(yA, yB)

(
σf − 1

2
I

)]n}
=
∑

q1,...qn=A,B

∫
dt1 . . . dtnTr

{
(1 − yq1 )1t1∈Iq1

[
σf − 1

2
I

]
q1,q2

(t1, t2) . . .

(1 − yqn )1tn∈Iqn

[
σf − 1

2
I

]
qn,q1

(tn, t1)

}
. (58)

To derive Eq. (51), each projection operator was commuted
and combined with the first one, which corresponds to the
approximation 1t j∈Iq j

≈ 1t1∈Iq j
for all j = 2 . . . n. For a more

detailed description, the error is taken into account as

1t j∈Iq j
= 1t1∈Iq j

+ εq j (t j ). (59)

Expanding the product of indicator functions in Eq. (58) w.r.t.
εq j (t j ) as

n∏
j=1

1t j∈Iq j
≈ 1t1∈

⋂n
j=1 Iq j

+
n∑

k=2

1t1∈
⋂

j �=k Iq j
εqk (t j ) (60)

gives the first order of the desired case of intermediate interval
widths. It is worth noting that each interval Iq j corresponds
to either IA or IB. It is thus pertinent to distinguish whether

all intervals coincide, only one interval differs, or at least
two intervals differ. Depending on these cases, 1t1∈

⋂n
j=1 Iq j

and
1t1∈

⋂
j �=k Iq j

equal to either 1t1∈IA∩IB or 1t1∈Iq1
.

A detailed calculation using Eq. (40) reveals an extended
version of Eq. (51), which leads to the sought-after PGF

g(yA, yB) = gIA∩IB
j (yA, yB) gIA\IB

A (yA) gIB\IA
B (yB)

× gIA\IB
A,cor(yA, yB) gIB\IA

B,cor(yA, yB). (61)

It can be seen that the functions gA,cor and gB,cor provide corre-
lations between separated intervals. Once again, the PGFs of
each party can be written as gI

A(yA) = gI
j (yA, 1) and gI

B(yB) =
gI

j (1, yB) in terms of the joint PGF

gI
j (yA, yB) = exp

[
− �t

4πδt

∫
I/�t

dχ

∫ ∞

−∞
dκ Tr

(
ln

[
I +

(
1 − yA 0

0 1 − yB

)
S(χ, κ )

]

+
∑

q

PqFκ ′

{
εq(κ ′) f

[(
1 − yA 0

0 1 − yB

)
S(χ, κ + κ ′),

(
1 − yA 0

0 1 − yB

)
S(χ, κ − κ ′)

]}(
2
�tχ − T q

δt

))]
,

(62)

where Pq and T q denote a 2 × 2 projection matrix onto party q
and the midpoint of Iq, respectively, and S(χ, κ ) is determined
by Eq. (40). The error is represented by its Fourier transfor-

mation

εq(κ ′) :=
√

2π

[ |Iq|
πδt

sinc

(
κ ′ |Iq|

δt

)
− δ(κ ′)

]
, (63)
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which vanishes for |Iqk |/δt → ∞. Moreover, the matrix-
valued function

f (M, N ) :=
∞∑

n=1

(−1)n+1

n

n−1∑
k=1

MkNn−k (64)

for matrices M, N , originating from the power series of the
logarithm, does not generally simplify to an analytic expres-

sion since S(χ, κ + κ ′) and S(χ, κ − κ ′) do not commute.
This is the case for one party though, such that

f (M, N ) = (M − N )−1[N ln(I + M ) − M ln(I + N )] (65)

can be applied to compute gI
A(yA) and gI

B(yB). It should be
noted that the first term in Eq. (62) corresponds to the joint
PGF for large interval widths in Eq. (55).

The correction PGF is given by

gI
q,cor(yA, yB) = exp

{
− �t

4πδt

∫
I/�t

dχ

∫ ∞

−∞
dκ TrFκ ′ {ε¬q(κ ′)(1 − yq)Sq¬q(χ, κ + κ ′)(1 − y¬q )S¬qq(χ, κ − κ ′)

× f̃ [(1 − yq)Sqq(χ, κ − κ ′), (1 − yq )Sqq(χ, κ + κ ′)]
}(

2
�tχ − T q

δt

)}
, (66)

where ¬q denotes the opposite party of q and f̃ (M, N ) := M−1 f (M, N )N−1 can be expressed using Eq. (65) since Sqq(χ, κ − κ ′)
and Sqq(χ, κ + κ ′) commute for each party q.

The presented results can be applied to coding in time basis, where the pump pulse consists of two pulses that are localized
in temporally separated intervals. The establishment of the key bits is based on the perturbative limit, where exactly one photon
pair is assumed to be generated and the probability of Alice and Bob detecting these photons at different intervals would thus
vanish. A more detailed description is already given by the PGF of large interval widths in Eq. (52), which, however, only covers
uncorrelated photon pairs. Correlations between these intervals due to finite δt are provided in Eqs. (62) and (66). To evaluate
these latter PGFs, the probability of each party detecting exactly one photon at separated time intervals IA, IB is addressed, which
is the central figure of merit for coding in time basis and is given by

p(nA = 1, IA; nB = 1, IB) = ∂AgIA
A (0) ∂BgIB

B (0) + ∂A∂BgIA
A,cor(0, 0) + ∂A∂BgIB

B,cor(0, 0). (67)

It can be noted that the first term represents the detection of uncorrelated photon pairs. For the sake of simplicity, the intervals
are set to be IA := [0,∞) and IB := (−∞, 0], which yields the corresponding PGFs as

g
Iq
q (y) = exp

(
− �t

4πδt

∫
Iq/�t

dχ

∫ ∞

−∞
dκ

{
2 ln

[
1 + 1 − y

2
φc(χ, κ )

]
−
∫ ∞

−∞
dκ ′ |χ | ε̃(|χ |κ ′)

× ln
[
1 + 1−y

2 φc(χ, κ + κ ′)
]
φc(χ, κ − κ ′) − ln

[
1 + 1−y

2 φc(χ, κ − κ ′)
]
φc(χ, κ + κ ′)

φc(χ, κ + κ ′) − φc(χ, κ − κ ′)

})
,

g
Iq
q,cor(yA, yB) = exp

{
− �t

4πδt

1 − y¬q

2

∫
Iq/�t

dχ

∫ ∞

−∞
dκ dκ ′ |χ | ε̃(|χ |κ ′)

× Re[φs(χ, κ + κ ′)φs(χ, κ − κ ′)∗]
f
[ 1−yq

2 φc(χ, κ + κ ′)
]− f

[ 1−yq

2 φc(χ, κ − κ ′)
]

φc(χ, κ + κ ′) − φc(χ, κ − κ ′)

}
, (68)

where f (x) := ln(1 + x)/x and φc(χ, κ ), φs(χ, κ ) are defined in Eq. (30).

The error is now given by

ε̃(x) := δ(x) − 2�t

πδt
sinc

(
2�t

δt
x

)
, (69)

where, compared to Eq. (63), the pulse width plays the role of
the interval width, which is attributed to the fact that detection
outside the pulse width is negligible. The error thus includes
the degree of entanglement and vanishes for δt/�t → 0. Con-
versely, the term |χ | ε̃(|χ |κ ′), occurring in Eq. (68), depends
on the distance to the interval border |χ |, which the photon
pairs need to overcome in order to trigger the detection of cor-
relations. Hence, the error is maximal for χ = 0 and vanishes
for |χ | → ∞.

The probability of each party detecting exactly one pho-
ton in dependence on the temporal correlation width δt is
illustrated in Fig.1, where the detection of uncorrelated and

any (uncorrelated and correlated) photon pairs is displayed.
For the sake of simplicity, the mean photon number of the
entire pulse is set to be 〈N̂〉 = 2, such that each interval Iq

contains 〈N̂q〉 = 1. What is evident from this figure is that
the probability for the detection of correlated photon pairs,
corresponding to the difference of the curves, vanishes at
δt = 0 and increases for higher values of δt/�t . It can be
inferred that correlated photon pairs have a modest, yet not
negligible, influence on the detection results. The decrease of
the probability to detect uncorrelated photons can straight-
forwardly be understood based on the fact that the statistics
depend on the degree of entanglement, being Poissonian for
perfect entanglement and thermal without entanglement. For
δt/�t � 0.3, the curve depicting the detection of any photon
pairs starts to decrease, which could suggest that expanding
the limiting case of large interval widths within the first order
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FIG. 1. Probability of each party detecting exactly one photon in
dependence on the temporal correlation width δt . The cases of un-
correlated photon pairs and any (correlated and uncorrelated) photon
pairs are displayed. The probability to detect correlated photon pairs
vanishes at δt = 0, increases for higher values of δt/�t , and starts to
decrease again for δt/�t � 0.3. Since each party’s statistics depend
on the degree of entanglement, the probability to detect uncorrelated
photons decreases.

is not sufficient anymore and further orders need to be taken
into account, which could lead to a further increase. A detailed
computation, however, would be beyond the scope of this
paper and might be addressed elsewhere. Moreover, it should
be kept in mind that the approach of this paper is only valid
for a certain range of entanglement, as presented in Table I.

V. SETUPS AND EXTERNAL INFLUENCES

So far, the entangled photon pairs were considered to be
detected without any setup or environmental influences. In
this section, the results are generalized to further optical com-
ponents and external influences of interest for experimental
realizations. To this end, a general procedure is presented and
applied to phase-time coding.

A. General procedure

Linear optical processes can be modeled by a unitary op-
erator F modifying the covariance σ �→ FσF T [64]. Based
on Eqs. (27) and (40), this corresponds to a transforma-
tion of the matrices S(χ, κ) and S(χ, κ ) for free space
and fiber propagation, respectively. In the latter case, the
PGFs for small, large, and intermediate interval widths,
given by Eqs. (42), (55), (62), and (66), respectively,
can simply be generalized by modifying S(χ, κ ). In the
case of a modular array of several components and in-
fluences, the corresponding transformations can be applied
successively.

There is only need to clarify whether the corresponding
assumptions are still verified. In general, the condition of
Theorem 1 needs to be checked again and, if it is compro-
mised, Table I needs to be adjusted. Moreover, in the case of
small interval widths, derived in Sec. IV A, (1) FσF T still
needs to be approximately constant compared to IA, IB. In

the case of large and intermediate interval widths, derived in
Secs. IV B and IV C, respectively, (1) FσF T still needs to be-
have approximately diagonally compared to IA, IB and (2) the
transformation of S(χ, κ ), derived based on Eq. (40), has to
be extended to the generalized version in Eq. (54). Conditions
1 can simply be verified by determining the maximal variation
and the shape of FσF T, respectively. To verify condition 2, it
is suggested to investigate, whether F completely or partially
commutes with σ .

This procedure can be applied to various setups and ex-
ternal influences. Apart from phase-time coding, which is
discussed in the next section, full descriptions of Hong-Ou-
Mandel interferometric measurement, nonlinear dispersion,
and polarization mode dispersion were derived. A detailed
presentation, however, would be beyond the scope of this
paper and will be addressed elsewhere.

B. Phase-time coding

In this section, the PGF for large interval widths, given
by Eq. (55), is applied to the setup of phase-time coding
with fiber propagation and the detuning of the MZIs affecting
Franson interference is investigated.

The pump pulse consists of two pulses α+ and α− with a
temporal delay τ and a phase difference ϕα . The setup com-
prises a MZI at each party’s side with time delays τA, τB and
phase shifts ϕA, ϕB, respectively. The corresponding detection
profile consists of three pulses that are localized in time inter-
vals Is, Im, and Il. The interval Is (Il) is attributed to the early
(late) pump pulse taking the short (long) arm of the MZI. The
middle interval Im contains a superposition of the early pump
pulse propagating through the long arm and of the late pump
pulse propagating through the short arm. Phase-time coding is
based on two assumptions [17]: the generation of exactly one
photon pair and perfect Franson interference between Im and
Im. The first statement is merely a rough estimation, which
is apparent from Sec. IV B. The second statement, where
the correlation is assumed to vanish in the case of ϕ = π

with ϕ := ϕα − ϕA − ϕB, is closely related to the first one. It
turns out that destructive interference ϕ = π and constructive
interference ϕ = 0 lead to uncorrelated and strictly correlated
counting statistics, respectively, which are both alleviated by
attenuation. To this end, multiple photon pairs need to be taken
into account, which excludes the perturbative limit to describe
Franson interference suitably. Moreover, the second condition
holds only if the time delays of the MZIs coincide, which,
however, is already affected if they differ in the magnitude of
the temporal correlation width δt [24]. As it becomes apparent
shortly, the dependence on the phase differences ϕ is already
negligible for a detuning |τA − τB| � δt . Since the security
of the key relies on perfect Franson interference, a detailed
description of this influence is indispensable.

To investigate the full contribution of Franson interference,
α− = α+eiϕα and collinear degenerate phase matching are
assumed. Moreover, the phase matching is considered to be
symmetric, that is, φ(χ, κ ), defined in Eq. (10), is symmetric
w.r.t. κ . Only one choice of detectors for each party q is inves-
tigated since the opposite detector can be modeled by shifting
the phase ϕq �→ ϕq + π . The pulses α+, α− and the three
pulses of the detection profile are assumed to be completely
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separated, such that +,− and Is, Im, Il designate independent
modes. In particular, this means

|τA − τ |, |τB − τ |, |τA − τB| � �t . (70)

The covariance of the biphoton state is thus given by

σ =
(

σ+ 0
0 σ−

)
, (71)

where σ± depends on the pump amplitude α±. The MZI of
party q can be modeled by

Fq =
∑
±

√
tq±R±ϕq/2U±τq/2, (72)

where R and tq+, tq− denote a 2 × 2 rotation matrix with
subscripted rotation angle and the transmissions of each arm
including the BSs eliminating one outcome each, respectively.
The time shift operators U±τq/2 can be written as a transforma-
tion of the modes +,− to Is, Im, Il:

Uτq/2 =
⎛
⎝1 0

0 1
0 0

⎞
⎠U(τq−τ )/2,

U−τq/2 =
⎛
⎝0 0

1 0
0 1

⎞
⎠U−(τq−τ )/2, (73)

where the residual time shifts U±(τq−τ )/2 represent the delay
difference between the MZI of party q and the pump pulses.
To apply Fq to the PGF for large interval widths, given by
Eq. (55), the corresponding transformation of S(χ, κ ) can be
derived based on Eq. (40). Since the finite matrix structure
of Fq remains unchanged, only the residual time shifts need
to be addressed. It can be shown that a time shift operator
UT modifying σqq′ �→ UT σqq′ or σqq′ �→ σqq′UT for each party
q, q′ can be substituted by a phase shift

Sqq′ (χ, κ ) �→ eiκT/δt Sqq′ (χ, κ ) (74)

if T � �t is fulfilled. Owing to this condition, χ does not
need to be shifted. In the case of the residual time shifts
U±(τq−τ )/2, this condition is verified due to Eq. (70). The
conditions to apply this transformation, presented in Sec. V A,
are also satisfied owing to |τq − τ | � |Im| for each party q
and since U±(τq−τ )/2 and σ approximately commute. Applying
Eq. (74) and setting IA = IB = Im gives

S(χ, κ ) �→
∑
±

F±(κ )S±(χ, κ )F±(κ )†,

F±(κ ) :=
(

FA±(κ ) 0
0 FB±(κ )

)
,

Fq±(κ ) := √tq∓e∓iκ (τq−τ¬q )/(4δt )R∓ϕq/2, (75)

where ¬q denotes the opposite party of q and S±(χ, κ ) de-
pends on the pulse α±. Setting tq± = 1/4, which is determined
by tracing out an output port of each BS, facilitates the PGF
to give

g(yA, yB) = exp

[
− �t

4πδt

∫
Im/�t

dχ

∫ ∞

−∞
dκ ln

({
1 + 1 − yA + 1 − yB

4
φc(χ, κ ) + 1 − yA

4

1 − yB

4
φc(χ, κ )

×
[
φc(χ, κ )

2
− 1 −

(
φc(χ, κ )

2
+ 1

)
cos ϕ cos

τA − τB

δt
κ

]}2

−
{

1 − yA

4

1 − yB

4

φc(χ, κ ) + 2

2
φc(χ, κ ) sin ϕ sin

τA − τB

δt
κ

}2)]
, (76)

where φc(χ, κ ), defined in Eq. (30), is symmetric w.r.t. κ

due to symmetric phase matching. It should be noted that
the results do not depend on τ but only on τA − τB, even
though τ is still limited due to Eq. (70). In the case of no
detuning τA = τB, Franson interference becomes the most vis-
ible. Constructive interference ϕ = 0 yields strictly correlated
counting statistics of Alice and Bob including attenuation
tA = tB = 1/2, given by Eqs. (55) and (19). Destructive inter-
ference ϕ = π leads to uncorrelated counting statistics, where
the statistics of each party coincide to the case of constructive
interference.

The influence of detuning τA �= τB will be quantified in
the case of Eq. (12). The PGF in Eq. (76) can be used to
investigate several probabilities of interest for phase-time cod-
ing. Here, the probability that each party detects exactly one
photon

p(nA = 1; nB = 1) = ∂A∂Bg(0, 0) (77)

is addressed, being the central figure of merit for phase-time
coding, as well as the detection of multiple photon pairs

p(nA � 2; nB � 2) =1 + g(0, 0) + ∂Ag(0, 0) + ∂Bg(0, 0)

+ ∂A∂Bg(0, 0) − g(0, 1) − g(1, 0)

− ∂Ag(0, 1) − ∂Bg(1, 0) (78)

that must be discarded during key distillation [19]. The
probabilities to detect exactly one photon pair and multiple
photon pairs are depicted in Figs. 2 and 3, respectively, for
different values of ϕ and τA − τB. The remaining values are
chosen to be �t = 10 ps, δt = 0.4 ps, based on [18], and
〈N̂〉 = 1 for the sake of simplicity. What is evident from
this figure is that the interference becomes the most visi-
ble for τA = τB and vanishes for increasing detuning. The
probabilities converge to the constant probability pertaining
to ϕ = π/2, culminating in the complete disappearance of
Franson interference at a detuning of δt . Figure 2 reveals
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FIG. 2. Probability of Alice and Bob detecting both exactly one
photon at the intervals IA = IB = Im in dependence on the detuning
τA − τB and the phase difference ϕ. Franson interference becomes
the most visible in the case of no detuning. For increasing detuning,
the probabilities converge to the constant curve of ϕ = π/2 and reach
the limit at δt . The dependence on the detuning is mainly linear and
yet asymmetric compared to the constant limit curve, caused by a
modest curvature.

some very interesting conclusions. It can be inferred that
linear dependence dominates the probabilities for increasing
detuning, which is attributed to the convolution of two rect-
angle functions resulting in a triangle function. Close to the
limit detuning δt , the probabilities indeed branch out linearly
and are symmetrically distributed around the constant limit
curve at ϕ = π/2. Counterintuitively, however, the curves
pertaining to different values of ϕ exhibit a modest curvature,
causing a substantial asymmetry compared to the constant
limit curve at ϕ = π/2, which represents a nontrivial ob-
servation. Figure 3 depicts lower probabilities and a similar
dependence on the detuning and ϕ. The curvature of the
curves is slighter, which leads to a more symmetric distri-
bution of the probabilities w.r.t. to the constant limit curve
at ϕ = π/2 than in Fig. 2. The detection of multiple photon
pairs is also most likely for constructive interference since
in that case the photon numbers are most strongly corre-
lated.

These results can be used to estimate an upper bound of
the detuning, such that the security of the key is not compro-
mised. The quality of interference can be characterized by the
visibility:

V = p|ϕ=0 − p|ϕ=π

p|ϕ=0 + p|ϕ=π

. (79)

For practical QKD installations, the visibility typically
amounts to at least 93% [65]. It is well known that the vis-
ibility of Franson interference substantially depends on the
mean photon number, mainly attributed to multiple photon
pairs. Hence, Fig. 4 displays the visibility for different values
of the detuning and the mean photon number. As one might
have anticipated, the visibility decreases for higher detuning,
vanishing at |τA − τB| � δt , and increases for lower mean
photon number. Once again, the dependence on the detuning is

FIG. 3. Probability of Alice and Bob detecting both more than
one photon at the intervals IA = IB = Im in dependence on the detun-
ing τA − τB and the phase difference ϕ. Similar curve shapes arise as
in Fig. 2 at lower probabilities and with lower curvature.

mainly linear and exhibits a slight curvature, which decreases
for lower mean photon number. To ensure the security of the
key, it can be inferred that the detuning should not drop below
6.9% in the case of 〈N̂〉 = 0.01. This estimation represents a
powerful tool to assess the impact of the detuning on Franson
interference. Moreover, the mean photon number should not
exceed a certain limit, even in the case of no detuning. This
limit turns out to be 0.037.

VI. CONCLUSION

In summary, a theoretical approach was presented, which
provides full time-dependent counting statistics of photon
pairs generated by spontaneous parametric processes in terms
of efficiently computable formulas. The regime of validity is
given by an arbitrarily high degree of entanglement and a low
degree if the mean photon number is bounded. The counting
statistics were derived for three types of time intervals, which
are classified according to their widths. The joint amplitude
could be chosen arbitrarily and, as communication channels,
free space and fiber propagation were investigated.

Apart from direct detection of the entangled photon pairs,
general setups and external influences were discussed. It was
shown that the approach can be easily generalized and a gen-
eral procedure to modify the derived formulas was presented.
As an example of the utility of the approach, it was applied to
phase-time coding and full description of Franson interference
for increasing detuning of the MZIs was presented. Up to
now, this could not be achieved since previous approaches
did either not include all physically contributing information
or not provide an efficient computation for arbitrarily high
entanglement. The detection probabilities were derived to
investigate this impact, revealing interesting conclusions on
how Franson interference is affected by the detuning. On this
basis, an acceptable range of the detuning was estimated for
practical QKD installations.

The present paper is likely to motivate future studies as its
regime of validity and the description of intermediate interval
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FIG. 4. Visibility in dependence on the detuning |τA − τB| and
the mean photon number 〈N̂〉. The visibility increases for lower mean
photon number and decreases for higher detuning, vanishing at |τA −
τB| � δt . The curves are dominated by linear dependence and exhibit
a slight curvature, which decreases for lower mean photon number.

widths can be extended by investigating the approximations
of the presented approach. Several applications of the present
work can be envisaged. First, many kinds of experimental
setups and external influences could be modeled and the an-
alytic results could be compared to measurement outcomes.
Secondly, the influence of noncollinear geometries and fiber
coupling to counting statistics is also of appreciable interest.
Finally, the assessment of the communication security of a
practical QKD installation is clearly called for.

APPENDIX A: GENERAL COUNTING STATISTICS

The general counting statistics in Eq. (17) are derived for
one party and one spatial mode, which can be easily extended
to the general result. The proof is inspired by [28], where a
similar result has been derived for squeezed states with finite
modes and the detection of zero or nonzero photons, which
coincides here to the special case of y = 0. The characteristic
function of an operator Â is given by

χÂ(x, p) := Tr[Â e−i(x·x̂+p·p̂)]. (A1)

For squeezed states ρ̂, this can be written as [64]

χρ̂ (x, p) = exp

[
−1

2

(
x
p

)T

σ

(
x
p

)]
, (A2)

where σ denotes the covariance matrix. To address yN̂I , the
interval I is partitioned into m subintervals. Mehler’s formula
[66] gives

χyN̂I (x, p) = (1 − y)−m

[∏
t /∈I

2πδ(xt )δ(pt )

]

× exp

[
− 1 + y

4(1 − y)

(
x

p

)T

PI

(
x

p

)]
, (A3)

where PI denotes the projection onto I . Hence, all information
of the quantum state at t /∈ I will be eliminated. Applying the
trace rule [62]

Tr[ÂB̂] = (2π )−m
∫
Rm

dmx dm pχÂ(x, p) χB̂(−x,−p) (A4)

for m dimensions to 〈yN̂I 〉 = Tr[ρ̂ yN̂I ] gives

〈yN̂I 〉 = [2π (1 − y)]−m
∫
Rm

dmx dm p exp

{
−1

2

(
x

p

)T[
PIσPI + 1 + y

2(1 − y)
PI

](x

p

)}

= (2π )−m
∫
Rm

dmx dm p exp

{
−1

2

(
x

p

)T[
(1 − y)PIσPI + 1 + y

2
PI

](x

p

)}

= det

[
(1 − y)PIσPI + 1 + y

2
PI

]− 1
2

= det

[
I + (1 − y)PI

(
σ − 1

2
I

)]− 1
2

. (A5)

The limit m → ∞ yields the result, where σ becomes an
operator and det denotes a Fredholm determinant.

APPENDIX B: PROOF OF THEOREM 1

Proof. Here, the result concerning [ f (r)](x, x′) is derived.
The idea of the proof can be easily generalized to obtain the

remaining results. First of all, it can be shown that

r(x, x′) = det

(
δ−1

x√
2π

)

× Fκ

[∣∣∣∣φ
(

�−1
x

2
(x + x′), κ

)∣∣∣∣
](

δ−1
x (x − x′)

)
(B1)

satisfies r2 = ψψ†, where the kernel of the integral operator
ψ is given by the JA ψ (xA, xB), defined in Eq. (9). Consider-
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ing powers 1 � n � 2/‖�−1
x δx‖σ of r as

[rn](x, x′) =
∫
R3

d3x1 . . . d3xn−1 r(x, x1) . . . r(xn−1, x′)

(B2)

leads to the heart of the proof. The narrow an-
tidiagonal dependence of r(x j, x j+1) guarantees the
estimation ∣∣δ−1

x (x j − x j+1)
∣∣ � 1 (B3)

for any j = 0 . . . n − 1, including x0 := x and xn := x′. Itera-
tive application of this inequality gives∣∣δ−1

x (x j − x)
∣∣ � j,

∣∣δ−1
x (x j − x′)

∣∣ � n − j. (B4)

Inserting Eq. (B1) in Eq. (B2) suggests the approximation

φ

(
�−1

x

2
(x j + x j+1), κ

)
≈ φ

(
�−1

x

2
(x + x′), κ

)
(B5)

since φ(χ, κ) has normalized widths and

∣∣∣∣�−1
x

2
(x j + x j+1) − �−1

x

2
(x + x′)

∣∣∣∣
� ‖�−1

x δx‖σ

2

[∣∣δ−1
x (x j − x)

∣∣+ ∣∣δ−1
x (x j+1 − x′)

∣∣]
� ‖�−1

x δx‖σ

2
(n − 1) � 1 (B6)

using n � 2/‖�−1
x δx‖σ . This yields a convolution of n fac-

tors, such that applying the convolution theorem [67] gives

[rn](x, x′) = det

(
δ−1

x√
2π

)n ∫
R3

d3x1 . . . d3xn−1Fκ

[∣∣∣∣φ
(

�−1
x

2
(x + x1), κ

)∣∣∣∣
](

δ−1
x (x − x1)

)
. . .

Fκ

[∣∣∣∣φ
(

�−1
x

2
(xn−1 + x′), κ

)∣∣∣∣
] (

δ−1
x (xn−1 − x′)

)

≈ det

(
δ−1

x√
2π

n

) n︷ ︸︸ ︷
Fκ

[∣∣∣∣φ
(

�−1
x

2
(x + x′), κ

)∣∣∣∣
]

∗ . . . ∗ Fκ

[∣∣∣∣φ
(

�−1
x

2
(x + x′), κ

)∣∣∣∣
] (

δ−1
x (x − x′)

)
= det

(
δ−1

x√
2π

)
Fκ

[∣∣∣∣φ
(

�−1
x

2
(x + x′), κ

)∣∣∣∣n
](

δ−1
x (x − x′)

)
. (B7)

This result can be extended to a general analytic function
f (x) by expanding it as a power series. Since the proven
relation, however, only holds for n � 2/‖�−1

x δx‖σ , higher-
order terms have to be negligible. The argument of f (x) can

be estimated by the maximal value |x| � ‖φ‖∞. To obtain
xmax, the mean photon number 〈N̂〉 can be introduced us-
ing Eqs. (23) and (24), which hold for any choice of �x

and δx. �
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