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The collective modes of two-dimensional ordered atomic arrays can modify the radiative environment of
embedded atomic impurities. We analyze the role of the lattice geometry on the impurity’s emission linewidth
by comparing the effective impurity decay rate obtained for all noncentered Bravais lattices and an additional
honeycomb lattice. We demonstrate that the lattice geometry plays a crucial role in determining the effective
decay rate for the impurity. In particular, we find that the minimal effective decay rate appears in lattices where
the number of the impurity’s nearest neighbors is maximal and the number of distinct distances among nearest
neighbors is minimal. We further show that, in the choice between interstitial and substitutional placement of
the impurity, the former always wins by exhibiting a lower decay rate and longer photon storage. For interstitial
placements, we determine the optimal impurity position in the lattice plane, which is not necessarily found in

the center of the lattice plaquette.
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I. INTRODUCTION

Light-matter quantum interfaces [1] are a crucial building
block for future quantum technologies. They are a necessity
for building up networks of quantum information processors
[2,3], where an efficient link between photonic degrees of
freedom and atoms or other solid-state-based quantum pro-
cessors is decisive. A broad variety of potential platforms
realizing efficient light-matter interfaces are currently being
explored theoretically and experimentally. Prominent exam-
ples are single atoms or ions in cavities [4,5], quantum dots
[6,7], and excitons in two-dimensional solid-state materials
[8-10].

Recently, arrays of quantum emitters were found to be a
versatile tool to enhance and control the interaction between
single photons and quantum matter [11-21]. If the interatomic
distance is smaller than the atomic transition wavelength,
these arrays exhibit cooperative effects due to light-induced
resonant dipole-dipole interactions among the single emitters
[22]. This enhances the effective cross section of the array, as
impinging photons excite collective lattice modes [23]. The
precise control over these collective lattice modes results in
a broad variety of potential applications in future quantum
technologies. Some examples are the efficient storage and
retrieval of photons by dynamically populating subradiant
lattice modes [24,25], lattice-based quantum memories [26],
and the generation of topological phases of matter [27].

Here, we consider a setup where the collective lattice
modes modify the radiative environment of an atomic im-
purity [see Fig. 1(a)]. The impurity can either be a different
atomic species compared to the lattice atoms or a different
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transition for the same atomic species. It was recently shown
that two-dimensional square arrays can act as structured
Markovian baths for the impurity, effectively suppressing its
decay rate by several orders of magnitude for an optimal
detuning between the impurity’s and the lattice atoms’ tran-
sition frequencies [28]. The enhanced excited-state lifetime
also depends on the structure of the lattice. In this work,
we analyze the fundamental role of the lattice geometry for
the photon-storage efficiency. Specifically, we focus on three
key aspects: (i) the performance of various lattice geometries,
especially the noncentered Bravais lattices and an additional
honeycomb lattice, (ii) the differences between interstitial and
substitutional impurity positions, i.e., between placing the
impurity inside the lattice plaquette and substituting a lattice
atom by an impurity, and (iii) the optimal interstitial position
of the impurity inside a lattice plaquette and the effect of
imperfect impurity placement.
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FIG. 1. (a) Setup: an impurity is embedded in a periodic two-
dimensional array. We analyze the effect of the lattice geometry on
the effective impurity decay rate. Here, we show the interstitial case.
The substitutional case corresponds to replacing a lattice atom with
an impurity. (b) Distance dependence of the coherent dipole-dipole
interactions J;;(r;;) and light-induced collective dissipation I';;(r;;)
as given in Eq. (3).
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We demonstrate that the nearest neighbors of the impu-
rity play a central role in determining the impurity’s decay
properties. In particular, the number of nearest neighbors and
the number of distances between nearest-neighbor atoms de-
cide which geometries present a lower effective decay rate.
We further find that interstitial impurity placement always
results in a lower decay rate than the substitutional case.
While the minimum decay rate is found well beyond the
band edge of the collective spin-wave modes of the lattice for
interstitial impurities, the optimal detuning for substitutional
impurities is located at the band edge. This compromises the
performance of substitutional impurities, as they can strongly
couple to resonant lattice modes when operating at the opti-
mal detuning. If one allows the interstitial impurity to take
any position within the lattice plaquette, the optimal impu-
rity placement corresponds to the most symmetrical points
inside the plaquette, which interestingly do not correspond to
the plaquette center for some of the studied geometries. Last,
we investigate the sensitivity of decay rates to perturbations
of the impurity away from its optimal position to judge how
precise experimental realizations of such atomic arrays must
be to achieve suppressed decay rates.

II. MODEL

We consider a two-dimensional lattice of quantum emit-
ters, which interact via light-induced resonant dipole-dipole
interactions. An additional impurity is placed either intersti-
tially in the lattice plane [see Fig. 1(a)] or at a lattice position
by replacing an array atom (substitutional case). The emitters
are assumed to be two-level systems with a ground state |g)
and an excited state |e). The transition frequencies of the
lattice atoms and the impurity are w;, = 27c/Ap and w; =
2mc /A, respectively, such that the transition wavelength X,
is of the order of the lattice spacing. In this case, pairwise res-
onant dipole-dipole interactions result in collective couplings
Jij(ri, r;) and collective decay rates I';;(r;, r;) for the emitters
i and j located at positions r; and r; [29,30],

3 iVi s
i) = — 2N way’d[ Re[G(ry), )] -d;, (la)

67 /YiVi .+
Fij(ria I'j) = T]dl . Im[G(r,-j, a))] . dj. (1b)

Here, y; ; is the decay rate of the individual atoms i and j, d; ;
are the respective atomic dipole moments, and r;; =r; — r;
is the vector connecting both atoms. The atoms are assumed
to be point particles, which is a good approximation if the
trap frequency is large enough [31]. We also assumed w; ~
wp = w in Eq. (1). The couplings in Eq. (1) are governed by
the Green’s tensor for a point dipole in vacuum G(r, @) with
components
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where r = |r| denotes the distance from the dipole and ¢, 8 =
x,y, z. In this work, we assume both the lattice atoms and
the impurity are circularly polarized d;, = d; = \/%(l, i,0)".

Then, the collective shifts and decay rates in Eq. (1) are inde-
pendent of dipole orientation and are determined solely by the
distance r;; = |r;;| between emitters. They can be written as

3. /YiYj i i i
Jij(rij) = — - (COS(W"J') + ) COS(wrZ]))
8a)rij wrij (wrij)
(3a)
377 [ cos(wr;;)  sin(wr;;)
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ij ij tj
(3b)

and their functional dependence is shown in Fig. 1(b).

In the single-excitation subspace the system is described
by the non-Hermitian Hamiltonian H = H; + H; + H;. In
this expression, H; = (w; — éy,)s*s is the bare Hamiltonian
of the impurity, where s = |g;) (e;| denotes its transition op-
erator, oy is its transition frequency, and y; is its decay rate.
Note that we take i = 1 for the remainder of this work. H,
corresponds to the Hamiltonian describing the lattice atoms,
and Hy describes the interaction between the array atoms and
the impurity. They are defined as

N . Np .
i i
H, = E (COL - EVL)G,'TCU + E <Jij - Erij>0';ro'j,

i=1 i, j#i
(4a)

N . .
Hy=Y [(Jis - %F,-s)afs - (Jsi - %rs,-)s*m}, (4b)

i=1

where Ny, is the number of lattice atoms and o; = |g;) (e;] is
the transition operator for lattice atom i. To simplify notation,
we refrain from including the argument r;; in the terms J;;
and F,’ e

To quantify the photon-storage efficiency of the considered
setup, we calculate the effective impurity decay rate. Previ-
ous work (see Ref. [28]) presented this calculation based on
the collective lattice bands in momentum space, which are
found by applying Bloch’s theorem for the periodic lattice.
Here, we follow an alternative method to eliminate the lat-
tice dynamics and calculate the effective impurity decay rate,
derived solely in real space. In the single-excitation mani-
fold the atomic wave function can be written as [ (t)) =
a(t) |G, g;) + YoM, bi(t)e ™ lei, g5) + c()e! |G, e;), where
|G, gs) denotes the state with all dipoles in the ground state,
lei, g5) 1s the state where only the ith lattice atom is excited,
and |G, ey) is the state where only the impurity is excited. The
Schrodinger equation 0, |y (¢)) = H |y (¢)) then results in a
set of coupled equations for the amplitudes b;(¢) and c(¢),

0:bi(t) = ibi(f)<5u + %VL) — iij(t)<Jij - %Dj)

i
- ic(t)(Jis - ér) (5a)
. ] Vi
oc(t) = —i Xi:bi(t)(]is - Eris> - 30(1)- (5b)
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We introduced the detuning between the lattice and impurity-
atom transition frequencies as 1 := w; — wr. Note that we
neglect any classical driving terms in the Hamiltonian in
Eq. (4), so the derivatives of the excited-state populations
do not depend on the ground-state population a(z). Instead,
we will assume that the system is prepared with an excited
impurity at + = 0. The remaining set of equations can be
written in matrix form:

bi(t) Cls by(t)
o _ H; : :

bNL (l) CN.s bNL (t)
é(t) Co1 o Cny /2 c(t)

(6)
where the N; x Ny matrix H; represents the bare-lattice
Hamiltonian matrix containing the terms o (8p; — iy /2) in
the diagonal and the coupling terms o (J;; — il';;/2) in the
off-diagonals [see first line in Eq. (5a)]. The complex num-
bers c¢;; = cy; represent the coupling terms between the lattice
atoms and the impurity o Jiz — il';/2.

If the impurity decay rate is much smaller than the lat-
tice atoms’ decay (y; < yL), the lattice acts as a Markovian
bath coupled to the impurity, and the lattice dynamics can
be adiabatically eliminated. Defining the quantities b(¢) :=
(bl(t)--~bNL(t))T and the lattice-impurity coupling vector
CL = (clx~-~cNLs)T and setting b;(r) =0 results in the
steady state for the lattice atoms,

by(t) = —(H;' - CLi)c(). 7

Plugging this result back into Eq. (6), we obtain the equa-
tion of motion for the impurity population c(¢),

ét) = —i[iyl -Cl, -H;! ‘CL1:|C(f), 8)

2

with C!, := (cy1, ..., cay, ). Equation (8) shows that the im-
purity’s resonance frequency and decay rate are modified by
the self-energy

¥ =-CJ, - HZI - Cpr, )

which describes how the impurity is influenced by its own
presence in the lattice. This allows us to define the effective
decay rate for the impurity e as

Cep = yr — 2Im[ %] (10)

We see that the effective impurity decay rate can be lower
than the free-space decay rate y; if Im[X;] > 0. The effective
decay rate I is the central parameter for comparing different
lattice geometries and impurity placements throughout this
work. Note that the ultimate value of the effective decay
rate nontrivially depends on the relative detuning between the
lattice atoms and the impurity &y [see also Fig. 3(c)].

III. COMPARISON OF DIFFERENT LATTICE
GEOMETRIES

While a square-lattice geometry is the natural choice for
traditional optical lattice experiments, the recent advent of op-
tical tweezer arrays for individual atoms [32-36] establishes

a versatile tool to realize arbitrary lattice geometries. This
motivates a more general study going beyond square lattices.
Current state-of-the-art tweezer arrays do not necessarily op-
erate in the regime where strong light-induced dipole-dipole
interactions occur. However, new advances in generating
optical lattices with more arbitrary geometries [37,38] and
tweezer arrays of alkaline-earth atoms or lanthanides open the
door to the experimental realization of this regime in the near
future [39—41]. For example, trapping strontium atoms in a
blue-detuned magic-wavelength optical lattice with a lattice
spacing a = 206.4 nm and using the 3Py < 3D, transition at
2.6 um [42] results in as./X = 0.079. Alternatively, recent
progress on cooling and trapping erbium in optical lattices
allows the generation of lattice spacings on the order of
250 nm. Using the available 1.2 pm transition [43] then results
in ag:/X = 0.2. Hence, the lattice spacings used below are
expected to be achievable in the near term. It should also be
noted that the qualitative picture of the effects presented below
will also be observable for larger lattice spacings as long as the
condition a < Ay, is fulfilled.

In the following, we analyze whether alternative geome-
tries could enhance the photon-storage time, i.e., diminish
[egr further than the square lattice geometry. To this end, we
compare all four noncentered Bravais lattices, i.e., square,
triangular, oblique, and rectangular lattices. In addition, we
also consider a honeycomb lattice to get an understanding
of how the photon-storage efficiency behaves for non-Bravais
lattices. In Fig. 2, we sketch all considered geometries, with
interstitial cases in the top row and substitutional cases on the
bottom. The impurity atom is marked with a red dot. We also
indicate the impurity’s nearest neighbors (blue solid circles
with red borders) and the different distances between those
nearest neighbors (green lines). We analyze the difference
between interstitial impurity placement (positioning the im-
purity in the center of the lattice plaquette) and substitutional
impurity placement (replacing a lattice atom with an impurity
atom). The latter is particularly relevant for optical-lattice-
based setups, for which adding an additional trap for the
impurity atom at interstitial positions is challenging. The con-
sidered Bravais lattices are spanned by the following lattice
vectors: (i) for the square lattice a* = (ay, 0,0)", a)' =
(0, asq., 0)7, (i) for the triangular lattice a'™ = (ayi., 0, 0)7,
agi' = (aui./2, «/gam, /2, 0)7, (iii) for the oblique lattice
a%® = (a1, 0, 0)7, aSt = (cot(8)dobi., dovl., 0) with open-
ing angle 6 € (0, ), and (iv) for the rectangular lattice a}* =
(arec.5, 0,0)7, af® = (0, arec, 0)7 with a scaling factor s €
(0, 00). To make the geometries comparable we keep the total
number of lattice atoms constant at N,,; = 100 and choose the
lattice spacing such that the distance between the impurity
atom and its nearest neighbors is constant. This implies the
following rescaled lattice spacings for the interstitial triangu-
lar, oblique, rectangular, and honeycomb lattices if the square
lattice with lattice spacing ayq. is chosen as a reference:

ﬁasq.
1+ tan%(z /6)’
i ﬁasq.
Qrec. = ma

3 V2ay,
V1 —2coth +cosh?’
\/zasq.

Ahoney. = B (11)

Ayi, = Aob.
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FIG. 2. All lattices and cases considered in this work. The upper line corresponds to the interstitial cases, whereas the second line shows
the substitutional cases. The first four lattices to the left of the dashed line (square, triangular, oblique, and rectangular) are Bravais lattices,
whereas the honeycomb lattice is not a Bravais lattice. The red dot with a solid black border marks the impurity, and the blue dots with a dashed
red boundary mark the nearest neighbors. Green lines indicate the different distances nearest neighbors can have in the particular geometries.
The number N, ,, specifies the number of nearest neighbors, and N, is the number of nearest-neighbor distances for each case.

For the data shown in this section, we choose a 10 x 10 square
lattice with lattice spacing a = 0.15A as the reference lattice.
Note that given the fast decay with distance of the dipole-
dipole coupling, nearest-neighbor atoms have the greatest
influence on cooperative photon storage [see Fig. 1(b)]. How-
ever, in practice a certain lattice size is crucial because the
impurity atom will be excited by a laser beam impinging onto
the lattice, which as a result should be larger than the laser
beam’s waist.

Figure 3(a) shows the minimum [ obtained at the
optimal lattice-impurity detuning & ;. The results for the inter-
stitial cases are shown in blue, and those for the substitutional
cases are in orange. We find that the interstitial impurity
placement always results in a smaller (and hence better) Fg;}“
compared to the substitutional case for each lattice geom-
etry and that the square-lattice geometry always yields the
smallest Fgﬁ“ overall. When analyzing a single e vs O1p
curve [see Fig. 3(c) for an example for the rectangular-lattice
case], another major advantage of the interstitial configuration
for Bravais lattices is found. The distance dgg between the
detuning at which the minimal value of ' is obtained and
the band edge of collective lattice modes is nonzero for inter-
stitial impurity placement but zero for substitutional impurity
placement. Note that, because we restrict our analysis to finite
lattices in real space, the notion of lattice bands is somewhat
ambiguous since we cannot define a complete momentum-
space basis without assuming an infinite lattice. We determine

the band edge as the frequency 8FF at which strong resonances
occur in the [ vs 81 curve [see Fig. 3(c)]. In this regime the
excited impurity resonantly couples to collective spin waves
of the lattice. Hence, the Markovian condition, which was
employed to arrive at Eq. (10), is no longer fulfilled; that is,
the dynamics in this regime is non-Markovian. In Fig. 3(b), we
plot the distance dgg for all considered lattice configurations.
It is nonzero for interstitial impurity placement in a Bravais
lattice but zero in all other cases. In particular, it is zero for the
honeycomb lattice independent of interstitial or substitutional
impurity placement. This implies that, for interstitial Bravais
lattices, a well-defined minimum at a finite distance from any
resonant lattice mode exists [see blue curve in Fig. 3(c)].
Hence, the system can be easily prepared in this regime of
minimal effective decay rate, and it will be robust to small
fluctuations in frequency. In the substitutional case, however,
the optimal point—which lies at the band edge—is highly
susceptible to tiny frequency fluctuations, which can cause
resonant coupling to lattice modes and therefore diminish
the photon-storage properties of the impurity. Substitutional
impurities should therefore be operated at a detuning slightly
larger than the optimal one, which still allows us to attain an
enhancement of its lifetime by one or two orders of magnitude
compared to free space.

Based on the results above and by comparing the number
of nearest neighbors and nearest-neighbor distances shown
in Fig. 2, we determine the following condition for optimal
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FIG. 3. (a) Comparison of the minimal effective impurity decay
rate TM" for the different lattice geometries considered in this work.
The blue bars (with crosses indicating the maxima) correspond to
interstitial impurity placement, and the orange bars (with stars in-
dicating the maxima) correspond to the substitutional case for the
corresponding lattices. (b) Band-edge distance dpg of the lattice
detuning at which the impurity decay rate is minimal. dgg is nonzero
for all interstitial Bravais lattices and zero otherwise. (c) Exemplary
curves (for the rectangular lattice case) for the effective impurity
decay rate as a function of lattice-impurity detuning &;; for the
interstitial (blue solid line) and substitutional (orange dash-dotted
line) cases. dgg marks the distance to the band edge plotted in (b) for
all cases. It is nonzero in the interstitial case. All lattices are chosen
such that the distance between the impurity and the nearest neighbor
is constant when compared to the square lattice with lattice spacing
asq = 0.154 [see Eq. (11)]. Other parameters are as follows: for the
oblique lattice, & = 0.37, and for the rectangular lattice, s = 1.5.

photon storage: A lattice geometry is optimal (smallest FQ}}“
if the impurity has the maximum number of nearest neighbors
while simultaneously the number of distances between those
nearest neighbors is minimal. This condition holds for both
cases, interstitial and substitutional.

The condition for optimal geometries formulated above
can also be understood from a slightly different angle. Ulti-
mately, defining a lattice geometry corresponds to choosing
different distances between atoms and hence sampling a fi-
nite number of points from the dipole-dipole coupling curves
shown in Fig. 1(b). The Hamiltonian in Eq. (4) contains a
sum over all these possible couplings among lattice atoms.
Our results suggest that this sum should contain as few terms
as possible to optimize the photon storage for different ge-
ometries. This symmetry in the dipole-dipole coupling terms
can also be visualized when considering the transition from
a square lattice to an oblique lattice. In Fig. 4 we show
how the coherent and dissipative dipole-dipole interactions
change when transitioning from a square lattice to an oblique
lattice as a function of the opening angle 6 determining the
oblique lattice. Under the condition that the distance between
the impurity and its nearest neighbors is kept constant, the

L4}

J(0) for i € {1, .

FIG. 4. Functional dependence of the four coherent couplings
between atoms making up a plaquette as a function of 6 for an
oblique lattice. The highest symmetry in the couplings is obtained
for & = /2, which corresponds to a square lattice.

four fundamental distances between atoms defining one lattice
plaquette are parametrized as a function of 6 via

ﬁasq.

4= V1 =2cotf +csc? 6’ (120
i, = \/iasq.«/l + cot? 6 ’ (126)
/1 —2cotf + csc? 6
i = ﬁasq,\/2 +cot?0 — 2\/mcosé’ (126)
/1 —=2cotf + csc2 6
i = «/zasq.\/Z + cot2 6 + 24/1 + cot? 6 cos 0 (120)

V1 —=2cotf +csc?2 6

One sees from Fig. 4 that the most couplings for atoms
in a plaquette coincide for the most symmetric case, i.e., a
square lattice (0 = m/2). This implies that the square lattice
is preferable compared to oblique lattices. Similar arguments
can be applied to all other studied lattice geometries.

While nearest neighbors determine, to a large extent, the
suppression of the decay rate of the impurity, quantities like
the optimal detuning from the band edge depend on the
symmetry of the whole lattice and the exact position of the
impurity in the array. For example, the square interstitial and
square substitutional lattices have the same number of nearest
neighbors and nearest-neighbor distances but result in dgg #
0 in the first case and dgg = 0 in the second. Figure 5 shows
how this transition occurs. We first consider an interstitial
square lattice with a missing nearest neighbor, which presents
a minimum decay rate away from the band edge, as shown
by the purple trace in Fig. 5(b). Note that the achieved I'ef
is larger than the one reported in Fig. 3(a) due to a missing
nearest neighbor. If the impurity is moved along the diagonal
towards the position of the missing lattice atom, the optimal
detuning is continuously shifted towards the band edge. When
the impurity reaches the position of the missing lattice atom,
we recover the substitutional case, and the minimum decay

053706-5



SAMUEL BUCKLEY-BONANNO et al.

PHYSICAL REVIEW A 106, 053706 (2022)

(a)

2.0 2.5 3.0 3.5 4.0
ot/

FIG. 5. (a) Square lattice with a missing atom. The impurity
is moved along the diagonal, from the center of the plaquette
(purple dot with solid black border) to a lattice position (pas-
tel orange dot with a dashed black border), recovering then the
substitutional case. (b) Impurity decay rate . as a function of
lattice-impurity detuning §;; for a 10 x 10 lattice with spacing a =
0.15A. The color scale represents the position of the impurity. The
purple dashed line corresponds to the center of the plaquette to
p: = (0, 0), and the solid pastel orange line corresponds to the lat-
tice position ps = (—0.5a, —0.5a). The other traces correspond to
p2 = (—0.1a, —0.1a) (dash-dotted line), p; = (—0.2a, —0.2a) (dot-
ted line) and ps = (—0.3a, —0.3a) (dash-double-dotted line).

rate occurs exactly at the band edge (see pastel orange trace).
This phenomenon arises from two different processes. First,
the position of the band edge solely depends on the geometry
of the array—a square lattice with spacing a for the case
shown here—and therefore remains constant at §;; = 2y, for
a lattice with a = 0.151. When the impurity is placed at the
position of the missing atom, it lies again at the center of a
square plaquette whose axes are rotated by 45° and whose
lattice constant has increased to @’ = +/2a. This suggests that
the optimum decay rate of the substitutional lattice should
be similar to that of a square interstitial lattice with spacing
a =2 x 0.15, that is, dr; ~ 1.956;, which approximately
lies at the band edge of the full lattice. Note that the rotated
square lattice has two atoms per unit cell. It was numerically
confirmed that removing the excess atom shifts the band edge
to a lower detuning but leaves the minimum decay rate at

around 61 = 2y, thus recovering the interstitial case for a
larger lattice spacing.

IV. INTERSTITIAL CASE: OPTIMAL
IMPURITY POSITION

In the previous section we placed the impurity in the cen-
ter of the lattice plaquette for the interstitial case. Here, we
analyze whether this is the optimal placement of the impurity
for all considered geometries. For a given impurity position,
811 can be chosen to give optimal ey by minimizing along
a curve similar to the one shown in Fig. 3(c). By conducting
this optimization for all impurity positions within a plaquette,
a map of the optimal impurity placement can be constructed.
The results of this procedure are depicted in Fig. 6. We ob-
serve that the center of the plaquette is the optimal impurity
position (indicated by green crosses in Fig. 6) for the square,
triangular, and rectangular lattices but not for the oblique and
honeycomb lattices.

In all cases, geometric symmetries determine where the
points of minimal I'e lie. For all Bravais lattices, the paths
of minimal Te follow the lines along which the distances
to two nearest lattice points are equal. Such partitions of a
lattice are commonly referred to as Voronoi partitions [44]
(see white dashed lines in Fig. 6). The vertices where edges
of this Voronoi partition meet are the points of minimal
[eft and correspond to the global minima. The number of
edges that coincide at any one point roughly correlates to
how low the effective decay rate will be compared to high-
symmetry points of other lattices. For instance, the center
of the square plaquette, where four edges coincide, has an
optimal I'}i" = 5.94 x 107y, that is approximately an order
of magnitude less than the optimal e at the center of the
triangular plaquette (1.03 x 10~*y;,), where only three edges
coincide.

The Voronoi partitions of the lattice plaquettes also capture
the fact that the oblique lattice has two optimal positions
other than the center of the plaquette. In this case the optimal
positions are on the line of symmetry along the long diagonal
of the plaquette, at a pair of points where three Voronoi edges
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FIG. 6. Optimal impurity positioning for the interstitial case for all lattices considered in this work. The color coding shows the minimal
effective decay rate I'er /3, Which can be obtained by placing the impurity at the respective position in the plaquette. The optimal impurity

min

positions, i.e., the positions at which I'fy" /y,. exhibits a global minimum, are indicated by green crosses. For the oblique and honeycomb
lattices multiple global minima away from the plaquette center are found. The top panels show cuts along the orange dashed lines, and the
green dash-dotted lines indicate the respective global minima positions of I'Mi" /. The white dashed lines indicate the lines along which the
distance between two plaquette atoms is always equal. These lines make up the Voronoi partition of the lattice.
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meet. As we approach the square lattice at 6 = 7, these two
optima merge into a single one located at the center of the
plaquette.

The role that symmetry plays in creating the Voronoi ge-
ometries can again be understood based on the results shown
in Fig. 4. In general, the larger the number of couplings
is, the lower D' is for an impurity placed at that optimal
point. In this way, lattices with higher degrees of symme-
try (i.e., the square and triangular lattices) and with higher
numbers of atoms in a single plaquette (i.e., any Bravais
lattice other than the triangular lattice) possess impurity po-
sitions with the smallest I'cr. The fact that the square lattice
possesses both of these properties helps to explain why it
stands out among the various Bravais lattices as the optimal
choice.

Note that the results presented in Fig. 6 also imply that
even if an optimal impurity placement is not possible due
to experimental constraints or imperfections, placing the im-
purity in the vicinity of this optimal point still allows for a
significantly enhanced photon-storage time compared to the
free-space case. This also applies to slight disorder in the
positioning of the lattice atoms, as long as the disorder is much
smaller than the lattice period [17].

V. CONCLUSIONS AND OUTLOOK

By performing a detailed analysis of different geometries
we determined that the number of nearest neighbors and, in
particular, the number of distances between nearest neighbors
play a crucial role in determining the optimal geometry for
enhanced photon storage in an impurity interacting with an
atomic array. While the substitutional case, i.e., substituting
a lattice atom with an impurity, is found to be always worse
(i.e., results in smaller photon-storage times) than interstitial
impurity placement, it still allows an enhancement compared
to the free-space case by several orders of magnitude. The
dominant role of the impurity’s nearest neighbors is also
beneficial for potential experimental implementations because
lattice vacancies will not have a large impact as long as they do
not involve nearest neighbors. Note that the results concerning
the fundamental role of the lattice symmetry presented in
this work also hold for efficient coherent coupling of mul-
tiple impurities via collective lattice modes [13,28]. While
this work focuses on atom arrays, our model applies to a
wide array of quantum emitters in the solid state, such as
excitons in transition-metal dichalcogenides (TMDs) [8,9,45]
and arrays of nitrogen and silicon vacancy centers in dia-
mond [46,47]. That being said, a complete modeling of these
systems would require the inclusion of further effects, such
as dephasing, emitter delocalization, and a more thorough
analysis of lattice vacancies. For TMDs, the emitters can,
in general, no longer be described as point particles, and a
modified model needs to be developed. Such avenues consti-
tute but a few of the numerous potential extensions of this
work.

The results for the optimal impurity positioning presented
in Sec. IV also suggest a promising future research direction.
The values of F;"f}" /L for each impurity position render an ef-
fective potential generated by the lattice for the impurity atom.
Hence, including motional degrees of freedom for the impu-

rity [48] could result in nontrivial dynamic phenomena [49].
Note that in this work we solely focused on circular polariza-
tions for both the lattice atoms and the impurity. In general,
the atomic polarizations are another parameter to optimize for
enhanced photon storage. While a detailed investigation goes
beyond the scope of the present paper, some insights can be
obtained via related works optimizing geometries for mini-
mizing the collective light shifts for optical lattice clocks [50].
The lattice geometry is also expected to play a role beyond the
single-excitation manifold where nonlinear quantum effects
such as photon blockade and entanglement can occur, as was
pointed out in recent works [51-53].

In this work we focused on periodic lattice geometries,
which in general allow the extension to infinite size by proper
definition of unit vectors. In general, alternative geometries
such as bioinspired coupled nanorings [54—56] could be stud-
ied in a similar fashion. In addition, finding more general
geometries in two or three dimensions that might enhance
the photon-storage times even further via tailored machine
learning algorithms [57,58] is an exciting research avenue for
the future.
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APPENDIX: DATA FOR CASE COMPARISON

In Table I we provide the data which were obtained by
minimizing e along 8p; to generate Fig. 3.

TABLE I. Data used to generate the bar plots shown in Figs. 3(a)
and 3(b).

Case

=
<

FQ}“/VL dge/yL

5.94 x 1073 2.65
1.03 x 107* 5.845
5.38 x 1074 2.32
1.74 x 1074 1.42
29x1072 0.0

2.63 x 1074 0.0

1.3 x 1072 0.0
8.54 x 1073 0.0
1.51 x 1073 0.0
7.78 x 1073 0.0

Square interstitial
Triangular interstitial
Oblique interstitial
Rectangular interstitial
Honeycomb interstitial

Square substitutional
Triangular substitutional
Oblique substitutional
Rectangular substitutional
Honeycomb substitutional
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