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Coalescence of non-Markovian dissipation, quantum Zeno effect, and non-Hermitian physics in a
simple realistic quantum system
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Diagonalization of the effective Hamiltonian describing an open quantum system is the usual method of
tracking its exceptional points (EPs). Although such a method is successful for tracking EPs in Markovian
systems, it may be problematic in non-Markovian systems where a closed expression of the effective Hamiltonian
describing the open system may not exist. In this work we provide an alternative method of tracking EPs in open
quantum systems, using an experimentally measurable quantity, namely, the effective decay rate of a qubit. The
quantum system under consideration consists of two nonidentical interacting qubits, one of which is coupled
to an external environment. We develop a theoretical framework in terms of the time-dependent Schrödinger
equations of motion, which provides analytical closed-form solutions of the Laplace transforms of the qubit
amplitudes, enabling the study of various cases of environmental spectral densities. The link between the peaked
structure of the effective decay rate of the qubit that interacts indirectly with the environment and the onset of the
quantum Zeno effect is investigated, revealing the connections between the latter and the presence of exceptional
points. Our treatment and results in addition reveal an intricate interplay between non-Markovian dynamics, the
quantum Zeno effect, and non-Hermitian physics.
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I. INTRODUCTION

The dissipative dynamics of open quantum systems cou-
pled to non-Markovian reservoirs is a multifaceted field of
fundamental as well as practical importance [1,2]. It pertains
to a broad class of problems, ranging from quantum informa-
tion processing to nonequilibrium statistical mechanics. The
effective Hamiltonian describing an open quantum system is
by necessity non-Hermitian, which brings up its possible con-
nection with non-Hermitian physics [3], exceptional points
[4], and related questions, in a field of wide-ranging interest
and activity. In both of those fields and from different angles,
the quantum Zeno effect (QZE) has been found to be a major
participant. Having initially entered physics as a curiosity,
it has been found to play an uncanny role in the protection
against dissipation [5,6]. Although research in each one of
the above three field has been active for many years, the
synergy of phenomena related to those fields does not seem
to have been noticed, let alone explored. Our recent work [7]
on quantum dissipation in non-Markovian environments has
steered us to a type of problem in which that synergy has been
found to be astonishingly revelatory. The treatment of that
problem and its consequences is the purpose of the present
article. Before embarking on the discussion of formulation,
computation, and results, we need to provide a brief outline
of the background and past activity in each of the above three
fields.

Dissipation is essentially inevitable in any process involv-
ing a quantum system, arising from its interaction with the
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environment, referred to as a reservoir, or even a class thereof.
Note that the terms environment, reservoir, and bath are used
interchangeably in the literature. A reservoir is characterized
by a specific spectral density. Depending on whether that
spectral density is smooth or exhibits a peaked behavior, at
least in a range of energies encompassing the energy of the
system, the reservoir is usually referred to as Markovian or
non-Markovian, respectively. Physically speaking, the term
Markovian refers to reservoirs for which the Markov approx-
imation is valid. This implies that any excitation transferred
from the system to the reservoir is irreversible, i.e., practi-
cally lost forever [8]. On the other hand, for non-Markovian
reservoirs, although eventual loss is also present, the ex-
citation may be transferred back to the system [9]. This
exchange of excitation between system and reservoir lasts for
finite times, whose length depends on the spectral density
of the latter. The length of that time does in fact charac-
terize the so-called Markovianity of the particular reservoir
[1].

Although the interaction of a quantum system with an
external environment does ultimately lead to dissipation, there
is an important effect which, depending on the relative param-
eters of the compound system, may lead to protection against
such types of dissipation. That effect, known as the quantum
Zeno effect, reflects the possibility of the environment to
freeze the dynamics of the quantum system or some part of
it [5]. The QZE, the regions of its onset, and its implications
have been studied in many different contexts such as in circuit-
QED systems [10], ultracold atoms [11], and one-dimensional
hybrid quantum circuit models [12], while many experiments
have confirmed the possibility of freezing the evolution of the
quantum state via such a mechanism [5,13–18].
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A number of studies have also pointed out the potential role
of the QZE in the protection of quantum information between
correlated qubits [19–22]. The results suggest that repeated
projective measurements on a system of entangled qubits can
lead to the preservation of entanglement, independently of
the state in which the system is initially encoded. This effect
appears when the state of the system evolves in a multidi-
mensional subspace, usually referred to as the Zeno subspace
[23,24]. Although fast repeated projective measurements di-
rectly on the system may freeze its evolution, this method may
be somewhat restrictive for the implementation of quantum
information processing tasks, where additional operations on
the system may be necessary. An alternative approach relies
on indirect measurements, where the apparatus does not act
directly on the system, but detects a signal mediated by some
field with which it interacts [25]. That work has however
given rise to serious reservations as to the possibility of the
occurrence of the QZE in such configurations [26–30]. On the
other hand, it has been demonstrated that the QZE does not
necessarily require projective measurements, as it may also
be induced through continuous strong couplings [18,31–34].

In recent work [35] Wu and Lin investigated the QZE in
dissipative systems beyond the Markov, rotating-wave, and
perturbative approximations, in the context of a spin-boson
model, which describes the interaction between a spin system
and a bosonic bath. Their study suggested that the non-
Markovian character of the bath may be favorable for the
accessibility of the QZE in such systems, as it may prolong
the quantum Zeno time and lead to multiple Zeno–anti-Zeno
crossover phenomena.

At the same time, the transitions to the quantum Zeno
regime have been recently shown to be linked with the
parity-time (PT )-symmetry breaking of the non-Hermitian
Hamiltonian which describes the open quantum system
[36–40]. The boundary between the unbroken and broken PT
symmetry of a Hamiltonian describing an open quantum sys-
tem [41,42] is marked by the presence of exceptional points
(EPs) [43–46] where two or more eigenvalues coalesce while
their corresponding eigenvectors become parallel. It has also
been demonstrated that the onset of the QZE is marked by a
cascade of transitions in the system dynamics, as the strength
of a continuous partial measurement on the open system is
increased [47].

Tracking of EPs in open quantum systems is of crucial
importance, since the system appears to exhibit enhanced sen-
sitivity in their vicinity [48–50]. For N th-order EPs, i.e., EPs
that mark the coalescence of N eigenvalues, the sensitivity in
the response of the system to small perturbations in parameter
space has been confirmed to become more pronounced as N
is increased [50–52].

Although in open Markovian systems, tracking EPs
through diagonalization of the corresponding effective Hamil-
tonian is a rather easy theoretical task, that method is rather
problematic in non-Markovian systems, for which it may not
even be possible to construct an effective Hamiltonian de-
scribing the open system. In that case, alternative methods
capable of tracking EPs indirectly, without the need of finding
the eigenvalues of the open system, should be sought.

In this work we develop such a method, illustrating its
advantage in a simple open quantum system consisting of

two interacting qubits, one of which is coupled to an external
environment. Our formulation allows for the derivation of
analytical expressions of the Laplace transforms of the qubit
amplitudes, enabling the study of the effects of various types
of reservoir spectral densities on the system. If the qubit not
directly coupled to the environment is initially in its excited
state, then as the coupling between the remaining qubit and the
environment increases, we observe a phase transition to the
Zeno regime, resulting in increased protection against the pop-
ulation dissipation that the environment inevitably induces. A
glimpse of this effect was reported recently in an recent paper
of ours, for a system of XX spin chains boundary driven by
non-Markovian environments, where the total population of
the chain was found to become increasingly protected against
dissipation, for sufficiently large boundary couplings [7]. Here
we investigate the connection between these types of phase
transitions and the presence of exceptional points for both
Markovian and non-Markovian environments, using an ex-
perimentally measurable quantity, namely, the effective decay
rate of the qubit that does not communicate directly with the
reservoir. Based on a comparative analysis with the case of a
Markovian reservoir, for which the system is diagonalizable,
we argue that the effective decay rate may be used as a method
for tracking the onset of the QZE in an non-Markovian open
quantum system, as well as its EPs.

The rest of the paper is organized as follows. In Sec. II we
outline the theoretical formulation of the problem, in the case
of two nonidentical interacting qubits, one of which is coupled
to an external environment characterized by an arbitrary spec-
tral density. In Sec. III we provide the results of our study as
well as a discussion related to the effects associated with the
onset of QZE in the population dynamics of the qubits and its
link to exceptional points. In Sec. IV we provide a summary of
the results, with concluding remarks and an outlook for further
inquiry.

II. THEORY

Our system consists of two nonidentical qubits and an envi-
ronment characterized by a specific spectral density J (ω). The
two qubits are interacting with a coupling strength J while
the environment is interacting with the second qubit with a
coupling strength g. Without loss of generality, we assume that
the coupling strengths J and g are real numbers. A schematic
representation of our system is depicted in Fig. 1.

The Hamiltonian of our system Ĥ = ĤS + ĤE + ĤI con-
sists of three parts, namely, the Hamiltonian ĤS , which
describes our system of qubits and their mutual interaction,
the Hamiltonian of the bosonic environment ĤE , and the
interaction Hamiltonian ĤI , which describes the interaction
between the second qubit and the environment. These three
Hamiltonian terms are given by the expressions (h̄ = 1)

ĤS = ωg|g〉1 1〈g| + ωe|e〉1 1〈e| + ω′
g|g〉2 2〈g|

+ω′
e|e〉2 2〈e| + J (σ̂+

1 σ̂−
2 + σ̂−

1 σ̂+
2 ), (1a)

ĤE =
∑

λ

ωλâE†
λ âE

λ , (1b)

ĤI =
∑

λ

g(ωλ)
(
âE

λ σ̂+
2 + âE†

λ σ̂−
2

)
, (1c)
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FIG. 1. Schematic representation of the system under study. Two
nonidentical qubits are interacting with a coupling strength J , while
one of them is also coupled to an external environment E via a
coupling g.

where ωg and ωe are the energies of the ground and excited
states of the first qubit, respectively, ω′

g and ω′
e are the en-

ergies of the ground and excited states of the second qubit,
respectively, ωλ is the energy of the λth mode of the envi-
ronment, σ̂+

j = |e〉 j j〈g| and σ̂−
j = |g〉 j j〈e| ( j = 1, 2) are the

qubit raising and lowering operators, respectively, and âE
λ and

âE†
λ are the quantum annihilation and creation operators of the

environment, respectively.
The wave function of the whole system in the single-

excitation space can be expressed as

|�(t )〉 = c1(t )|ψ1〉 + c2(t )|ψ2〉 +
∑

λ

cE
λ (t )

∣∣ψE
λ

〉
, (2)

where

|ψ1〉 = |e〉1|g〉2|0〉E , (3a)

|ψ2〉 = |g〉1|e〉2|0〉E , (3b)

|ψE
λ 〉 = |g〉1|g〉2|00 . . . 01λ0 . . . 00〉E . (3c)

By adopting the transformations for the qubit and envi-
ronment amplitudes, namely, c1(t ) = e−i(ω′

g+ωe )t c̃1(t ), c2(t ) =
e−i(ωg+ω′

e )t c̃2(t ), and cE
λ (t ) = e−i(ωg+ω′

g+ωλ )t c̃E
λ (t ), it is easy to

show that the time-dependent Schrödinger equation leads to
the equations of motion of the amplitudes marked with a tilde

dc̃1(t )

dt
= −iJ c̃2(t )e−iεt , (4a)

dc̃2(t )

dt
= −iJ c̃1(t )e+iεt − i

∑
λ

g(ωλ)e−i�λt c̃E
λ (t ), (4b)

dc̃E
λ (t )

dt
= −ig(ωλ)e+i�λt c̃2(t ), (4c)

where ε ≡ (ω′
e − ω′

g) − (ωe − ωg) ≡ ω′
eg − ωeg is the differ-

ence between the two qubit energies and �λ ≡ ωλ − (ω′
e −

ω′
g) ≡ ωλ − ω′

eg is the detuning between the energy of the
λth mode of the environment and the excitation energy of the
second qubit.

Formal integration of Eq. (4c) under the initial condition
c̃E
λ (0) = 0 [which is equivalent to cE

λ (0) = 0] and substitution

back into Eq. (4b) yields

dc̃2(t )

dt
= − iJ c̃1(t )e+iεt

−
∫ t

0

∑
λ

[g(ωλ)]2e−i�λ(t−t ′ )c̃2(t ′)dt ′. (5)

At this point we replace the sum over all the modes of the
environment by a frequency integral, according to the relation∑

λ[g(ωλ)]2 → ∫
dωJ (ω), where J (ω) is the spectral density

of the environment. In view of this substitution, Eq. (5) be-
comes

dc̃2(t )

dt
= −iJ c̃1(t )e+iεt −

∫ t

0
R(t − t ′)c̃2(t ′)dt ′, (6)

where R(t ) is defined via

R(t ) ≡
∫ ∞

0
J (ω)e−i�t dω, (7)

with � = ω − ω′
eg. Equations (4a) and (6) now form our set

of differential equations we wish to solve for c̃1(t ). Taking the
Laplace transform of these equations and using the Laplace
transform properties of frequency shifting and convolution,
we readily obtain

sF1(s) = c1(0) − iJ F2(s + iε), (8a)

sF2(s) = c2(0) − iJ F1(s − iε) − B(s)F2(s), (8b)

where F1(s) and F2(s) are the Laplace transforms of the am-
plitudes marked by a tilde c̃1(t ) and c̃2(t ), respectively, while
B(s) is the Laplace transform of R(t ). Note that we also use
the fact that the amplitudes marked by a tilde are equal to the
amplitudes at t = 0. Although the above set of equations can
be solved for F1(s) and F2(s) for arbitrary initial conditions,
for the purposes of our study we focus on the expression of
F1(s) for initial excitation on the first qubit, i.e., c1(0) = 1 and
c2(0) = 0. In that case, we can easily show that F1(s) is given
by the expression

F1(s) = 1

s + J 2

s+iε+B(s+iε)

. (9)

Before proceeding with the calculation of the inversion
integral, to obtain the time dependence of c̃1(t ), we need to
specify the spectral density function of the environment so
that we can derive R(t ) according to Eq. (7) and hence the
expression of its Laplace transform B(s). Special cases of
environments with Markovian, Lorentzian, or Ohmic spectral
densities are studied in great detail in Sec. III, revealing the
regions of parameters that affect the onset of the quantum
Zeno regime.

It is important to note that our formalism can be used to
explore much more complex systems, involving an arbitrary
number of qubits and/or environments. A rather interesting
result arises if we consider a system in which qubit 1 of Fig. 1
does not interact directly with only one qubit (qubit 2) but with
an arbitrary number of qubits N , each one of which is coupled
to its own environment. Using our formulation, we can show
that, if all of the qubits are identical and the surrounding
environments are characterized by the same spectral density,
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the Laplace transform of the amplitude marked by a tilde of
the first qubit is given by

F1(s) = 1

s + NJ 2

s+B(s)

. (10)

This equation is essentially the same as Eq. (9) for ε = 0
(identical qubits), with the exception of a factor of N mul-
tiplying J 2, where N is the number of qubits interacting
with qubit 1. In other words, the system consisting of a qubit
(qubit 1) interacting with N qubits that communicate with
N respective environments with identical spectral densities
can be effectively considered equivalent to a two-qubit plus
one-environment system (Fig. 1) with a collective coupling√

NJ between the two qubits. On the other hand, if all of the
N qubits that interact with qubit 1 are communicating with a
common environment, it is straightforward to show that F1(s)
acquires the form

F1(s) = 1

s + NJ 2

s+NB(s)

, (11)

where the factor of N now multiplies both J 2 and B(s).

III. RESULTS AND DISCUSSION

A. Markovian reservoir

The coupling of a system to a reservoir within the Born
(weak-coupling) approximation is Markovian if in addition
the spectral density of the reservoir, as a function of energy,
is smooth and slowly varying in the extended vicinity of the
system transition energy. A formulation in terms of a Lindblad
master equation for the time evolution of the reduced density
operator of the system leads to a set of linear differential
equations. In those equations the diagonal matrix elements
involve damping coefficients proportional to the square of
the constant coupling the system to the reservoir, whereas
the off-diagonal matrix elements, in the absence of other de-
phasing interactions, involve damping constants one-half of
that for the respective diagonal matrix element [53]. In fact,
in an N-level ladder system, the damping of an off-diagonal
matrix element connecting two decaying levels is one-half of
the sum of the respective diagonal damping constants. The
spontaneous decay of an excited atomic state in open space
and the loss of a cavity mode coupled to a bosonic reservoir
are two well-known examples. In both cases, the reservoir
is bosonic, representing the standard model for dissipation
in a quantum system. The derivation and time evolution of
the system reduced density operator are standard textbook
material that can be found in any book on quantum optics
[53,54] or quantum electrodynamics [55]. We nevertheless
show below the master equation governing the time evolution
of the reduced density operator ρ, in the interaction picture,
of a two-level system coupled to a bosonic reservoir at zero
temperature

∂tρ = 1
2 γ̃ (2σ−ρσ+ − σ+σ−ρ − ρσ+σ−), (12)

where σ+ ≡ |e〉〈g| and σ− ≡ |g〉〈e| are the raising and lower-
ing operators of the two-level system, respectively, with |e〉
and |g〉 the upper and lower states. The coefficient γ̃ is the re-
sulting relaxation constant which, to within some coefficients
depending on the particular physical system, is proportional to
the square of the constant coupling the system to the reservoir.

In addition to the damping, the derivation leads to a shift,
which in our case is of no relevance.

In this paper we are dealing with two interacting qubits,
one of which is coupled to reservoirs of various spectral den-
sities. It can be viewed as a basic component of a chain of
qubits, in which case the end qubits are often referred to as
boundaries. Our system is generic in the sense that we do not
assume any specific physical realization of the qubits. They
could be quantum dots, two-level cold atoms, superconduct-
ing Josephson, etc. The results and predictions of our analysis
would therefore be applicable to a chain of any physical qubit
realization. The nature of the coupling constants entering our
formulation would then depend on the realization. The general
structure of the equations would however be the same. The
relative magnitude of the coupling constants employed in our
analysis merits a comment, as it is of significance. Viewing the
two-qubit system as a basic component of a chain of a vehicle
for information transfer [7], the parameter J is of controlling
importance. It is for that reason that the magnitude of all other
parameters is defined in relation to J .

Although for a Markovian reservoir the dynamics are
amenable to a description in terms of a master equation, for
non-Markovian reservoirs such a formulation is not possi-
ble. Given our emphasis on non-Markovian cases, we have
developed the formalism in terms of the amplitudes of the
Schrödinger equation, described in the preceding section.
From the solutions for the amplitudes, if needed, the cor-
responding expressions for the density matrix elements are
readily constructed.

Returning to the Markovian case, using well-known results
outlined above, all we need to do is add to the transition
energy of the second qubit the imaginary part −iγ̃ /2, where
γ̃ is the decay rate of that qubit, due to the coupling to the
Markovian reservoir. It bears repeating that γ̃ is proportional
to the square of the coupling constant g(ωλ), evaluated at the
transition energy of the qubit, as dictated by the δ function
in the identity limε→0+ 1

x±iε = P 1
x ∓ iπδ(x) employed in the

elimination of the degrees of freedom of the reservoir. There
is nothing phenomenological about this procedure, in which
well-known textbook rigorous results are invoked. Note that
since ε ≡ ω′

eg − ωeg, the decay term −iγ̃ /2 in the transition
energy of the second qubit is also transferred to ε. Making
the substitution ε → ε − iγ̃ /2 in the expression of F1(s) for
B(s) = 0 (the effects of the Markovian reservoir are taken into
account through the substitution ε → ε − iγ̃ /2) in Eq. (9), we
obtain

F1(s) = s + (γ̃ /2 + iε)

s2 + (γ̃ /2 + iε)s + J 2
. (13)

The Laplace inversion of Eq. (13) provides the time evo-
lution of the amplitude marked by a tilde of qubit 1. An
insightful expression can be obtained in the case of identical
qubits (ε = 0), where the Laplace inversion yields

c̃1(t ) = e−γ̃ t/4

[
cos

(
t

4

√
(4J )2 − γ̃ 2

)

+ γ̃√
(4J )2 − γ̃ 2

sin

(
t

4

√
(4J )2 − γ̃ 2

)]
, γ̃ 
= 4J

(14)
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and c̃1(t ) = e−J t (1 + J t ) for γ̃ = 4J . It is interesting to
observe that for γ̃ � 4J , the amplitude marked by a tilde of
the first qubit follows an oscillatory behavior with frequency

equal to
√

(4J )2−γ̃ 2

4 along with an exponential decay. As γ̃ ap-
proaches the value 4J the oscillations tend to disappear, and
when γ̃ = 4J the oscillatory part [ cos ( t

4

√
(4J )2 − γ̃ 2) +

γ̃√
(4J )2−γ̃ 2

sin ( t
4

√
(4J )2 − γ̃ 2)] reduces to a form which is

linear in time, i.e., (1 + J t ). In the γ̃ � 4J limit, using the
identities cos(ix) = cosh x and sin(ix) = i sinh x, it is straight-
forward to show that c̃1(t ) → 1. Although this result may
seem counterintuitive at first glance, it can be interpreted in
terms of the QZE, i.e., a strong coupling between the second
qubit and the Markovian environment causes the second qubit
to freeze in its ground state, preventing qubit 1 from trans-
ferring population to qubit 2 and hence to the environment.
Therefore, the population of the first qubit becomes protected
against dissipation. Note that for this scheme to work, it is
crucial not to have an initially populated second qubit, because
in that case, the part of population of the second qubit would
quickly dissipate due to the strong coupling between the latter
and the environment.

Diagonalization of ĤS after the substitution ω′
e → ω′

e −
iγ̃ /2 leads to the four eigenvalues

λ1 = ωg + ω′
g, (15a)

λ2 = ωe + ω′
e − iγ̃

2
, (15b)

λ3 = 1

2

(
ωg + ω′

g + ωe + ω′
e − iγ̃

2

)

− 1

4

√
(4J )2 − (γ̃ + 2iε)2, (15c)

λ4 = 1

2

(
ωg + ω′

g + ωe + ω′
e − iγ̃

2

)

+ 1

4

√
(4J )2 − (γ̃ + 2iε)2. (15d)

Note that since we focus on the single-excitation subspace
we only need to consider the eigenvalues λ3 and λ4. Equiva-
lently, if we diagonalize ĤS in the single-excitation subspace,
which would be essentially a 2 × 2 matrix, its eigenvalues are
λ3 and λ4.

In Fig. 2(a) we plot the imaginary part of the eigenvalues
λ3 and λ4 as a function of γ̃ for various values of the energy
difference between the two qubits ε. As shown, in the case
of identical qubits (ε = 0), the imaginary parts of the two
eigenvalues coalesce at γ̃ = 4J and they split for γ̃ > 4J .
The point γ̃ = 4J is called an exceptional point [43,44] and
marks the boundary between the unbroken and the broken
PT symmetry of the Hamiltonian. At the exceptional point,
both the real and the imaginary parts of λ3 and λ4 coalesce,
while the corresponding eigenvectors |φ3〉 and |φ4〉 given by
the expressions below become parallel:

|φ3〉 = |g〉1|e〉2 + 1

2J

[
−

(
ε − iγ̃

2

)

− 1

2

√
(4J )2 − (γ̃ + 2iε)2

]
|e〉1|g〉2, (16a)

FIG. 2. (a) Imaginary parts of the eigenvalues λ3 (black) and λ4

(red) as a function of γ̃ for various values of the energy difference
between the two qubits ε. The solid line denotes ε = 0, the dashed
line ε = −2J , and the dotted line ε = 0.5J . The vertical dashed
line indicates the position of the exceptional point for ε = 0−, i.e.,
γ̃ = 4J . (b) Imaginary parts of the eigenvalues λ3 (black) and λ4

(red) on the ε-γ plane.

|φ4〉 = |g〉1|e〉2 + 1

2J

[
−

(
ε − iγ̃

2

)

+ 1

2

√
(4J )2 − (γ̃ + 2iε)2

]
|e〉1|g〉2. (16b)

For ε 
= 0, the imaginary parts of λ3 and λ4 are different for
any value of γ̃ 
= 0 and therefore no exceptional point exists
in that case. It is interesting to note that there is an abrupt
interchange between the values of Im(λ3) and Im(λ4) as ε ap-
proaches zero. This behavior can be explained by visualizing
these quantities in the ε-γ̃ plane, as shown in Fig. 2(b). This
abrupt change is based on the complex eigenvalue topology
of the involved intersecting Riemann sheets across the ε = 0
surface. The particular topology also suggests that the direc-
tionality of the motion in the ε-γ space, when encircling the
exceptional point, with starting points on different Riemann
sheets, plays an important role on the final outcome.
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FIG. 3. (a) Population of qubit 1 in the configuration of Fig. 1, as a function of the time for various values of γ̃ and ε = 0. The gray line
(labeled 1) denotes γ̃ = 0.2J , the teal line (2) γ̃ = 2J , the orange line (3) γ̃ = 4J , and the purple line (4) γ̃ = 8J . (b) Time dynamics of
the effective decay �eff using the same parameters as those in (a). (c) Population of qubit 1, as a function of time for various values of γ̃ and
ε = 5J . The gray lie (1) denotes γ̃ = 0.3J , the teal line (2) γ̃ = J , the orange line (3) γ̃ = 10J , and the purple line (4) γ̃ = 30J .

In Fig. 3(a) we show the time population dynamics of
the first qubit of the configuration depicted in Fig. 1. The
population dynamics is studied for various values of γ̃ and
ε = 0 (identical qubits). For small values of γ̃ such that γ̃ �
4J (gray line), the population exhibits damped oscillations
indicative of the transfer of the excitation to the second qubit
along with the environmental dissipation. As γ̃ is increased
the oscillations become increasingly damped and less frequent
(teal line), while at the critical coupling γ̃ = 4J where the
exceptional point lies, the oscillations disappear and the popu-
lation dynamics is given by the expression P1(t ) = e−2J t (1 +
J t )2 (orange line). For increasing values of γ̃ the population
retains its nonoscillatory behavior and becomes increasingly
protected against dissipation through the QZE (purple line).
In the limit γ̃ � 4J , as also our analytical study suggests,
the population of the first qubit remains essentially frozen in
its initial value. Strictly speaking, complete freezing occurs in
the limit of infinite γ̃ , which is of only mathematical interest,
as it is the range of finite but large values, in the sense of
the above inequality, that are of realistic relevance. The same
conclusions can be deduced by studying the effective decay
rate of the probability P1(t ), an important and widely used
tool in the context of QZE in open quantum systems, defined
as

�eff(t ) ≡ −1

t
ln[P1(t )], (17a)

which leads to

P1(t ) = e−�eff (t )t , (17b)

indicating a decay rate with a time-dependent exponent.
In Fig. 3(b) we show the time dynamics of the effective de-

cay rate �eff(t ) using parameters identical to those of Fig. 3(a).
Clearly, for γ̃ < 4J , the effective decay rate exhibits peaks
associated with the population oscillations between the two
qubits, whose frequency depends upon γ̃ . The time between
subsequent peaks increases as γ̃ is increased, while each sub-
sequent peak is less pronounced compared to the preceding
one. For γ̃ � 4J , the effective decay rate does not exhibit
any peak and its value tends to decrease as γ̃ is increased.

However, the situation is quite different if the two qubits
are nonidentical, as is the case in Fig. 3(c), where ε = 5J .
As Fig. 3(c) also suggests, we do not expect any qualitative
transition on the system’s response as γ̃ approaches and ex-

ceeds the value γ̃ = 4J . In this case, what determines the
dissipation behavior is the ratio of ε to γ̃ . In other words, as
γ̃ is increased the dissipation of P1(t ) is also increased, but if
γ̃ becomes sufficiently larger than ε, the picture changes with
the population of the first qubit becoming increasingly robust
against dissipation. Again, even for ε 
= 0, in the limit where
γ̃ is much larger than J and ε, the QZE freezes the dynamics
of the second qubit, inducing thus a hindering of the decay of
the first qubit population.

As is also evident from Fig. 3(b), in the long-time limit, the
effective decay rate �eff(t ) tends to stabilize to a finite nonzero
value. The results of Fig. 3(c) become much clearer if we plot
�eff(τ ) as a function of γ̃ , where τ is defined to be a time much
longer than any other timescale of the system. This quantity
informs us about the onset of the QZE since it indicates the
coupling γ̃ where the decay becomes maximum and decreases
thereafter. As seen in Fig. 4(a), for ε = 0 and increasing γ̃ ,
the decay is also increased until the point γ̃ = 4J , where it
becomes a maximum. As γ̃ crosses the value 4J there is an
abrupt change in the behavior of the decay, as also suggested
by Fig. 4(b), where we show the derivative of the effective
decay rate with respect to γ̃ . In view of the analysis of Fig. 2,
the sharp peak at γ̃ = 4J therefore indicates the position of
the exceptional point.

On the other hand, for finite ε, i.e., nonidentical qubits,
although the effective decay rate calculated at long times
also exhibits a maximum, the curve around the maximum is
smooth. In this case, according to Fig. 2, we should not expect
any exceptional points at any coupling strength γ̃ . For increas-
ing ε, the decay rate as a function of γ̃ exhibits an increased
width, which indicates that it takes a larger coupling window
to cross the maximum and move from regions of increasing
dissipation to the quantum Zeno regime, in compatibility with
Fig. 3(c).

Our results suggest that the onset of the QZE is not nec-
essarily associated with the presence of an exceptional point
but with a peaked structure of the effective decay rate as a
function of the coupling strength between the second qubit
and the environment. The presence of an exceptional point,
on the other hand, always indicates an abrupt phase transition
from the anti-Zeno to the Zeno regime and is associated with
a sharp peak of the effective decay rate as a function of γ̃ .
The link between these sharp peaks and the presence of EPs
was also pointed out in a recent paper by Kumar et al. [37].
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FIG. 4. (a) Effective decay rate for times τ much longer than any
other timescale of the system, as a function of γ̃ , for various qubit
energy differences ε. The vertical dashed line at γ̃ = 4J indicates
the position of the peak for ε = 0. The gray line (1) denotes ε = 0,
the teal line (2) ε = 0.5J , the orange line (3) ε = 2.0J , and the
purple line (4) ε = 5.0J . (b) Derivative of the effective decay rate
for times τ much longer than any other timescale of the system, with
respect to γ̃ , as a function of γ̃ . The parameters are the same as those
in (a).

The sharpness of the peak can be easily identified trough
discontinuities of the first derivative of the effective decay rate
with respect to γ̃ as in Fig. 4(b). Therefore, if the quantity
�eff(τ ) could be measured as a function of γ̃ for τ much larger
than any other timescale of the system, it could be argued that
by just studying its peak structure, the presence of an EP could
be identified. As will become clear, this method appears to be
very useful in cases of systems where explicit expressions of
effective Hamiltonians do not exist and therefore no diagonal-
ization is possible.

B. Lorentzian environment

In order to obtain the time dependence of the amplitude
marked by a tilde c̃1(t ) for a Lorentzian boundary environ-
ment, one needs to calculate the function R(t ) via Eq. (7)
for a Lorentzian spectral density J (ω) and find its Laplace
transform B(s), necessary for the inversion of the Laplace
transform F1(s). In a recent paper [7], using similar notation,
we calculated B(s) for a Lorentzian spectral density distribu-

tion with positive peak frequency and negligible extension to
negative frequencies and showed that

B(s) = g2

s + γ

2 + i�c
, (18)

where g is the coupling strength constant between the second
qubit and the environment, γ is the width of the distribu-
tion, and �c ≡ ωc − ω′

eg is the detuning between the peak
frequency ωc of the distribution and the qubit frequency ω′

eg of
the second qubit. Substitution of Eq. (18) into Eq. (9) leads to
an expression involving a third-order polynomial with respect
to s in the denominator. Although the Laplace inversion can
be carried out analytically, the resulting expression of c̃1(t ) is
too lengthy to be insightful.

In contrast to the previous case of a Markovian spectral
density, now it is not possible to develop an effective Hamil-
tonian characterizing the open quantum system by eliminating
the reservoir degrees of freedom. This inability is associated
with the non-Markovian character of the Lorentzian spectral
density, which enables information exchange between the sys-
tem and the environment within finite times. Therefore, an
attempt to find the eigenenergies of the open system as a probe
of its exceptional points seems ineffectual. Based, however,
on the results of Sec. III A, deduced from the study of the
effective decay rate maxima, in comparison to what we know
from the spectrum of the non-Hermitian Hamiltonian and its
exceptional points, we can track the EPs of the system damped
by a Lorentzian reservoir.

In Fig. 5(a) we plot the effective decay rate of the first qubit
as a function of the time for ε = 0, γ = 0.5J , �c = 0, and
g = J . Based on the form of the peaked structure of �eff(τ )
as a function of g for τ much larger than any other timescale
of the system, we expect an exceptional point at g = 1.41J
[see Fig. 5(d), gray line]. For g smaller than the position of
the exceptional point, which we will hereafter denote by gEP,
the effective decay rate as a function of the time exhibits sharp
peaks indicative of the transfer of populations between the two
qubits. Note that, contrary to the Markovian reservoir case,
part of the excitation can now be transferred from the open
system to the environment and vice versa, within finite times.
As g is increased towards the value gEP, the sharp peaks begin
to be gradually substituted by smooth oscillations [Fig. 5(b)]
up to g = gEP, at which point the �eff(t ) dynamics exhibits
only smooth oscillations, as in Fig. 5(c). Note that for g � gEP,
the system lies in the region where the QZE starts to inhibit
the evolution of the second qubit. As a result, as g increases,
the population of the second qubit becomes increasingly neg-
ligible and the smooth oscillations of the effective decay rate
of the first qubit reflect oscillations directly between the latter
and the environment.

In Fig. 5(d) we show how the effective decay rate at long
times τ behaves as a function of g for various Lorentzian
widths and ε = 0. As expected, on physical grounds, the de-
cay rate is overall increased as γ increases. At the same time
the sharp peak of the curve, which indicates the position of the
exceptional point, moves towards larger g. The dependence
between the position of the exceptional point gEP and the
Lorentzian width γ is depicted in Fig. 5(e). At the same time
the maximum of the curve is also affected by the value of
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FIG. 5. (a) Time dynamics of the effective decay rate for ε = 0 (identical qubits) and a Lorentzian boundary environment with the
parameters γ = 0.5J , g = J , and �c = 0. (b) Same as in (a) but for g = 1.3J . The vertical dashed line indicates the time up to which
the decay rate oscillations are smooth. (c) Same as in (a) but for g = 1.41J . (d) Effective decay rate for times τ much longer than any other
timescale of the system, as a function of g, for various Lorentzian widths γ , ε = 0, and �c = 0. The gray line (1) denotes γ = 0.5J , the
teal line (2) γ = 2J , and the orange line (3) γ = 4J . (e) Location of the exceptional point gEP as a function of γ for ε = 0 and �c = 0. (f)
Effective decay rate for times τ much longer than any other timescale of the system, as a function of g, for various values of the detuning �c

between the Lorentzian peak and the qubit frequency of the second qubit. The parameters used are ε = 0 and γ = 0.5J . The gray line (1)
denotes �c = 0, the teal line (2) �c = 0.5J , and the orange line (3) �c = 2.0J .

detuning between the Lorentzian peak and the qubit frequency
of the second qubit [Fig. 5(f)]. In view of the above results,
we can confidently argue that the positions of the exceptional
points in the case of a Lorentzian reservoir show great sensi-
tivity to the values of the Lorentzian parameters γ and �c.

For the results of Fig. 5 we have assumed that ε = 0, i.e.,
the two identical qubits. In Fig. 6 we examine the effects of
a nonzero energy difference between the two qubits on the
QZE onset for Lorentzian reservoirs. In Fig. 6(a) we plot
the effective decay rate at long times τ as a function of the
qubit-environment coupling strength g for various values of
ε. As ε is increased, the position of the maximum of the
curve tends towards larger coupling strengths, as was the case
for a Markovian-damped open system (see Fig. 4). There are

however two striking differences. First, in the Markovian case
the value of ε affected significantly the width of the effective
decay curve, whereas for Lorentzian reservoirs, the increase
of ε results roughly in a displacement of the curve towards
larger g. Second and most important, in the Markovian case,
for any value of ε, the effective decay rate exhibits a smooth
maximum, except for the case ε = 0, where the peak is sharp
[see the derivative in Fig. 4(b)] and is marked by the presence
of an exceptional point. On the other hand, for a Lorentzian
reservoir, the peak of the effective decay rate is sharp for
any value of ε. This result can be verified upon inspection
of the discontinuities of the effective decay rate derivative
with respect to g as a function of g for various values of ε

[Fig. 6(b)]. Therefore, the maximum points of the effective de-
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FIG. 7. (a) Effective decay rate for times τ much longer than any other timescale of the system, as a function of g, for various Ohmic
parameters S, ωc = J , ε = 0, and ωeg = 6J . The gray line denotes S = 1, the teal line S = 2, and the orange line S = 3. (b) Effective decay
rate for times τ much longer than other timescales of the system, as a function of g, for various cutoff frequencies ωc, S = 2, ε = 0, and
ωeg = 6J . The gray line denotes ωc = J , the teal line ωc = 1.3J , and the orange line ωc = 1.8J . (c) Effective decay rate for times τ much
longer than other timescales of the system, as a function of g, for various energy differences ε between the two qubits, S = 2, ωc = J , and
ωeg = 6J . The gray line denotes ε = 0, the teal line ε = 0.5J , and the orange line ε = 1.5J .

cay rate mark the existence of exceptional points for any value
of ε in the case of a Lorentzian reservoir. The dependence of
the positions of such points as a function of ε is depicted in
Fig. 6(c).

C. Ohmic environment

In this section we examine the case of a reservoir charac-
terized by an Ohmic spectral density [56,57]. In that case J (ω)
is given by

J (ω) = Ng2ωc

( ω

ωc

)S
exp

(
− ω

ωc

)
, (19)

where ωc is the so-called Ohmic cutoff frequency and S
the Ohmic parameter, characterizing whether the spectrum
of the reservoir is sub-Ohmic (S < 1), Ohmic (S = 1), or
super-Ohmic (S > 1). In addition, N is a normalization con-
stant given by the relation N = 1

(ωc )2�(1+S ) , where �(z) is the
Gamma function.

The corresponding function B(s), which is the Laplace
transform of the function R(t ) given by Eq. (7), has been
calculated in previous work for Ohmic spectral densities [7]
and was found to be given by

B(s) = −g2 i1−S

ωc
e−iK (s)[K (s)]S�( − S,−iK (s)), (20)

where K (s) ≡ (s − iωeg)/ωc and �(a, z) is the incomplete
Gamma function. Substitution of Eq. (20) into Eq. (9) leads
to an expression for F1(s) whose inverse Laplace transform
can be calculated numerically to yield the time dependence of
c̃1(t ).

In Fig. 7 we plot the effective decay rate of the first qubit
at long times τ , as a function of the qubit-reservoir coupling
strength g, for various combinations of the remaining parame-
ters. In Fig. 7(a) we examine the effects of varying the Ohmic
parameter S on the behavior of the effective decay rate profile
in the case of identical qubits (ε = 0). The effective decay rate
is now found to exhibit a peak for any value of S . However, it
is not sharp, i.e., the first derivative of the effective decay rate
with respect to g, as a function of g, does not exhibit a dis-
continuity at the position of the peak. Although this suggests
that the QZE occurs for any value of S , it is not accompanied
by the presence of an EP. The onset of the QZE (position of

the maximum) decreases as the Ohmic parameter is increased.
At the same time, the overall decay rate decreases as S is
increased, which can be interpreted in terms of the form of
the Ohmic spectral density distribution as a function of S . In
particular, for fixed ωc and increasing S , the distribution tends
to flatten, causing more dominant modes of the distribution to
be off-resonance from the qubit frequency, thus damping the
system less efficiently. The difference between the effects of
the Ohmic and Lorentzian distributions can be attributed to the
fact that the flattening of the distribution and the position of its
peak is controlled by different parameters in the two cases. For
the Lorentzian, they are γ and �c (for fixed ωeg), respectively,
whereas for an Ohmic distribution both of them depend on the
Ohmic parameters S and ωc. Note that the Ohmic distribution
exhibits a peak at the frequency Sωc.

In Fig. 7(b) we keep the Ohmic parameter fixed to the
value S = 2 and examine the behavior of the effective decay
rate as a function of the cutoff frequency of the distribution.
The results indicate that the onset of the QZE occurs for
larger qubit-environment couplings g, as the cutoff frequency
is increased. Again, the effective decay rate shows no evidence
of the presence of EPs, for any combination of the Ohmic
parameters. The values of the decay rate decrease as ωc is
increased, owing to the flattening of the distribution for fixed
S and increasing ωc, along the lines of interpretation in the
preceding paragraph.

Finally, in Fig. 7(c) we examine the behavior of the ef-
fective decay rate for various values of the energy difference
between the two qubits. Interestingly, contrary to the case
of identical qubits, when ε 
= 0, the effective decay rate is
maximum at g = 0 and decreases as g is increased. This result
indicates that the system lies in the QZE regime for any value
of g.

IV. CONCLUSION

We have investigated a method of tracking EPs in a non-
Markovian open quantum system, for which a closed-form
expression of the effective Hamiltonian describing the open
system may not exist. In that case, the EPs of the system
cannot be found by following the usual procedure of Hamil-
tonian diagonalization, as would have been the case for a
quantum system damped by one or more Markovian reser-
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voirs. Although our theory in this paper deals with the simple
case of two nonidentical qubits, one of which interacts with
a reservoir of arbitrary spectral density, our method is readily
generalizable to any number of qubits and reservoirs.

The method is based upon studying the behavior of the
effective decay rate of the first qubit as a function of the
coupling between the environment and the second qubit. We
first studied the case of Markovian damping where the system
is diagonalizable and we compared the effective decay rate
analysis with the analysis in terms of the eigenvalues of the
open system. The results indicated that although a peak of the
effective decay rate term is always associated with the onset
of the QZE, if the peak is sharp (i.e., if the first derivative of
the effective decay rate with respect to g as a function of g
exhibits a discontinuity), the system has an EP at the position
of the peak.

We further examined the cases of reservoirs character-
ized by Lorentzian as well as Ohmic spectral densities. For
Lorentzians, we have shown that the system will always have
a single EP, for any combination of the parameters of the spec-
tral density, i.e., its width and the detuning of its peak from the
qubit frequency. The position of the EP (gEP) has been found
to shift towards higher values as γ increases for fixed �c or as
�c increases for fixed γ . Interestingly, in contrast to the case
of Markovian damping where the EP exists only for identical
qubits (ε = 0), for a Lorentzian reservoir, an EP is always
present irrespective of the value of ε. On the other hand, for
reservoirs with an Ohmic spectral density, our results indicate
that, although the system has a critical coupling marking the
onset of the QZE (peak of the effective decay rate curve),
this onset is not accompanied by the presence of an EP (i.e.,
the peak is not sharp), for any combination of the Ohmic
parameters. The position of this onset was found to move
towards smaller values of g, as the Ohmic parameter S is
increased or as the Ohmic cutoff frequency ωc is decreased.
For ε 
= 0 the effective decay rate is maximum at g = 0,

decreasing monotonically as g is increased. Therefore, in the
case of two nonidentical qubits and an Ohmic environment,
the system will lie within the QZE regime, for any value of g.

We believe that the significance of our results rests
upon the synthesis of exceptional points in the presence of
non-Markovian dissipation. Although both aspects represent
problems of extensive current research activity, their com-
bined effect in the same quantum system has hardly been
explored. However, the dynamics of open quantum systems
associated with the presence of EPs or/and the regions of the
onset of the QZE beyond Markovianity is of great significance
in a plethora of realistic situations, many of practical interest.
Our method can account for any form of the boundary envi-
ronment’s spectral density and can easily be generalized to
open quantum systems consisting of qubits and environments
interacting in more complex arrangements. The drastic differ-
ences in the effective decay rate of the first qubit as a function
of g, between a boundary environment of Lorentzian spectral
density from that of Ohmic, raises the following profound
question: What are the necessary conditions that an arbitrary
spectral density should satisfy to result in the existence of EPs
for certain regions of parameters? Whether these conditions
are related to symmetries of the spectral density profile or
other features remains to be examined in future work, with
possibly quite impactful implications. Nevertheless, the con-
trast between the effect of a Lorentzian and an Ohmic spectral
density on the EPs in our system illustrates the resistance of
non-Markovian distributions to general classifications.
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