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Efficient transfer of spatial intensity and phase information of arbitrary modes
via four-wave mixing in an atomic vapor
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We propose a scheme to transfer the spatial intensity as well as phase information encoded initially in the
spatial profile of a weak probe field onto a newly generated Stokes field in a nonlinear process of four-wave
mixing (FWM). The FWM process is explored in a gaseous medium consisting of atoms modeled as a three-level
system in the � configuration. We found that different orders of Hermite-Gaussian and Laguerre-Gaussian modes
carried by a probe beam are effectively transferred to a Stokes beam. Interestingly, the transferred intensity
of the Stokes beam is a clone of the probe beam, whereas the phase profile is conjugate to the probe. The
phase distribution of the transmitted modes at the exit of the medium is explored by superimposing them on a
copropagating plane wave. Moreover, the parametric amplification due to the nonlinear process of FWM prevents
any information loss due to linear absorption and permits us to work at high optical depths. We found a structural
similarity between transferred images of about 99%, which provides clear evidence for the successful transfer of
information in the FWM process.
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I. INTRODUCTION

Spatial modulation of optical properties of a nonlinear
medium in transverse directions via intense laser beams pro-
vides flexibility to control the diffraction and absorption of
copropagating beams. This is made possible by choosing a
suitable transverse structure of the strong laser beam [1–3]. A
spatially nonuniform laser beam induces transverse variation
in the optical response of the medium. This leads to inhomo-
geneity of the medium and is widely explored in controlling
the diffraction and absorption of laser beams [4–6]. It has
also been broadly used in the creation of spatial optical soli-
tons [7,8], all-optical waveguiding or antiwaveguiding [9–12],
focusing or defocusing [13–16], beam steering [17–20], and
self-imaging [21,22] techniques. An all-optical imaging tech-
nique based on transverse modulation of electromagnetically
induced transparency (EIT) has been predicted theoretically
[23,24] and observed experimentally [25,26]. In quantum op-
tics, EIT is a quantum coherence and interference effect in
which absorption of a weak probe field is reduced signif-
icantly by the application of an extra-intense control field
[6,27]. In these EIT-based imaging schemes, it is shown that
intensity profiles of the control field are successfully trans-
ferred to the probe beam with appreciable spatial resolution.
Bortman-Arbiv et al. [28,29] have suggested an optical imag-
ing technique based on the four-wave mixing (FWM) process
in a two-level atomic system. They have shown that only the
intensity profiles of a Gaussian and Laguerre-Gaussian (LG)
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mode of a pump beam can be cloned onto a weak probe beam
and newly born FWM beam in waveguiding and antiwaveg-
uiding configurations, respectively.

However, in all the above nonlinear imaging schemes, there
is no discussion of the transfer of phase information between
laser beams, and the schemes are restricted to transferring
some specific modes only [28,29]. In the case of EIT, the
optical response of the medium depends on the absolute value
of the control field amplitude, which makes it phase insensi-
tive [23,24]. In addition, the transferred probe image in EIT
suffers strong absorption due to breaking of the two-photon
resonance condition. This imposes a further limitation on
the transfer of high-contrast images. In nonlinear optics, the
method of four-wave mixing (FWM) is an intensity-dependent
and phase-sensitive process where two (three) frequencies
mutually interact to produce two (one) new frequencies [30].
The newly generated wave may be a phase conjugate to an
input beam if FWM is degenerate in the sense that all four
interacting waves have the same frequency. Moreover, the effi-
ciency of the process is strongly dependent on phase-matching
conditions.

Nonlinear FWM in both cold and hot atomic vapors has
been explored widely due to its broad applications in opti-
cal phase conjugation [31–33], parametric amplification [34],
frequency conversion [35–37], storage and retrieval of light
pulses with uniform and nonuniform spatial profiles [38–40],
generation of squeezed light [41], and entangled photon pairs
[42–45]. Braje et al. have reported the first experimental
demonstration of efficient nonlinear frequency mixing using
EIT at low light intensities [46]. Walker et al. have reported
the transfer orbital angular momentum (OAM) states of an
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LG beam from near infrared pump light to blue light via
FWM process is rubidium vapor [47]. Souto Ribeiro and
co-workers have theoretically proposed and experimentally
observed the transfer of images and phase conjugation in
the process of stimulated parametric downconversion [48,49].
Recently, Hamedi et al. have discussed the transfer of optical
vortices between laser pulses in an atomic vapor [50].

In this paper, we plan to study an efficient transfer of phase
information along with spatial intensity of structured beams
such as a Hermite-Gaussian (HG) or Laguerre-Gaussian (LG)
probe beam to a newly generated Stokes beam via FWM in the
presence of two strong control fields. It should be noted that
the newly born Stokes beam has a slightly different frequency
than the externally applied fields and such conversion is of-
ten required for technologies operating at different resonant
frequencies. Furthermore, the gain due to parametric amplifi-
cation compensates any absorption loss of the weak probe and
Stokes beams at the expense of absorption in strong control
fields [34].

The spatial distribution of phase profiles of the transmitted
modes in a FWM process can be obtained by interfering these
modes with a copropagating plane wave. Several experimental
techniques based on Fabry-Pérot and Mach-Zehnder interfer-
ometers have been developed to observe the transverse phase
profile of spatially structured laser beams [51–54]. Optical
vortex beams such as the LG beam have a spatially varying
phase profile and zero intensity on the beam axis [55,56].
The spiral phase of an LG beam gives rise to orbital an-
gular momentum and is especially important when dealing
with phase-dependent effects [57]. The interaction of such
structured beams with nonlinear media may enable potential
applications in optical tweezing [58], optical trapping, and
storage of phase information in optical media [59].

This paper is organized as follows. In Sec. II A, we in-
troduce our theoretical model for FWM in the � system.
In Sec. II B, we employ a semiclassical theory to describe
the dynamics of the atomic system and obtain analytical ex-
pressions for linear and nonlinear polarizations to the probe
and Stokes fields. In Sec. II C, we derive the propagation
equations for probe and Stokes fields under slowly varying
envelope approximations. In Sec. III, we discuss our impor-
tant results. In Sec. III A, we first assign the HG transverse
profile for the probe field and then present our numerical
results for transfer of spatial intensity and phase profiles to
the frequency-converted Stokes field in the FWM process. In
Sec. III B, we discuss our numerical results for the spatial
intensity and phase transformation of different orders of an
optical vortex beam. In Sec. III C, we calculate the fidelities
between the transmitted images of probe and Stokes fields.
Section IV provides a brief summary of the presented work.

II. THEORETICAL MODEL

A. Model system

We consider a cold homogeneous cloud of 87Rb atoms
modeled as a three-level system in the � configuration shown
in Fig. 1. In an ordinary EIT system a weak probe field
and a relatively strong control field couple to |1〉 ↔ |3〉 and
|2〉 ↔ |3〉 transitions, respectively [6]. It should be noted

FIG. 1. Four-wave mixing in a three-level �-type atomic system.
The Rabi frequencies of fields are denoted by Gj with j ∈ {p, c, s}.
The single- and two-photon detunings are designated by � and δ,
respectively. The ground-state frequency splitting is denoted by ω.

that EIT consideration is true for media with dilute atomic
gases; for dense atomic media, stimulated Raman scattering
is dominant, and an additional optical field is generated as
the Stokes component [60,61]. However, EIT and Raman
scattering processes are nonparametric in nature, and the
phase-matching condition is not required for such processes.
In the following, we use the parametric FWM process un-
der the phase-matching condition to discuss the exchange
of spatial information between laser beams. In the pres-
ence of stronger fields in resonant dense atomic media, the
higher orders of polarization response become relevant, and
this also results in the generation of new frequency compo-
nents (Stokes and anti-Stokes) different from those applied
fields [30,34]. So we take into account the additional interac-
tions where the Stokes field operates at the |2〉 ↔ |3〉 transi-
tion and the control field operates at the |1〉 ↔ |3〉 transition
(see Fig. 1). The three copropagating fields are defined as

E j (r, t ) = e jE j (r) e−i(ω j t−k j z) + c.c., (1)

where E j (r) are the slowing varying envelope functions, e j

are the unit polarization vectors, ωi are the laser field frequen-
cies, and k j are the wave numbers of fields. The subscripts
j ∈ {p, c, s} denote the probe, control, and Stokes fields. The
frequency of the newly generated Stokes wave is ωs = ωc −
ω, provided that the two-photon resonance condition is satis-
fied. Here, ω is the frequency of the ground-state splitting.

The Hamiltonian of the atom-field system in the electric
dipole and rotating wave approximation is given by

Ĥ = h̄ω1|1〉〈1| + h̄ω2|2〉〈2| + h̄ω3|3〉〈3|
− h̄(Gpe−iωpt + Gce−iωct )|3〉〈1|
− h̄(Gse

−iωst + Gce−iωct )|3〉〈2| + H.c., (2)
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where h̄ω j is the energy of the corresponding atomic
states | j〉. The parameters Gp = d31 · epEpeikpz/h̄, Gc =
d32 · ecEceikcz/h̄, and Gs = d32 · esEseiksz/h̄ are referred to as
Rabi frequencies of the probe, control, and Stokes fields,
respectively. Here, d jk are the dipole moments of respective
transitions | j〉 ↔ 〈k| and assumed to be the same for the two
optical transitions.

B. Equation of motion

The master equation for the density operator ρ is given by

ρ̇ = − i

h̄
[Ĥ, ρ] + Lγ ρ. (3)

The last term in Eq. (3) describes incoherent processes such
as spontaneous emission and is determined by

Lγ [ρ] = − γ1(|3〉〈3|ρ − 2|1〉〈1|ρ33 + ρ|3〉〈3|)
− γ2(|3〉〈3|ρ − 2|2〉〈2|ρ33 + ρ|3〉〈3|)
− γc(|2〉〈2|ρ − 2|1〉〈1|ρ22 + ρ|2〉〈2|)
− γc(|1〉〈1|ρ − 2|2〉〈2|ρ11 + ρ|1〉〈1|). (4)

We label the radiative decay rate from state |3〉 to ground state
| j〉 by 2γ j . Plugging the Hamiltonian of Eq. (2) into the master
equation, we get the following equations of motion for the
density matrix elements:

ρ̇11 = 2γ2ρ33 − 2γc(ρ11 − ρ22) + i(G∗
peiωpt + G∗

ceiωct )ρ31

−i(Gpe−iωpt + Gce−iωct )ρ13, (5a)

ρ̇21 = −[2γc + iω21]ρ21 + i(G∗
s eiωst + G∗

ceiωct )ρ31

− i(Gpe−iωpt + Gce−iωct )ρ23, (5b)

ρ̇22 = 2γ2ρ33 − 2γc(ρ22 − ρ11) + i(G∗
s eiωst + G∗

ceiωct )ρ32

− i(Gse
−iωst + Gce−iωct )ρ23, (5c)

ρ̇31 = −(γ1 + γ2)ρ31 + i(Gse
−iωst + Gce−iωct )ρ21

+ i(Gpe−iωpt + Gce−iωct )(ρ11 − ρ33) − iω31ρ31, (5d)

ρ̇32 = −(γ1 + γ2)ρ32 + i(Gpe−iωpt + Gce−iωct )ρ12

+ i(Gse
−iωst + Gce−iωct )(ρ22 − ρ33) − iω32ρ32, (5e)

ρ̇33 = −2(γ1 + γ2)ρ33 + i(Gpe−iωpt + Gce−iωct )ρ13

− i(G∗
peiωpt + G∗

ceiωct )ρ31

+ i(Gse
−iωst + Gce−iωct )ρ23

− i(G∗
s eiωst + G∗

ceiωct )ρ32, (5f)

where ω21 = ω2 − ω1, ω31 = ω3 − ω1, and ω32 = ω3 − ω2.
Now in order to solve the above equations analytically, we
remove the time dependence by introducing suitable transfor-
mations given in Appendix A. So we find out perturbative
solutions of the resulting density matrix equations (A2a)–
(A2h) under the steady-state limit σ̇ = 0. For this, we assume
that the probe and Stokes fields are weak enough in compari-
son to control fields and can be treated as a perturbation to the
system in linear order. Thus the atomic coherences σ31 and σ ′

32
to first order in the probe and Stokes fields, and to all orders

in the control field, are given by

σ31 = ApGp + BpG∗
s , (6a)

σ ′
32 = AsGs + BsG

∗
p, (6b)

respectively, where the coefficients Ai and Bi are listed in
Appendix B. Using the above, we obtain the nonlinear po-
larizations for the probe (Pp) and Stokes (Ps) fields:

Pp = N (d31σ31e−iωpt + c.c.), (7a)

Ps = N (d32σ
′
32e−iωst + c.c.), (7b)

where N is the atomic density of the optical medium. These
polarizations can also be expressed in terms of complex sus-
ceptibilities χi j of the atomic medium as follows:

Pp(ωp) = χ11Ep + χ12e−i�kzE∗
s , (8a)

Ps(ωs) = χ22Es + χ21e−i�kzE∗
p , (8b)

where �k is the projection of the geometric phase mismatch
�k = 2kc − kp − ks along the z axis, χii (∝ Ap,s) describe
the linear susceptibilities for the probe and Stokes fields, and
χi j (∝ Bp,s, i 	= j) represents χ3-type nonlinear susceptibil-
ities responsible for the FWM process. The real part of χii

is related to an index of refraction which modifies the linear
dispersion relation thereby influencing the phase-matching
condition. The imaginary part of χii is responsible for absorp-
tion of light fields. The nonlinear contribution acts as a source
term in the propagation equations and enables efficient energy
transfer between light fields provided that the phase-matching
condition is satisfied (�k = 0).

It is evident from Eq. (8b) that even if the Stokes field is
zero (Es = 0) at the entrance of the medium, there exists the
nonlinear polarization of frequency ωs, i.e.,

Ps(ωs) = χ21E∗
p , (9)

where we have assumed �k = 0. This simply implies that
there is generation of a Stokes field at the output of the
medium due to nonlinear interaction of the optical fields.
Furthermore, it is interesting to note here that the polarization
Ps(ωs) is proportional to the complex conjugate of the probe
(E∗

p ) and thus the generated Stokes wave would be a phase
conjugate to the probe beam.

C. Beam propagation equations

We assume that the control fields are so strong that they
are undepleted during propagation and merely acquire phase
shifts due to self-phase modulation in the FWM process [30].
Thus we study only the effect of both linear and nonlinear
contributions on the spatial evolution of the probe and the
Stokes beams through the medium. In order to derive analyti-
cal expressions for beam propagation, we use Maxwell’s wave
equations: (

∇2 − 1

c2

∂2

∂t2

)
E j = 4π

c2

∂2P j

∂t2
, (10)

where P j are the macroscopic polarizations induced by the
probe and Stokes fields. Using polarization expressions of
Eqs. (7a) and (7b), the paraxial wave equations for the Rabi
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frequencies of two fields assuming slowly varying envelopes
in the z direction can be written as

∂Gp

∂z
= i

2kp

(
∂2

∂x2
+ ∂2

∂y2

)
Gp + iησ31, (11a)

∂Gs

∂z
= i

2ks

(
∂2

∂x2
+ ∂2

∂y2

)
Gs + iησ ′

32, (11b)

where η (= 3Nλ2/8π ) is known as the coupling constant.
The first terms in the parentheses on the right-hand sides
account for the diffraction. The second terms on the right-hand
sides are responsible for the dispersion and absorption of both
the control and probe beams. Note that the two propagation
equations are coupled via atomic coherences σ31 and σ ′

32. We
define the intensity gains for the probe and Stokes beams as
Ip = |Gp|2/|Gp0|2 and Is = |Gs|2/|Gp0|2, respectively. Here,
Gp0 is the seed signal on the input of the probe.

III. RESULTS AND DISCUSSION

We numerically simulate coupled equations (11a) and
(11b) for different transverse modes of the probe beam and
show how phase and intensity information is efficiently trans-
ferred to the newly generated Stokes beam.

A. Hermite-Gaussian mode

In order to interpret the efficient transfer of phase informa-
tion, we first choose the transverse profile of the probe beam
as a Hermite-Gaussian (HG) mode propagating along the z
axis:

Gp(x, y, z) = Gp0

(
w0

wz

)
Hm

(√
2x

wz

)
Hn

(√
2y

wz

)

× exp

[
− r2

w2
z

+ ikr2

2Rz
− i�z

]
, (12)

where r =
√

x2 + y2 and the constants Gp0 and w0 are the
input amplitude and waist radius of the probe beam, re-
spectively. The function Hm(x) is the Hermite polynomial of
order m. The beam indices m and n determine the number
of nodal lines along the x and y directions, respectively. The
parameter wz (= wp[1 + z2/z2

R
]1/2) is the radius of the beam

spot at position z at which the field amplitudes drop to 1/e
of their axial values, and Rz (= z + z2

R
/z) is the radius of

curvature of the beam’s wave fronts; zR (= πw2
p/λ) is known

as the Rayleigh range. The phase factor �z = (m + n + 1)ψz

is known as Gouy phase and describes an additional phase
shift for a focused beam. Here, ψz (= tan−1[z/zR ]) is the Gouy
phase shift for the fundamental Gaussian mode (m = n = 0).
The parameters wz and Rz are independent of indices m and
n, and thus all higher-order modes are described by the same
functions.

For numerical simulations, we first consider an HG probe
beam by setting indices m = 1, n = 0 in Eq. (12). The input
amplitudes of the probe and control beams are set at Gp0 =
0.01γ and Gc0 = 1γ . The initial waist size of the probe beam
is fixed at w0 = 100 μm, which corresponds to a Rayleigh
range about 4 cm from the waist. The input amplitude for
the Stokes beam is taken to be zero at the entrance of the
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FIG. 2. The spatial evolution of the transverse intensity gain
profile for (a) the probe beam and (b) the Stokes beam as a
function of x at different propagation distances z. The parameters
used are Gp = 0.01γ , Gc = 1γ , � = 0, δ = 0, γ0 = 0.01γ , γ =
9.4 MHz, ω = 6.8 GHz, λp = 795 nm, w0 = 100 μm, and N =
2×1012 atoms/cm3.

medium. In Fig. 2(a), we illustrate the spatial evolution of the
transverse intensity gain profile of the probe as a function x at
different propagation lengths of the 5-cm-long medium. Dur-
ing propagation over the initial few millimeters of distance,
the probe is fully absorbed because the linear part dominates
while the nonlinear part is negligible due to the zero-value
Stokes field at z = 0. At a distance of about z = 2 cm the
probe beam resumes its shape due to parametric amplification
by the Stokes field. It is interesting to note that the probe
is significantly amplified due to its coupling to a new beam
created by FWM.

Figure 2(b) depicts the spatial evolution of the transverse
intensity gain profile of Stokes beam as a function of x for
various values of z. The Stokes field is zero at the input
of the medium. After propagation of a few centimeters, the
transverse structure of the probe is gradually mapped by the
generated weak Stokes beam and amplified by parametric
interaction. The integrated intensity gain for the probe is about
2, while for the Stokes beam it is nearly 75, at the output end
of the medium. To compare the probe and Stokes beams at the
output of the medium, we plot the cross-sectional intensity
and phase profiles in Figs. 3(a) and 3(b) and Figs. 3(c) and
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FIG. 3. Two-dimensional (2D) intensity distributions of the
transmitted (a) probe and (b) Stokes beams in a plane transverse
to the direction of propagation. The input probe beam indices are
m = 1, n = 0; (c) and (d) show the corresponding phase profile, and
(e) and (f) show the interference of these modes with a plane wave.
All other parameters are the same as in Fig. 2.

3(d), respectively. The similarities between the 2D profiles
of the two output beams clearly indicate that the effect of
FWM is very efficient in this analysis. The transverse phase
distribution of the output HG modes can be generated by the
interference between output modes and a copropagating plane
wave [51–54]. The interference patterns in Figs. 3(e) and 3(f)
clearly show that the generated Stokes beam is a conjugate
to the probe beam. A similar concept also applies to other
higher-order spatial modes of the HG probe beam. In the
following we choose a more complex structured light beam
called an optical vortex.

B. Optical vortex mode

An optical vortex is basically a phase structured beam of
the type exp(ilφ), where φ is the azimuthal angle and l is
the azimuthal index and can be an integer. The phase in the
field rotates about the propagation axis of the beam resulting
in a helical wave front. This rotation of the phase structure
of the vortex beam is the fundamental reason for the origin
of the orbital angular momentum (OAM) of the light beam.
The OAM can be either a negative integer or a positive integer
depending on the direction of rotation. In addition, the trans-
verse intensity profile of the vortex beam has a zero intensity
at its center, thus forming a doughnut-shaped structure. A
Laguerre-Gaussian (LG) mode has an optical vortex at its

center, and we explore transferring its spiral phase profile
from the probe beam onto the Stokes beam generated in the
FWM process. For this, we choose the transverse profile of
the probe beam as an LG mode of order (l, m):

G(r, φ, z) = Gp0

√
2m!

π (m + |l|)
wp

wz

(√
2r

wz

)|l|
L|l|

m

(
2r2

w2
z

)

× exp

[
− r2

w2
z

+ ikr2

2Rz
± ilφ − i�z

]
, (13)

where �z = (2m + |l| + 1)ψz is the Gouy phase shift. Here,
m is the radial index, which is assumed to be zero for the
present analysis. The functions L|l|

m (x) are the associated La-
guerre polynomials. The input amplitude and waist radius of
the probe beam are the same as before. For numerical simula-
tions, we first use an LG structured probe beam of order l = 1.
The spatial evolutions of the transverse intensity gain profile
of the probe and Stokes beams are similar to those in Fig. 2.
However, there is a significant change in the peak amplitude
of the probe and Stokes gains by 0.2 and 7.5, respectively, at
the end of the medium. As before, the transverse profile of
the probe is initially absorbed due to the dominating effect
of linear absorption. After a propagation distance of almost
2 cm, the probe beam gradually evolves and assumes its initial
shape. The probe is enhanced by parametric amplification due
to mutual coupling to the weak Stokes beam in the course
of propagation. The input amplitude of the Stokes beam is
again assigned a zero value at the entrance. However, due to
the combined effects of linear and nonlinear terms induced
by the control and probe beams, it rapidly evolves in the
high-intensity region of the probe beam. The resulting Stokes
profile has a doughnut-shaped structure with high intensity at
its periphery. Thus an initially null field is generated due to
FWM and shaped in such a way that its intensity profile is a
replica of the probe beam. Moreover, the Stokes field is not
only created but also amplified in the high-intensity region of
the probe beam. The cross-sectional intensity distribution of
the transmitted probe and Stokes beams at the output medium
are shown in Figs. 4(a) and 4(b), and the corresponding phase
profiles are depicted in Figs. 4(c) and 4(d). Again, the fact
that the 2D profiles of the two output beams are identical
reveals that the effect of the FWM process is very efficient.
The output gain for both beams is approximately the same
as before. In order to confirm the OAM of the vortex mode,
the interference patterns of the superposition of output modes
with a plane wave are illustrated in Figs. 4(e) and 4(f). This
pattern contains a single spiral-shaped fringe steering out from
the center [53,54]. Thus transverse phase information carried
by an LG beam now is converted into an intensity distribution.

Since the OAM can also be a negative integer, we take
azimuthal number l = −2 for further analysis. The results
of the 2D intensity distribution of the transmitted probe and
Stokes beams are shown in Figs. 5(a) and 5(b), respectively.
It is clear that the LG probe profile is efficiently transferred
to the Stokes field via the FWM process. However, the in-
tensity distributions do not provide any information about the
sign of the OAM. It is evident from Figs. 5(c) and 5(d) that
the direction of the spiral phase structure is reversed in this
case. The interference between the output LG modes and a
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FIG. 4. 2D intensity distributions of the transmitted (a) probe and
(b) Stokes beams in a plane normal to the direction of propagation.
The input vortex probe beam has OAM l = 1; (c) and (d) show
the corresponding helical phase patterns, and (e) and (f) show the
interference of these modes with a plane wave.

plane wave reveals the sign and OAM number information
[see Figs. 5(e) and 5(f)] [53,54]. This time the interference
pattern contains two spiral-shaped fringes fanning out from
the center but in opposite direction as compared with positive
l number. Therefore the OAM states with number +l and −l
can also be identified in our study. We also observe a rotation
of the interference fringes between two output modes. This
is due to the relative phase change occurring between the
linear and nonlinear parts of polarization. Note that a differ-
ent OAM number l would correspond to a different bright
spiral fringe. Therefore an LG mode with unknown l can be
easily identified by counting the number of bright fringes. A
similar concept also applies to other higher-order LG modes
of the probe beam with positive azimuthal numbers. The
present scheme of spatial phase transfer is also applicable to
hypergeometric-Gaussian as well as Bessel-Gaussian modes.

C. Fidelity

The quality of transferred images can be measured by
analyzing the fidelity. We find the fidelity between the trans-
mitted probe and Stokes images by calculating the value of the
structural similarity (SSIM) index, and to do this, the matrices
corresponding to two images are compared using the MAT-
LAB program [62]. A high value of the SSIM index indicates
high fidelity between two images. The calculated similarities
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(c) (d)

0

/2

(e) (f)

0

0.5

1

FIG. 5. 2D intensity distributions of the transmitted (a) probe and
(b) Stokes beams in a plane normal to the direction of propagation.
The input vortex probe beam has OAM l = −2; (c) and (d) show
the corresponding helical phase patterns, and (e) and (f) show the
interference of the output modes with a plane wave.

between two output images in the FWM process for different
transverse modes of HG and LG laser beams are given in
Table I. It is clear from Table I that there is a slight decrease in
fidelities as we go to higher orders of transverse modes. This is
due to a minute decrement in the gain intensities of the probe
and Stokes beams. Interestingly, the similarity of about 99%
clearly demonstrates a successful scheme of image transfer in
the FWM process.

IV. CONCLUSION

We have theoretically suggested an efficient technique to
transfer the spatial intensity as well as phase information
of an arbitrary mode based on the FWM process in cold
atomic ensembles. We have found that different orders of
HG and LG modes encoded initially in the spatial envelope

TABLE I. Fidelities for various orders of HG and LG modes.

HG Fidelity LG Fidelity

m = 1, n = 0 0.9976 l = 1, m = 0 0.9954
m = 1, n = 1 0.9964 l = 2, m = 0 0.9928
m = 2, n = 0 0.9962 l = 3, m = 0 0.9900
m = 2, n = 1 0.9948 l = 4, m = 0 0.9867
m = 2, n = 2 0.9930 l = 5, m = 0 0.9832
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of a weak probe beam can be successfully transferred onto
a newly generated Stokes field in a nonlinear process of
FWM. Using the well-known interference technique, we have
further shown that the phase distribution of transferred HG
and LG modes over the Stokes beam is a phase conjugate to
the output probe beam. We found that the Stokes beam not
only transforms into a clone of the probe beam but also is
amplified by parametric amplification. It is also observed that
spatial overlap of the transverse profiles between two beams
enhances mutual amplification during propagation. Moreover,
the structural similarity between the transferred images of
about 99% clearly indicates the success and efficiency of the
optical FWM process.
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APPENDIX A: ROTATING WAVE APPROXIMATION

The slowly varying envelopes are defined as

ρii = σii, (A1a)

ρ31 = σ31e−iωpt + σ ′
31e−iωct , (A1b)

ρ32 = σ32e−iωct + σ ′
32e−iωst , (A1c)

ρ21 = σ21e−i(ωp−ωc )t . (A1d)

After substituting these in Eqs. (5a)–(5f), we make the
rotating wave approximation. In doing this, we keep only

the resonance terms and disregard the counter-rotating far-off
resonance terms. Thus in a suitable interaction picture, the
density matrix equations are expressed as

σ̇11 = 2γ2σ33 − 2γc(σ11 − σ22) + iG∗
pσ31 − iGpσ13

+ iG∗
cσ

′
31 − iGcσ

′
13, (A2a)

σ̇21 = −�21σ21 − iG∗
pσ23 − iGcσ

′
23 + iG∗

cσ31

+ iG∗
s σ

′
31, (A2b)

σ̇22 = 2γ2σ33 − 2γc(σ22 − σ11) + iG∗
cσ32 − iGcσ23

+ iG∗
s σ

′
32 − iGsσ

′
23, (A2c)

σ̇31 = −�31σ31 + iGcσ21 + iGp(σ11 − σ33), (A2d)

σ̇ ′
31 = −�′

31σ31 + iGsσ21 + iGc(σ11 − σ33), (A2e)

σ̇32 = −�31σ32 + iGpσ12 + iGc(σ22 − σ33), (A2f)

σ̇ ′
32 = −�′

31σ
′
32 + iGcσ12 + iGs(σ22 − σ33), (A2g)

σ̇33 = −2(γ1 + γ2)σ33 + iGpσ13 − iG∗
pσ31

+ iGcσ
′
13 − iG∗

cσ
′
31 + iGcσ23 − iG∗

cσ32

+ iGsσ
′
23 − iG∗

s σ
′
32. (A2h)

The rest of the equations can be found from σ̇i j = σ̇ ∗
ji.

The complex decay rates are defined as �21 = 2γc +
iδ = �∗

12, �31 = [(γ1 + γ2) + i(� + δ)] = �∗
13, �′

31 = [(γ1 +
γ2) + i(� + ω)] = �′∗

13, �32 = [(γ1 + γ2) + i�] = �∗
23, and

�′
32 = [(γ1 + γ2) + i(� − δ + ω)] = �′∗

23. Here, � = ω32 −
ωc and δ = ω21 − (ωp − ωc) are the single- and two-photon
detunings, respectively. Note that while deriving the above
equations, we have imposed the condition 2ωc = ωp + ωs,
which signifies the energy conservation. In order to simplify
the expressions, we have considered radiative decay rates
γ1 = γ2 = γ /2 and γc = γ0/2.

APPENDIX B: COEFFICIENTS FOR POLARIZATIONS

Ap = i
|Gc|2�′

31(−N23�
′
23 + N13�23) + N13�

′
23�

′
31�21�23

�′
23�

′
31�21�23�31 + |Gc|2�′

31�23(�′
23 + �31)

, (B1)

Bp = −i
Gc

2(N13�
′
23 + N23�

′
31)�23

�′
23�

′
31�21�23�31 + |Gc|2�′

31�23(�′
23 + �31)

, (B2)

As = −i
N23�

′
13�12�13�32 + |Gc|2(N23�

′
13 − N13�13)�32

�′
32�

′
13�12�13�32 + |Gc|2�′

13�32(�′
32 + �13)

, (B3)

Bs = −i
Gc

2(N23�13 + N13�32)�′
13

�′
32�

′
13�12�13�32 + |Gc|2�′

13�32(�′
32 + �13)

, (B4)

N13 = ρ
(0)
11 − ρ

(0)
33 = γ�′

13�
′
31(2γ0�23�32 + |Gc|2(�23 + �32))

D
, (B5)

N23 = ρ
(0)
22 − ρ

(0)
33 = γ (2γ0�

′
13�

′
31 + |Gc|2(�′

13 + �′
31))�23�32

D
, (B6)

D = 4γ γ0�
′
13�

′
31�23�32 + 3|Gc|4(�′

13 + �′
31)(�23 + �32)

+ |Gc|2(γ + 3γ0)[�′
31�23�32 + �′

13(�′
31�23 + (�′

31 + �23)�32)]. (B7)

Note that the zeroth-order population differences N13 and N23 have been calculated in the absence of probe and Stokes fields.
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