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Three-laser coherent population trapping in a multi-� system: Theory, experiment, and applications
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We present theoretical and experimental results of coherent population trapping spectra on a multilevel �-type
configuration, adding a third beam to the standard two-laser � system to avoid undesired optical pumping. We
show that the extra laser can preserve the nature of the dark resonances or introduce decoherence depending on its
power. Experiments are carried out using a single trapped 40Ca+ ion in the S1/2-P1/2-D3/2 manifold. Theoretically,
the problem is solved with a Floquet-type expansion of the Liouvillian that correctly predicts all of the measured
spectra without the need of full time integration. As a first application of the multilaser technique, we show that
the richer spectra obtained can be used as a vectorial polarimeter of one of the beams, allowing one to measure
the electrical field at the ion’s position in any spatial direction. We also explain how our setup could realize a
thermometer with tunable sensitivity and no laser-linewidth dependence.
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Coherent population trapping (CPT) [1–3] and electro-
magnetically induced transparency (EIT) [4,5] occurring in
three-level �-type atomic systems reveal dark resonances
with spectral linewidths much finer than the natural linewidths
of the excited transitions. In fact, these are only fundamentally
limited by dephasing and decay into the lower interven-
ing states, which are normally considered stable or at least
metastable, with lifetimes typically beyond 1 s if not days or
years.

These two similar phenomena, which differ only in the
relative strengths of the involved laser fields, have been widely
observed and studied in diverse systems, for example, in
cold-atomic gases [6] and Bose-Einstein condensates [7]. CPT
spectroscopy is also a promising perspective in the area of
quantum metrology and quantum clocks with neutral atom
vapor cells [8–11]. Since EIT generates strong nonlinear ef-
fects, these kinds of resonances find applications in the field
of quantum information as a mechanism to slow down light
[12,13] and, therefore, to store optical pulses [14–16]. It can
also enhance nonlinear optical effects such as sum-frequency
generation [17–19] and four-wave mixing [20].

More recently, several experiments of CPT and EIT were
performed with trapped ions. The narrow feature of the res-
onances is especially useful to study the motional states of
few ions because the resonance widths are especially sensitive
to ions’ motion [21–23]. This makes it possible to use it to
measure the temperature of single trapped ions [24,25] as well
as using EIT to perform cooling below the Doppler limit of
single ions [26,27] and even multimode cooling of long ion
chains and crystals [28–30]. This technique proved to be a
robust cooling method towards coherent control of multiple
ions simultaneously with applications in quantum computing
and quantum simulation [31,32].
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Pure three-level systems rarely occur in nature. However,
typical atomic systems with multilevel configurations can also
exhibit dark resonances. In such cases, to produce a closed
three- or more-level �-type system, a proper combination of
laser polarization and geometry must be chosen. Otherwise,
open decay pathways can lead to optical pumping into states
that do not fluoresce, which hinders the observation of the
dark resonances.

In this paper we study in detail the role of an extra re-
pumper as a method to avoid optical pumping into dark states
when observing CPT with a single trapped ion. Similar work
has been carried out with atomic vapors [33–35]. Here we
show how introducing this additional laser considering its
coherent effects on the system will either preserve the res-
onances or dephase them, depending on its power. This can
be especially useful as it allows the observation of the full
dark resonance spectrum irrespective of the polarization of the
probe beam.

Also, we present two prospective applications of these
three-beam CPT resonances. The main one concerns three-
dimensional (3D) polarimetry of vector beams. For this
application we take advantage of the fact that the shape, po-
sition, and strength of the dark resonances that appear in a
spectrum strongly depend on the relation between the polar-
ization of the beam and the magnetic field direction. Thus,
the observed spectra provide information of the 3D polariza-
tion of the electric fields of the intervening beams, similarly
to the recent demonstration of the measurement of the 3D
magnetic field alignment using an atomic cloud and a vector
vortex beam [36]. As the typical size of the wave packet of a
trapped ion is in the 10–100 nm range, it can be used as a 3D
polarimeter with spatial resolution below the diffraction limit
of strongly focused beams, allowing to map the polarization
distribution of focused beams.

The paper is organized as follows. In Sec. I we intro-
duce the different scenarios where the dark resonance spectra
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(a) (b) (c)

FIG. 1. Energy levels of 40Ca+ ion with the allowed transitions and its corresponding dark resonance spectra for three different configu-
rations of linear probe polarizations angle αpr with respect to �B. For all plots, ε̂dop = σ̂+ + σ̂− was set. (a) For ε̂pr = σ̂+ + σ̂−, i.e., αpr = 90◦,
the spectrum shows four dark resonances. (b) When 0◦ < αpr < 90◦, the probe spectrum shows six dark resonances, and the strengths of them
strongly depend on αpr. (c) For ε̂pr = π̂ , which means αpr = 0◦, the spectrum should show two dark resonances. But since this polarization
generates optical pumping to the mj = ± 3

2 D sublevels, the stationary fluorescence is zero and there is not an observable spectrum (solid line),
thereby hindering the two dark resonances. If we turn on an additional laser in the D-P transition, a repumper, with polarization ε̂rep = σ̂+ + σ̂−
and blue detuned, the two π̂ dark resonances of the spectrum can be seen (dashed line).

appear in a multilevel �-type system and discuss the addition
of a third laser to avoid optical pumping. In Sec. II we develop
the formalism needed to calculate CPT spectra for two and
three lasers and compare the solutions. In Sec. III we show
experimental results of three-laser CPT spectra for different
cases and analyze the effects of the third laser for the low
and high saturation limits. In Sec. IV we present two methods
for doing polarimetry of one of the beams using the dark
resonances. Finally, in Sec. V we discuss the use of the dark
resonances to perform thermometry of trapped ions.

I. INTRODUCTION

Through all this work we will focus on 40Ca+ level system,
but our analysis can be extended to other atomic systems. In
particular, we study the multi-� system formed by the ground
state 4 2S1/2, one excited state 4 2P1/2, and the metastable
state 3 2D3/2, as seen in Fig. 1. The S-P transition near 397 nm
and the D-P transition near 866 nm are dipole connected with
the excited short-lived level which has a lifetime of 6.9 ns
[37]. When exciting the atom with two nearly resonant lasers,
one for each transition, but an equal detuning with respect
to the P level, a dark resonance occurs. However, these dark
resonances may be hindered by optical pumping under certain
conditions, as we describe below.

As a quick rule of thumb, which would be useful to
keep in mind for the present discussion, one can consider
the following cases for the selection rules. Considering the
quantization direction as the one given by the magnetic field,
the three possible transitions are π (�mj = 0), which occurs
when the polarization is parallel to �B, σ+ (�mj = +1), or σ−
(�mj = −1) which takes place when the polarization is right
or left circularly polarized in the plane perpendicular to �B.
Also, if the laser is linearly polarized orthogonally to �B, both
σ+ and σ− can occur, as the polarization can be decomposed
as a superposition of both circular polarizations. Through-
out this work we will name the polarizations of the lasers
with these labels, according to the possible transitions they
can drive.

With only two lasers, some configurations give the ex-
pected fluorescence spectra with dark resonances, while some
others lead to optical pumping which hinders fluorescence and
consequently the observation of dark resonances, as seen in
Fig. 1. There, the 397-nm laser (Doppler laser) is kept at fixed
detuning to the red of the transition with linear polarization
perpendicular to the magnetic field, such that ε̂dop = σ̂+ + σ̂−.
The spectrum is obtained by sweeping the frequency of a
second beam near 866 nm (probe laser). The polarization of
this beam is always kept linear but its direction can be changed
between different spectrum measurements.
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We show in Fig. 1 three examples of dark resonance spectra
of the probe laser, for three different polarizations ε̂pr. These
are retrieved by fixing the detuning of the Doppler laser and
computing the fluorescence, proportional to the population of
the excited states, while varying the detuning of the probe. In
the spectra, the number and location of the dark resonances
will change depending on which three-level systems are ex-
cited by the two lasers, which will vary depending on the
selection rules. In Fig. 1(a), we set the polarization of the
probe laser to be ε̂pr = σ̂+ + σ̂−, i.e., orthogonal to �B. With
this choice, the spectrum shows four dark resonances which
are separated because the Landé factors of the S and D levels
are different. Two of them belong to σ+ D-P transitions and
the other two correspond to σ− D-P transitions. If we reduce
the angle between the probe polarization and the magnetic
field αpr to some value between 0◦ and 90◦, as can be seen
in Fig. 1(b) for αpr = 15◦, two additional dark resonances
emerge. These two dark resonances correspond to π transi-
tions and add up to the previous four, conforming a total of
six dark resonances that can appear in this laser’s geometry. It
can also be seen that the depths of the dark resonances change
significantly with αpr. This shows that the dark resonances
are especially sensitive to the probe polarization. Finally, in
Fig. 1(c) we show what happens when the polarization of the
probe is parallel to �B, i.e., ε̂pr = π̂ . The emitted fluorescence
in the stationary state is zero for all probe detunings since
optical pumping to mj = ± 3

2 D magnetic sublevels occurs.
Therefore, the two dark resonances that should appear, plotted
in dashed line, do not show up. The same behavior is expected
if the probe polarization is chosen purely σ̂+ or σ̂−. This
implies that it is not possible to observe dark resonances
for all possible probe polarizations by doing CPT with two
lasers. To do this, one should find a method to avoid optical
pumping to dark states. One possibility is to add a second laser
in the D-P transition, a repumper, with fixed detuning and
polarization such that all the D sublevels are repumped, for
example, σ̂+ + σ̂−. This laser will repump the population from
all D magnetic sublevels, thus avoiding population trapping
and therefore allowing one to observe the spectrum for all
possible polarizations of the probe laser.

In the next section we will present the theory needed to
consider a third laser, the repumper, in the atomic dynamics
and the methods to retrieve the atomic spectra. After that, we
will show experimental results of the model and describe two
applications of this, as a vectorial polarimeter and as an ion
thermometer.

II. CPT THEORY

We will now develop the formalism to calculate the atomic
spectra, focused particularly in the probe spectrum. We be-
gin by making an overview of the well-known standard CPT
theory with two lasers. After that, we show the modifications
needed to add a third laser to the system, the repumper laser.
We consider this new laser to be tuned near the 866-nm
transition with a detuning and polarization independent of the
probe laser. However, the same formalism can be extended to
add a laser in the other transition, as well as more than one
extra laser. As the problem is inherently time dependent, we
show a formalism to calculate a time-averaged solution, which

allows us to calculate the steady states of the system for any
configuration.

A. Standard CPT theory

The Hamiltonian of the atomic system interacting with the
electric fields is

H = Hatom + Hint. (1)

There, Hatom is the atomic Hamiltonian, and Hint is the semi-
classical Hamiltonian of the resonant dipolar interaction of the
atom with the electric field of each laser. This last one can be
written as

Hint = − �D ·
∑

m

�Eme−iωmt , (2)

where �D is the atomic dipole operator which multiplies the
sum of all the electric fields �Em of the lasers involved, with
frequencies ωm. From this expression it is clear that the in-
teraction Hamiltonian introduces an explicit time dependency
to the full Hamiltonian. To overcome this, the most common
method used is to transform into a rotating frame with an
unitary transformation U [38].

To write U explicitly it is useful to name the energy levels
with numbers from 1 to 8 considering the two S (|1〉, |2〉), two
P (|3〉, |4〉), and four D (|5〉, |6〉, |7〉, |8〉) magnetic Zeeman
sublevels. In the case of two lasers, the appropriate transfor-
mation to use is

U = e−iωdopt (|1〉 〈1| + |2〉 〈2|) + |3〉 〈3| + |4〉 〈4|
+ e−iωprt (|5〉 〈5| + · · · + |8〉 〈8|), (3)

where ωdop and ωpr are the frequencies of the Doppler and
the probe lasers, respectively. This rotation leads to a time-
independent Hamiltonian H0 = UHU † − ih̄U dU †

dt . Then, the
dynamics of the system characterized by a density matrix ρ is
governed by a master equation given by

dρ

dt
= − i

h̄
[H0, ρ] + Ldamp(ρ). (4)

There, Ldamp is a Lindblad operator which can account for
decoherence or decays in the system. We consider two kinds
of decoherence terms, as detailed in [24]. One kind considers
the allowed spontaneous decay channels of the two dipolar
transitions characterized by their natural linewidths 
SP and

DP. The other type of decoherence channel will take into
account the finite laser linewidths 
dop and 
pr. Here we can
consider the effects of a finite temperature T by quadratically

adding an extra Doppler broadening 
T = |�kdop − �kpr|
√

kBT
2m to

the laser linewidths. All operators of the Lindblad operator are
proportional to the square root of the linewidths to act as true
damping nonunitary terms.

Since the equations are linear in ρ, we can rewrite the
master equation as

d �ρ
dt

= L0 �ρ, (5)

where �ρ is the flattened version of the density matrix �ρ =
(ρ11, ρ12, . . . , ρ18, ρ21, . . . , ρ88) and L0 is the Liouvillian of
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the system. To obtain the atomic spectra, one can solve the dif-
ferential equations that arise, named optical Bloch equations
(OBE), and compute a stationary value varying the detuning
of interest. But, the computational costs to pay are high,
especially if we want to fit a measured spectrum to retrieve ex-
perimental parameters. Instead, a stationary solution of Eq. (5)
can be found by inverting L0 with the normalization condition
Tr(ρ) = 1. The spectra, then, can be calculated computing the
population of the excited states ρ33 + ρ44, which is propor-
tional to the fluorescence, while varying one of the frequencies
of the fields, keeping the other one constant. All the spectra
of Fig. 1 except the dashed one of Fig. 1(c) were calculated
through this method. In this last one, an additional laser in the
D-P transition is turned on and the spectrum calculation was
performed with the three-laser formalism detailed in the next
section.

B. Three-laser CPT theory: Time-averaged solution

We now consider adding one more laser to the multi-�
system. In particular, we consider adding a second laser nearly
resonant to the D-P transition near 866 nm with independent
frequency with respect to the other one. Its addition to the
interaction Hamiltonian in Eq. (2) yields a problem: it is not
possible to build a unitary transformation U to go into a
rotating system in which the Hamiltonian becomes time inde-
pendent. Choosing the same rotation U used in the two-laser
case, one obtains a time-dependent Hamiltonian as

H′ = H0 + h̄�rep

2
[H+ei�̄t + H−e−i�̄t ], (6)

where �̄ = �rep − �pr is the difference between the detuning
of the repumper and the probe, H0 is the Hamiltonian of
the two-laser system, �rep is the Rabi frequency of the re-
pumper, and H+ and H− are two 8 × 8 matrices which satisfy
the condition H†

+ = H− and depend only on the repumper
polarization. It is straightforward to see that in this frame
of reference, making �rep = 0 directly gives the two-laser
equations.

Using the same procedure as in the previous section,
expressing all the elements of the density matrix as a row vec-
tor and correspondingly the elements of this time-dependent
Hamiltonian as matrix operators, we obtain a new master
equation as

d �ρ
dt

=
[

L0 + h̄�rep

2
(L+ei�̄t + L−e−i�̄t )

]
�ρ. (7)

Here, L0 is the Liouvillian for the two-laser system of Eq. (5),
and L± are two 82 × 82 matrices that are calculated with the
expressions of H±.

As the Liouvillian is now explicitly time dependent, we
cannot find the stationary solutions by simply inverting this
matrix as before. However, since it is periodic with frequency
�̄, the stationary solution will also have the same periodicity.
Because of this, we propose a Floquet-type solution of the
form �ρ(t ) = ∑

n �ρnein�̄t . By introducing it into the master
equation, we get a recursive expression of the form

[L0 − in�̄]�ρn + h̄�rep

2
L+�ρn−1 + h̄�rep

2
L−�ρn+1 = 0. (8)

Defining two lowering and raising operators in a recursive
form as

S+
n−1 = −

(
L0 − in�̄ + h̄�rep

2
L−S+

n

)−1 h̄�rep

2
L+, (9)

S−
n+1 = −

(
L0 − in�̄ + h̄�rep

2
L+S−

n

)−1 h̄�rep

2
L−, (10)

we can write �ρn+1 = S+
n �ρn for n � 0 and �ρn−1 = S−

n �ρn

for n � 0.
Of all of the �ρn terms we will be interested only in finding

the mean value �ρ0 = �̄
∫ 1/�̄

0 �ρ(t )dt as this is what we mea-
sure in the experiments. Using these expressions, according
to Eq. (8) we can get an expression for �ρ0 of the form

(
L0 + h̄�rep

2
L−S+

0 + h̄�rep

2
L+S−

0

)
�ρ0 = 0. (11)

This shows that the extra laser in the D-P transition adds a
correction to Eq. (5) which depends on the L± matrices via
the recursive relations for S±

0 . These can be found iteratively
by setting an upper and lower bound to the sum as S+

nmax
=

S−
−nmax

= 0, which is analog to truncating the sum of �ρ(t ). A

good choice for the cut of the sum is nmax = �rep

�̄
since it is the

adiabatic elimination parameter of the � system formed by
two sublevels D and one P, hence characterizing the oscilla-
tions. For most of the spectrum, �rep

�̄
� 1 so setting nmax = 1

will adequately reproduce the expected values except when
|�rep − �pr| ∼ �rep, where a bigger value of nmax has to be
used. We see that choosing nmax = 5 is sufficient to reproduce
all observed values within typical experimental error.

With this, we get a time-independent equation for �ρ0,
which can be solved in the same way that the two-laser
problem. As a result of this, we have a method to compute
a time-averaged solution of the problem, i.e., the stationary
value of the fluorescence averaging all the oscillations. This
is the case when we perform the experiments with a detector
which is not locked to the relative phase of the lasers and do
many repetitions, or when the D-P lasers’ relative coherent
time is much smaller than the characteristic experiment times.
This last one is the case when two different light sources are
used as we do in the experiment.

In Fig. 2 we can see a comparison between the exact
solution of the OBE for two and three lasers, and the time-
averaged solution obtained with the previously described
formalism. When the polarization of the probe is such that we
have optical pumping to some D magnetic sublevels (orange
solid line), for example, with π̂ polarization, after a transient,
the excited-state population, proportional to the fluorescence,
tends to 0. But if we turn on an extra laser in the D-P transition
(red solid line) with polarization such that all sublevels are
repumped, like σ̂+ + σ̂−, optical pumping is avoided and the
mean value of it now is different to zero. We can also see
that the excited-state population oscillates around the time-
averaged solution (purple dashed line), where nmax = 3 was
used. This shows that the last one is a suitable approximation
to the stationary value of the three-laser problem. The dashed
plot in Fig. 1(c) was calculated with this method. We can see
that the pure π̂ dark resonances can be successfully resolved
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FIG. 2. Simulated time-dependent fluorescence, proportional to
the excited-state population, for a single ion with and without an
extra repumper for a configuration with an open decay pathway.
When there is no repumper (orange solid line) the fluorescence tends
to 0 after a transient time due to optical pumping to the mj = ± 3

2
magnetic sublevels of the D state. By adding an extra laser in the D-P
transition (repumper) with σ̂+ + σ̂− polarization, the fluorescence
oscillates around a nonzero mean value (red solid line). This is well
described by the time-averaged solution (purple dashed line) with
nmax = 3.

by adding an additional laser which prevents from optical
pumping to the D sublevels.

In the next sections we will show some applications of the
model, as well as two possibilities to do polarimetry of the
probe laser studying the dark resonance spectrum.

III. EXPERIMENTAL RESULTS

A. Experimental setup

The experiments were performed with a single 40Ca+ ion
trapped in a ring-shaped Paul trap, as shown in Fig. 3. The
radio-frequency field was set to 22.1 MHz and ∼600 Vpp.
These parameters generate trap frequencies in the range of
0.7–1.5 MHz.

Two different lasers near 866 nm were used to repump and
probe the D-P transition. These two beams were focused on
the ion’s position with a beam waist of ∼200 μm. Also, the
beams were overlapped together with a 397-nm laser with a
beam waist of ∼80 μm which addresses the S-P transition.
The propagation direction of the three lasers form a collinear
configuration. The 397-nm laser and the 866-nm probe laser
are locked to individual Fabry-Perot cavities, with a free
spectral range of 1.5 GHz and a finesse of ∼200, through
the Pound-Drever-Hall method, achieving linewidths below
0.1 MHz [39]. The 866-nm repumper laser was a free-running
titanium-sapphire laser. In all cases, the beams were linearly
polarized, and their propagation direction formed an angle of
130◦ with respect to the detection direction. All the lasers
were frequency tuned and scanned using several acousto-optic
modulators (AOMs) in double-pass configurations. The fluo-
rescence detection was performed with a Hamamatsu H10682
photomultiplier tube (PMT) with a mounted 397-nm optical
filter to detect scattered photons only of the S-P transition. The
AOMs and the PMT were controlled and synchronized with an

PMT

zx
y

top view

z

x y
z

x

side view

(a)

(b)

FIG. 3. Sketch of the experimental setup. (a) A single ion (light
blue) is trapped in a ring-shaped Paul trap (gray) placed in a ultrahigh
vacuum chamber. The fluorescence (pale violet) is collected by an as-
pheric objective and focused onto a photomultiplier tube (PMT) with
a mounted (397 ± 5)-nm interference filter. The incident beams are
collinear and propagate in the horizontal (ŷ) direction. The magnetic
field �B is vertically (ẑ) oriented. (b) The polarization of the beams is
linear and lies in the xz plane. The polarization of the 397-nm laser
is always orthogonal to �B, and the polarization of both 866-nm lasers
forms angles αrep and αpr with respect to the the ẑ direction.

ARTIQ system [40,41]. The magnetic field was generated by a
combination of permanent magnets located below the trap and
three orthogonal coils. This allowed us to align the field in the
vertical direction orthogonal to the propagation direction of
the lasers. The magnitude of the field was ∼4 G.

B. Measurement protocol

The dark resonance spectra were obtained by scanning
the probe frequency and measuring the fluorescence on the
397-nm transition in a pulsed scheme. For each measurement
point the following sequence was performed. First, the ion is
Doppler cooled for 100 μs with a 397-nm red-detuned and a
866-nm blue-detuned laser, both σ̂+ + σ̂− polarized to ensure
that the ion is always initialized at the same temperature.
Then, the frequencies of the lasers are changed to the desired
values. After a waiting time of 20 μs to avoid transient effects,
the ion’s fluorescence is detected with the PMT for a time
interval of 50 μs such that no significant heating occurs during
the measurement. This is repeated 20 000 times to reduce
statistical uncertainties. Also, once every 50 repetitions the ion
is cooled for 2 ms to avoid excess heating.

C. Typical dark resonance spectrum with two lasers

In Fig. 4 we show a dark resonance spectrum with the
fitted model obtained with two lasers. The polarization of
the Doppler laser was set to σ̂+ + σ̂− since it is the polar-
ization that separates the dark resonances the most, and this
will be kept through all the work. In this case, the polariza-
tion of the probe laser was also set to σ̂+ + σ̂−. This is the
case exemplified in Fig. 1(a). As expected, we see the four
dark resonances. The two middle ones involve mj = ± 1

2 D
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FIG. 4. Dark resonance spectrum with two lasers, where ε̂dop =
σ̂+ + σ̂− and ε̂pr = σ̂+ + σ̂−. The experimental data (dots) are plotted
with their uncertainty (shaded area) along with a fit to the two-laser
model (solid line). From the fit, we retrieve Sdop = 0.53(1), Spr =
9.9(2), and �dop = −9.8(1) MHz. With this configuration, four dark
resonances appear in the spectrum, each one corresponding to a dark
state preparation of a superposition of one S magnetic sublevel and
one different D magnetic sublevel.

magnetic sublevels, and the two outer ones involve mj = ± 3
2

D magnetic sublevels.
By fitting the spectrum for the two-laser configuration, we

obtain several crucial experimental parameters. One is the
magnetic field, since the separation of the dark resonances is
linear with B. This yields B = 3.7(1) G. Another parameter
retrieved from the fit is the temperature of the ion, which
in this case is 4.7(4) mK. We can also get the saturation
parameters S = I/Isat of the lasers or, equivalently, the Rabi
frequencies of the transitions. Additionally, we include a scale

and an offset factor to account for the conversion between
atomic population and photon counts considering also back-
ground light.

To measure the dark resonances, we observed that it is
important to keep the S-P transition low saturated, with Sdop �
0.8 (∼15 μW). On the other hand, we keep the D-P transition
very saturated, with Spr ≈ 5 (∼40 μW). This last condition
will be reflected in power broadening of the full spectrum
but is beneficial to gain contrast in the resonances. While
keeping the parameters in these orders, we proceed to turn
on a third laser and analyze some aspects of the three-laser
model.

D. Dark resonance spectra with three lasers

We now present, in Fig. 5, the measured spectra and fits
to our model for three different probe polarizations. Each
one is shown with and without a weak repumper laser with
polarization ε̂rep = σ̂+ + σ̂−, to show its effect on optical
pumping. For the first two cases we see clear resonances
both with and without the extra repumper, with Srep ∼ 3 and
�rep ∼ 20 MHz. Here, the main effect of the third laser is to
raise all the spectra by some amount, which is well predicted
by the model. However, for the last case, when the polarization
of the probe is almost purely π̂ , we see that the spectrum
is only well defined when the repumper is on. In this case,
the extra laser avoids optical pumping into the mj = ± 3

2 D
states and allows us to recover the dark resonance spectrum
for the two π̂ transitions, as predicted. In effect, this shows
that an additional laser in the D-P transition results in avoiding
optical pumping to D sublevels that are not addressed by the
scanning probe laser for certain polarizations. Similarly, if
the probe had pure σ̂+ or σ̂− polarization, a weak repumper
laser would allow the observation of other single pairs of dark
resonances.

(a) (b) (c)

FIG. 5. Dark resonance spectra for three different angles of the probe laser polarization, with a repumper on and off. The measurements
(dots) are plotted with their uncertainties (shaded area). In all cases, a fit to the model is shown (solid line) using the two-laser model (repumper
off case) and the three-laser model (repumper on case). For all curves, Sdop = 0.68(2), Spr = 7.6(2), and �dop = −14.7(1) MHz. (a) For
αpr = 90◦, the repumper effect is a general increase of the overall fluorescence. (b) For αpr = 15◦, the addition of the repumper makes the
two outer dark resonances merge with two emerging π̂ dark resonances, which cannot be resolved individually. (c) For αpr = 5◦, i.e., close
to 0◦, without the repumper the spectrum is poorly resolved and little information can be retrieved from it. But with the repumper on, the
two π̂ dark resonances appear. From the fits, for the case where the repumper is on we extract Srep = {2.51(11), 2.83(5), 2.72(8)} and �rep =
{24.8(3), 25.7(2), 26.0(2)} MHz for plots (a) to (c), respectively.
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(a)

(b)

FIG. 6. Dark resonance spectra showing resonance “kicking”
for different laser polarizations and powers. The spectra are ana-
log to the one of Fig. 4, but with an additional (repumper) laser
in the D-P transition. The measurements (dots) are plotted with
their uncertainties (shaded areas), and along fits to the model (solid
lines) presented in the text. In all cases, �dop = −14.6(2) MHz,
Sdop = 0.65(2), and Spr = 7.43(16). (a) When the repumper is π̂

polarized, the two middle dark resonances, i.e., the resonances
that involve mj = ± 1

2 D sublevels are kicked, which means that
the dark state formed is decohered by the extra laser. Here, the
saturation parameters of the repumper extracted from the fits to
the model, from the light to the dark curve, are Srep =
{0, 1.61(5), 7.23(21)}. The detuning of the repumper obtained is
�rep = 52.3(31) MHz. (b) When the repumper is σ̂+ + σ̂− polar-
ized, all four dark resonances are kicked since it repumps all
four D magnetic sublevels and hence the four dark states are af-
fected. In this case, the saturation parameters of the repumper
obtained from the fits, from the light to the dark curve, are Srep =
{0, 2.68(11), 9.31(30)}, and its detuning is �rep = 30.6(5) MHz.

E. Dark resonance kicking

Contrary to the case of a weak repumper where dark reso-
nances are avoided, we now consider the case when its power
is comparable to the one of the probe laser. Now the dark
resonance structure generated by the probe and the Doppler
lasers may be altered because the repumper can break the
coherences of the dark states. In this case, the probe and
the repumper lasers compete by generating and breaking the
coherences through photon scattering. An illustration of this
effect is seen in Fig. 6. There, the probe is set to have σ̂+ + σ̂−
polarization generating four dark resonances in the absence of
a repumper laser. Each of these resonances corresponds to a

superposition of only one of the different D sublevels with one
of the levels in the S manifold, as also shown in Figs. 1(a) and
4. Now, as the repumper is turned on, and its power becomes
comparable to the one of the probe, we see that some of the
resonances lose contrast. They get “kicked” by the repumper.
In Fig. 6(a) the repumper has π̂ polarization so it kicks the
dark resonances that involve mj = ± 1

2 D magnetic sublevels,
which are the middle ones. Conversely, when the repumper
laser has σ̂+ + σ̂− polarization, as shown in Fig. 6(b), all the
dark resonances are equally smeared out.

We see that the grade to which the repumper kicks the
different resonances reveals its polarization. In particular, we
will now show that it can be used to determine the angle
between the linear polarization of this laser and the magnetic
field. In the more general case, by varying the magnetic field,
one can measure all three components of a vectorial polariza-
tion. Therefore, if we can quantify how much the repumper
kicks the side resonances versus the middle resonances we can
retrieve the proportion of π̂ and the proportion of σ̂+ + σ̂− of
polarization it carries. Consequently, the quantification of the
dark resonances kicking could be used as an estimator of the
angle between the repumper laser and �B.

IV. POLARIMETRY WITH CPT SPECTRA

We now consider the two limits described above to be
applied to polarimetry methods. We assume that the two lasers
that address the D-P transition near 866 nm have linear polar-
ization and their propagations are perpendicular to �B. We want
to build an estimator of the polarization of one of the lasers
knowing the other one by using dark resonance spectra. We
aim at retrieving the angle α between the polarization of the
laser of interest and �B.

Here, we propose two methods for one of those lasers. The
first method consists in analyzing the full dark resonance spec-
trum of the probe laser using a weak blue-detuned repumper
to determine the polarization of the probe by the depths of the
observed resonances, as in Fig. 5. In the second method we
quantify the polarization direction of the repumper laser by
analyzing the degree to which the different dark resonances
are “kicked” for a fixed configuration of probe and Doppler
laser, as in Fig. 6.

A. Scanning probe polarimetry

Here, the aim is to determine the polarization of the probe
laser. We turn on a weak blue-detuned repumper laser to be
able to observe the full dark resonance spectra, as we showed
before. As seen in Fig. 5, the number and the depths of
the dark resonances strongly depend on αpr. The two dark
resonances that emerge for αpr = 5◦ are in the middle of the
four σ̂+ + σ̂− dark resonances that appear for αpr = 90◦. This
shows that we can observe dark resonance spectra for every
probe polarization without optical pumping.

To retrieve the polarization from these spectra, two limits
are considered. If the magnetic field is high enough such that
the dark resonances can be distinguished separately, one could
obtain information of the polarization of the beam character-
izing the depths of each dark resonance. In the other case, if
the magnetic field does not separate enough the resonances,
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FIG. 7. Dark resonances “kicking” and their dependence on the
beam’s polarization. Each curve shows the fluorescence measured at
the frequency corresponding to each of the dark resonances shown
in Fig. 4 as a function of the polarization angle of the probe beam
with respect to the magnetic field �B. The repumper was set to Srep =
6.22(14) and �rep = 32.9(3) MHz, and the Doppler parameters used
were Sdop = 0.61(2) and �dop = −9.6(1) MHz. Also, for these mea-
surements, Spr = 4.83(5). The dots are retrieved from the measured
curves. The solid lines represent theoretical curves simulated with
fitted parameters extracted from two reference spectra.

this method relies on the fit to the model of the measured
spectrum.

B. Dark resonances kicking polarimetry

Now we consider the use of the resonance kicking ef-
fect on a fixed reference dark resonance spectrum. This has
two advantages over the previous method: first, we have a
reference spectrum setting Srep = 0 from which we can get
all experimental parameters that do not involve the laser of
interest; and second, since we only need to be able to see four
dark resonances with the scanning laser, this method is more
robust regarding the parameter space in which this works.

To quantify the polarization angle we measure the depths
of each of the four dark resonances for a fixed strong re-
pumper, while varying its angle with respect to the magnetic
field �B. In Fig. 7 we see the results along with theoretical
calculations. These were obtained by simulating spectra with
parameters retrieved from two fits: a first fit of the spectrum
with two lasers to obtain all parameters that do not involve
the repumper laser, and a second fit of one spectrum with
three lasers fixing ε̂rep to get Srep and �rep. We can see that
the experimental data are in good agreement with the sim-
ulations. Despite the nonmonotonic behavior of two of the
dark resonances, the mapping between αrep and the depths of
the dark resonances can be successfully made, proving to be
a feasible method to do polarimetry of a linearly polarized
repumper laser.

This method can also be extended to characterize circularly
or elliptically polarized beams. The difference would rely on
the fact that the pair of dark resonances that are decohered are
different. For example, if the repump laser is σ̂+ polarized, the

FIG. 8. Dark resonance spectrum with three lasers. On the right,
the two dark resonances generated between the 3 2D3/2 -3 2D3/2

levels are visible. These are sharper than the two resonances on the
left which correspond to the well-known 4 2S1/2 -3 2D3/2 dark states
which we analyzed in detail in this paper. For this measurement the
laser polarizations were ε̂dop = σ̂+ + σ̂−, ε̂pr = π̂ , and ε̂rep = σ̂+ +
σ̂−. In this case, Sdop = 1.17(1), Spr = 7.61(23), Srep = 14.0(3), and
the detunings are �dop = −42.3(5) MHz and �rep = −11.4(2) MHz.

dark resonances that would be kicked are one of the middle
and one of the side instead of the two middle ones. And,
by decomposing the polarization in π̂ , σ̂+, and σ̂−, one can
identify the pair of dark resonances that should be “kicked”
and by quantifying this effect one could retrieve information
about the beam.

This method can be applied, for example, to character-
ize the polarization profile of a highly focused vector beam
[42,43]. This kind of beam shows a counterintuitive behavior
when focused. For example, radially polarized beams have,
when focused close to the diffraction limit, strong longitudinal
fields exceeding their transverse component. This only be-
comes significant when the beams are focused to waists below
5 μm, requiring nanosized sensors to measure the spatial dis-
tribution of the polarization of these beams. A single trapped
ion, with typical wave packets in the 10–100 nm range, is
then particularly well suited for this task and would allow
measuring the full polarization profile of these focused beams.

V. 3 2D3/2-3 2D3/2 DARK RESONANCES AND APPLICATION
TO THERMOMETRY

The previous results were obtained by blue detuning the
repumper out of the probe scanning range to avoid possible
mutual interference effects between the two lasers that ad-
dress the D-P transition. When the detunings of these two
lasers match, additional dark resonances appear generated by
coherent superpositions of magnetic sublevels in the 3 2D3/2

manifold. Here, again, the polarizations of both lasers deter-
mine the strength of the observed resonances. In Fig. 8 we
show an example where two 3 2D3/2 -3 2D3/2 dark resonances
as well as two 4 2S1/2 -3 2D3/2 are seen. Here we set ε̂pr =
π̂ and ε̂rep = σ̂+ + σ̂−. We note that the theory adequately
describes the 4 2S1/2 -3 2D3/2 transitions, while it predicts
sharper 3 2D3/2 -3 2D3/2. We attribute this to frequency drifts
of the repumper laser which was not locked to a reference
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cavity, as the other two were. Also, we note that, if both
repumper and probe laser were either derived from the same
laser, or frequency locked, the contrast of these resonances
would be even sharper, and independent of laser drifts or
linewidths.

An interesting feature of the observed resonances is that, as
the propagation of both lasers is parallel and the wavelengths
are very close to each other, the Doppler broadening of the
3 2D3/2 -3 2D3/2 dark resonances is negligible, so these are
not at all sensitive to the ion’s temperature.

Nevertheless, by changing the angle between both 866-nm
lasers, those dark resonances can become temperature sen-
sitive. Varying the propagation direction of the repumper in
the plane orthogonal to �B would then tune the sensitivity of
these dark resonances to the ion’s temperature, i.e., the range
of measurable temperatures with the method. Such a method
would have the possibility of tuning sensitivity with angle as
in [24] and the independence of the laser linewidths when both
probe and repumper are derived from the same source and
tuned via two independent AOMs as in [25].

VI. CONCLUSIONS

In this work we studied the dark resonance spectra in a
multilevel-� system with three lasers, particularly the 40Ca+

eight-level system. We showed both theoretically and experi-
mentally that including an extra laser to the standard two-laser
configuration allows measuring CPT spectra that otherwise
would be impossible to observe, avoiding optical pumping out
of the fluorescence cycle. We also proved that this additional
laser can break the coherences of dark states which modify
the spectra. Since this effect strongly depends on the polar-
ization of this laser, a method for performing 3D polarimetry
of highly focused vector beams can be implemented. Finally,
we showed the emergence of additional 3 2D3/2 -3 2D3/2 dark
resonances that represent dark states composed of Zeeman
sublevels of the D state, and discussed how these can be
used to perform ion thermometry with tunable sensitivity and
independently of the laser linewidths.
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APPENDIX: CONSTANT MATRICES EXPRESSIONS

We detail some expressions for the calculation of the
Liouvillian in the three-laser case. The Hamiltonian of Eq. (6)
considers two 8 × 8 matrices H± that depend only on the
polarization of the repumper laser. These fulfill the condition
H− = H†

+ with

H+=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 1
2 sin θreiφr 0 . . . 0

0 0 − 1√
3

cos θr − 1
2
√

3
sin θreiφr . . . 0

0 0 1
2
√

3
sin θre−iφr − 1√

3
cos θr . . . 0

0 0 0 1
2 sin θre−iφr . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)

where θr and φr are the polar and azimuthal angles of the
linear polarization of the repumper laser with respect to the �B
direction. Using this, the expressions of the 82 × 82 matrices
L± of Eq. (7) written in index notation are

L±8·(r−1)+s,8·(k−1)+ j = − i

h̄
(H±r,k δ j,s − H± j,sδr,k ), (A2)

where δi, j represents the Kroenecker delta function which is 1
if i = j and 0 otherwise.
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