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We present a comprehensive study of co- and counterpropagating Stokes and anti-Stokes quantum fields in
double Raman four-wave mixing parametric oscillators using full quantum Heisenberg-Langevin framework
with noise operators. General analytical solutions of the fields operators at any point in the Raman medium are
obtained for four cases: two possible copropagating (forward) and two counterpropagating (backward) Stokes
and anti-Stokes. We analyze the symmetrical properties of the complex linear and nonlinear susceptibilities
spectra of the quantum fields, nonclassicality of two-photon correlation functions, spatial variations of the
quantum fields, and the two-mode relative intensity squeezing. We compare the results of forward and backward
cases for several limiting double Raman schemes. We find interesting resonant effects of medium length, laser
detunings and laser field strengths (Rabi frequencies) for backward-propagating geometries. Analysis of the
solutions provide insights on the resonant conditions while computation over multiple variables enables us to
identify the values of laser detuning, field strength, and propagation length that give enhanced nonclassical
intensity squeezing and persistent correlations. The present work sets the crucial foundations for optimization of
the nonclassicality of photons in double Raman systems and would be useful for quantum information storage,
quantum nonlinear optics, and quantum spectroscopy.
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I. INTRODUCTION

Nonclassical photon pairs from double Raman scheme in
backward geometry, with counterpropagating quantum (and
laser) fields, have been shown to exhibit amplified reflection,
phase conjugation and oscillations without a cavity [1–3]),
phase transformation to self oscillations [4], perfect squeezing
and spectral line narrowing [5]. Frequency-tunable mirrorless
parametric oscillation was recently demonstrated in the THz
domain [6] with high efficiency.

The scheme is promising for quantum nonlinear optics [7]
at low light level, even with cold atoms [8,9], where a few
photons is sufficient for establishing sustained oscillations
[10]. It is of interest for storing quantum information in the
coherence between the ground states, such as long-live atomic
dark state.

The double Raman scheme has been widely adopted for
quantum memory where more efficient storage and retrieval
of single-photon information has been demonstrated using
counterpropagating laser geometry [11]. In atomic gases, the
spectral broadening due to Doppler frequency shift of mov-
ing atoms determines the efficiency of a high-speed quantum
memory [12]. Counterpropagating pump and control lasers
used for backward retrieval of signal field managed to achieve
higher retrieval efficiency in atomic quantum memory [13]
without the need for cavity [14]. It was shown that 100%

retrieval efficiency is possible, despite the presence of Doppler
shift, by using the laser direction to control the bandwidth
of quantum memory [15]. Coherent manipulation technique
[16] can also completely freeze motion-induced dephasing by
engineering the spin-wave momentum with negligible noise
and zeroing the spin-wave momentum.

The copropagating geometry has been widely studied due
to high degree of phase matching. For instance, in recent
experiments four-wave mixing with a single control laser in
hot Rb vapor has also produced multiple quantum correlated
beams using cascading four-wave mixing (FWM) [17] and
intensity-difference squeezing in two-mode phase-sensitive
amplifier [18]. In quantum regime counterpropagating geome-
try provides highly efficient nonlinear interactions in photonic
(periodically poled) structure [19] to generate narrow band-
width entangled photons [20] useful for quantum repeaters
[21]. At the low light perturbative regime the nearly degen-
erate four-wave mixing with counterpropagating laser enables
phase conjugation process [22] that produces time reversible
retrieval of stored quantum information. The increasing re-
search outcome involving counterpropagating optical setups
shows that this scheme deserves careful and integrated theo-
retical study.

Spectroscopic techniques to investigate properties of mat-
ter with quantum light have recently been developed based
on FWM where noise-free spectroscopy [23] and quantum
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FIG. 1. (a) Double Raman scheme, (b) two-possible copropagating and two-possible counterpropagating schemes for Stokes and anti-
Stokes photons in 1D medium with length L. (c) Possible phase-matched wave vector directions for the pump and control lasers.

memory using seeded squeezed light [24] were demonstrated.
Vacuum squeezing through self-rotation [25] with the gen-
eration of pulsed and continuous-wave squeezed light [26]
makes use of spatial dependent phase and quadratures of the
complex elliptically polarized electric field of the photons in
the controlled quantum medium and single-pass interactions
without cavity or mirror. The implicit criteria for squeezing
is where the creation or annihilation operator at the output is
dependent on both the creation and annihilation operators of
the input (vacuum).

It is possible to obtain χ (3) using classical intensity gain
spectra given by quantum measurement via the relative in-
tensity squeezing spectra [27]. We verify the validity of our
model through an experimental study in Rb vapor [23] which
showed that external noise degrades the resolution of classical
measurements, while quantum signals remain intact. Using
squeezed light source, noise spectra of quantum detection
provide high-precision measurements beyond the shot-noise
limit, which is especially crucial in the case of weakly ab-
sorbing materials.

Our present work provides a comprehensive theoretical ba-
sis useful for those experimental works. The improved model
is impactful as it is capable of predicting new experimental
measurements in recently obtained experimental results, such
as the investigation of squeezing and quantum light spec-
troscopy [28]. Here, we consider the backward-propagating
quantum parametric oscillators medium with length L com-
posed of four-level double Raman system [Fig. 1(a)], valid for
arbitrary pump and control laser fields using the Heisenberg-
Langevin framework with noise operators. The inclusion of
quantum noise is crucial in small signal regime because
the amplification comes from a constant supply of excited
atoms undergoing spontaneous emissions. We obtain gen-
eral nontrivial solutions for Stokes and anti-Stokes quantum
fields at any point in the medium for four cases (Fig. 1):
two possible copropagating (forward geometry) and two for
counterpropagating (backward geometry). The solutions for
counterpropagating case in Ref. [29] were only for both ends
of the medium. This enables us to compute photon correla-
tions functions between any two spatial points and relative
photon number or intensity squeezing Sas [30].

One important aspect or novelty in the present work is
the development of full quantum approach for study of two-

mode squeezing, especially the counterpropagating geometry.
The second important result is on understanding the effect of
propagation length as well as the laser parameters to optimize
the two-mode squeezing. We also address the question: How
are the nonclassical correlations affected by the medium or
propagation length L, laser parameters and counterpropagat-
ing lasers (backward geometry)? We focus our analysis on the
backward case, especially the regime around mirrorless am-
plification. We find intriguing features in the Cauchy-Schwarz
correlation gCS

as (τ ) and the relative intensity squeezing. The re-
sults give important insights for optimizing the nonclassicality
and controlling the noise of double Raman photon pairs for
quantum information storage, quantum nonlinear optics, and
spectroscopy.

In Sec. II, we obtain semi-analytical expressions for the
Stokes and anti-Stokes fields in Fourier-transformed spaces
by self-consistently solving the equations for the coherences
with the field propagation equations. This gives the pair of
coupled parametric equations for the quantum fields with
coefficients expressed in microscopic quantities valid to all
orders of laser fields. From the coherence operators, we ob-
tain the linear and third-order susceptibilities (Sec. III). In
Sec. IV the solutions of the Stokes and anti-Stokes operators
for forward and backward cases are obtained after considering
the different boundary conditions. In Sec. V, the expressions
linking the correlations and intensity difference squeezing
are presented. Simulated results are discussed in Sec. VI for
varying propagating lengths and for different detunings that
represent different Raman schemes. In Sec. VII, we high-
light insightful observations and new effects in our results,
make connections with quantum memory, and relevance to
existing works, phase matching, Doppler effect, presence
of hyperfine levels, laser phase locking, and proposal for
experiment.

We have also provided mathematical details in the six Ap-
pendixes; all the Heisenberg-Langevin equations with noise
operators in Appendix A, coefficients of the susceptibilities
and parametric oscillator equations in Appendix B, roots of
the parametric oscillator equations in Appendix C, differential
equations of the spatial factors governing spatial propagation
in Appendix D, derivation of correlations of boundary oper-
ators in Appendix E, and derivation of correlations of noise
operators in Appendix F.
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II. NONLINEAR THEORY FOUR-LEVEL DOUBLE
COHERENT RAMAN MEDIUM

The Hamiltonian of the four-level system is given by Ho +
V ({r j}, t ):

Ho =
∑

j

∑
ς=a,b,c,d

h̄ως |ς j〉〈ς j | +
∑
k,λ

(
â†

kλâkλ + 1

2

)
h̄νkλ,

(1)

V ({r j}, t ) = −
∑

j

[ ∑
kλ,ς=b,c

h̄gj
dς,kλâkλ|d j〉〈ς j |eikλ·r j

+
∑

qλ,ς=b,c

h̄gj
aς,qλâqλ|a j〉〈ς j |eiqλ·r j

+ h̄�p(r j, t )|d j〉〈c j |ei(kp·r j−vpt )

+ h̄gs|d j〉〈bj |Ês(r j, t )eiks·r j

+ h̄�c(r j, t )|a j〉〈bj |ei(kc·r j−vct )

+ h̄ga|a j〉〈c j |Êa(r j, t )eika·r j + H.c.

]
, (2)

where 	aς,kλ = vkλ − ωaς , 	dς,kλ = vkλ − ωdς , 	c = vc −
ωab, δa = va − ωac, 	p = vp − ωdc, δs = vs − ωdb are the
photon-atomic frequency detunings. The subscripts p, s, c,
a stand for pump, Stokes, control, and anti-Stokes fields,
respectively. Initially, the Stokes and anti-Stokes photons are
emitted into all directions. However, stimulated emissions
and the geometry ensure that the Hamiltonian only has the
particular mode along the z direction that satisfies a minimum
phase mismatch. The first line contains the quantum vacuum’s
multimode photonic operators. The Stokes and anti-Stokes
quantum fields, denoted by operators (with hat) Ês and Êa are
composed of some of these modes.

The Rabi frequencies for the two laser fields Ep,Ec and
two quantum fields Ês, Êa that contain the spatially dependent
phase k jz and absolute phase ϕ j in the factor ei(k j z+ϕ j ) are
defined as

�p(z, t ) = |�p|ei(ϕp), �c(z, t ) = |�c|ei(ϕc ), (3)

Ŝ(z, t ) = gsÊse
i(ϕs ), Â(z, t ) = gaÊaei(ϕa ), (4)

with the coupling constants gs =℘db/h̄, ga =℘ac/h̄, |�p| =
℘dcEp/h̄, |�c| =℘abEc/h̄. The terms contain absorption and
emission processes [the corresponding terms in Hermitian
conjugates (H.c.) with ∗] while the spatial factor ei|k j |z is for
forward-propagating laser and e−i|k j |z for backward.

The Hamiltonian leads to 16 coupled Heisenberg-Langevin
(HL) equations for the atomic operators, as given in Ap-
pendix A and also Ref. [29], along with definitions of the
complex decoherences Tαβ , effective decoherence rates γαβ ,
and noise operators F̂αβ , α, β = a, b, c, d . For derivation of
HL equations, the readers can refer to Refs. [31] and [32].

The spatial-temporal dynamics of the quantized fields, de-
noted as Stokes and anti-Stokes operators, are governed by the
Maxwell’s propagation equation in the slowly varying enve-

lope approximation (SVEA) coupled to the atomic operators
p̂bd , p̂ac through(

1

c

∂

∂t
+ ςs

∂

∂z

)
Ês(z, t ) = iκse

−iksz p̂bd (z, t ), (5)

(
1

c

∂

∂t
+ ςa

∂

∂z

)
Ê†

a (z, t ) = −iκ∗
a eikaz p̂ac(z, t ), (6)

where κ f = 1
2 N℘αβcμoωαβ , N is number density,

and f = s, a; αβ = db, ca. This can also be derived
from the Heisenberg equation with the commutation
relation [Ês(r, t ), Ê†

s (r j, t )] = (c2μoh̄ωdb/2)δ3(r − r j ) =
(h̄ωdb/2εo)δ3(r − r j ) and dr/dt = ∂vs/∂k → ∂z/∂t = c.

The rates for all broadening mechanisms such as spon-
taneous emissions (�dc, �db, �ab, �ac) and dephasing are
contained in the decoherences γαβ . The wave vector and fre-
quency mismatches are defined as (assuming one dimension,
along z)

	k = kp+kc−ks−ka, (7)

	ν = νp + νc − νs − νa, (8)

k j = n̂ jk j = n̂ j
√
ε jν j/c, (9)

where ς f = ±1 is the sign of quantum fields unit vector n̂ f ,
n̂ j = ±ẑ ( j = p, s, c, a) is the unit vector of the wave vector
that determines the directions of the pump, control, Stokes
and anti-Stokes photons, specifically in one dimension (1D)
n̂ j = +ẑ for photons propagating along +z and n̂ j = −ẑ for
−z directions, with corresponding dielectric function ε j .

We adopt the linearization approximation for those terms
containing the quantum fields (weak signals) Ês and Êa by
assuming that the diagonal operators σ̂ st

αα , and p̂st
ab, p̂st

cd with
their conjugates are at steady state, i.e.,

p̂rs(z, t )Ê f (z, t ) � Ê f (z, t )ρ̃st
sr (z). (10)

Note that the quantum fields terms would give rise to nonlin-
earity if p̂rs were not approximated to be steady state.

Neglecting the terms with quantum fields in the equa-
tions for d

dt p̂ba and d
dt p̂cd ,

d

dt
p̂ba � −T ∗

ab p̂ba + i�ceikcz(σ̂bb − σ̂aa) + eiνct F̂ †
ab, (11)

d

dt
p̂cd � −T ∗

dc p̂cd + i�peikpz(σ̂cc − σ̂dd ) + eiνpt F̂ †
dc, (12)

coupled to the equations for d
dt σ̂αα ,

d

dt
σ̂aa � i

(
�ceikcz p̂ab − �∗

ce−ikcz p̂ba
) − (�ab + �ac)σ̂aa + F̂aa,

(13a)

d

dt
σ̂bb � i

(
�∗

ce−ikcz p̂ba − �ceikcz p̂ab
)+�abσ̂aa+�dbσ̂dd+F̂bb,

(13b)

d

dt
σ̂cc � −i

(
�peikpz p̂dc−�∗

pe−ikpz p̂cd
)+�acσ̂aa+�dcσ̂dd+F̂cc,

(13c)

d

dt
σ̂dd � i

(
�peikpz p̂dc−�∗

pe−ikpz p̂cd
)−(�db + �dc)σ̂dd +F̂dd ,

(13d)
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form a closed set of equations of zeroth order in quantum
fields. Exact analytical solutions for the steady-state operators
population σ̂ st

αα and coherences p̂st
ba and p̂st

cd are obtained, for
example,

T ∗
ab p̂ba � iRc(σ̂bb − σ̂aa) + eiνct F̂ †

ab, (14a)

T ∗
dc p̂cd � iRp(σ̂cc − σ̂dd ) + eiνpt F̂ †

dc, (14b)

and hence the expectations

ρ̃st
ab = 〈

p̂st
ba

〉 � −i
Rc

T ∗
ab

waa
bb , (15)

ρ̃st
dc = 〈

p̂st
cd

〉 � −i
Rp

T ∗
dc

wdd
cc , (16)

where Rp,c = �p,ceikp,cz and wαα
ββ = pαα − pββ = 〈σ̂αα − σ̂ββ〉

(α, β = a, b, c, d) are the population inversions, Tab = i	c +
γab, Tdc = i	p + γdc.

The four equations (from Appendix A) for d
dt p̂αβ (t ), αβ =

bd , ac, bc, ad that have been linearized are in closed form(
d

dt
+ Tad

)
p̂ad = i

(
Rp p̂ace−i	νt − R∗

c p̂bd + Ŝ
〈
p̂st

ab

〉
− Â†e−i	νt

〈
p̂st

cd

〉)+e−iνcst F̂ad , (17a)(
d

dt
+ Tac

)
p̂ac = i

[(
pst

aa − pst
cc

)
Â† − R∗

c p̂bc

+ ei	νt R∗
p p̂ad

] + e−iνat F̂ac, (17b)(
d

dt
+ Tbc

)
p̂bc = −i

(
Rc p̂ac − ei	νt R∗

p p̂bd
) − i

(
ei	νt Ŝ

〈
p̂st

dc

〉
− Â†

〈
p̂st

ba

〉) + eiνcat F̂bc, (17c)(
d

dt
+ T ∗

db

)
p̂bd = i

[
Rpe−i	νt p̂bc − Rc p̂ad

+ Ŝ
(
pst

bb − pst
dd

)] + eiνst F̂ †
db, (17d)

Tac = iδa + γac, (18a)

Tad = i(	c − δs) + γad , (18b)

Tbc = i(δa − 	c) + γbc, (18c)

T ∗
db = −iδs + γdb. (18d)

Hence, we have a closed set of four HL equations involving
p̂bd , p̂ac; p̂ad , p̂bc coupled with the propagation equations for
quantum fields. The solutions for p̂αβ (ν) can be obtained in
terms of analytical expressions for steady-state density matrix
elements of (a) diagonal operators σ̂ st

αα and (b) coherences
driven by lasers p̂st

ab, p̂st
cd after performing Fourier transform

(F operation) and Laplace transform (L operation) defined by
X (ν) = ∫

X (t )eiνt dt , Y (q) = ∫
Y (z)e−qzdz from time (t) and

space (z) to frequency (ν) and wave vector (q) on the above
four equations.

By performing Laplace-Fourier (LF) transform to wave
vector q and frequency ν domains, we obtain analytical solu-
tions for p̂ad (q + iksq, ν), p̂bc(q + iksp, ν − 	ν) including the
coherences p̂bd (q + iks, ν) and p̂ac(q − ika − i	k, ν − 	ν)
associated with the quantum fields Ŝ (q, ν) = LF{Ŝ(z, t )} and
Â†(q′, ν ′) = LF{Â†(z, t )}.

Explicitly, the transformed Stokes field in wave vector–
frequency domain is

Ŝ (q, ν) = Ŝ (0, ν)

Q(ν)
+ igsκs

Q(ν)
p̂bd (q + iks, ν) (19)

= Ŝ (0, ν)

Q(ν)
+ igsκs

Q(ν)Dq

×
[

4∑
j=1

G ′
jF̂ j (q, ν)+ i

(
W ′

s+
κ∗

a g∗
a

Qϕ (ν)
Was

) Ŝ (0, ν)

Q(ν)

− iW ′
a

Â†(0, ν − 	ν)

Qϕ (ν)

]
, (20)

and similarly, the anti-Stokes field

Â†(q′, ν ′) = Â†(0, ν ′)
Qϕ (ν)

+ −ig∗
aκ

∗
a

Qϕ (ν)Dq

[
4∑

j=1

G jF̂ j (q, ν)

−i

[
Wa+ κsgs

Q(ν)
Was

] Â†(0, ν ′)
Qϕ (ν)

+ iWs
Ŝ (0, ν)

Q(ν)

]
,

(21)

where

Q(ν) = ςsq − iν/c, Q′(ν) = ςaq − iν/c, (22a)

Qϕ (ν) = ςa(q − i	k) − i(ν − 	ν)/c = Q′(ν) + iϕ, (22b)

ϕ = 	ν/c − ςa	k, (22c)

and ν ′ = ν − 	ν, q′ = q − i	k. The summation indexes j =
1, 2, 3, 4 correspond to ac, ad , bc, bd . The coefficients Ws,a,
W ′

s,a, Was, G j , G ′
j are given by Eqs. (B3), (B6), (B9), and

(B10) in Appendix B.
We may consider four cases (as illustrated in Fig. 1): (1A)

forward (Stokes and anti-Stokes are co-propagating), Stokes
and anti-Stokes in +z direction (n̂s = n̂a = ẑ); (1B) forward,
Stokes and anti-Stokes in −z direction (n̂s = n̂a = −ẑ); (2A)
backward (Stokes and anti-Stokes are counterpropagating),
Stokes in +z and anti-Stokes in −z directions; (2B) backward,
Stokes in −z and anti-Stokes in +z directions. The cases A
and B are different relative to the propagation directions of
the pump and control lasers:

Q(ν) = (−iν/c + q) = Q′, ϕ = 	ν/c − 	k (Case 1A),

(23a)

Q(ν) = (−iν/c − q) = Q′, ϕ = 	ν/c + 	k (Case 1B),

(23b)

Q(ν) = (−iν/c + q), Q′(ν) = (−iν/c − q) = −Q∗,

ϕ = 	ν/c + 	k (Case 2A), (23c)

Q(ν) = (−iν/c − q), Q′(ν) = (−iν/c + q) = −Q∗,

ϕ = 	ν/c − 	k (Case 2B). (23d)
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III. SUSCEPTIBILITIES IN q AND ν

The polarization P̂a,k (q′, ν ′) = N℘k p̂ac associated with the anti-Stokes coherence p̂ac (and density matrix element ρca) is
obtained generally as

〈Pa,k (q′, ν ′)〉 = N℘k

Dq(q, ν)

{
−i

[
Wa + κsgs

Q(ν)
Was

] Â†(0, ν ′)
Qϕ (ν)

+ iWs
Ŝ (0, ν)

Q(ν)

}
(24)

= ε0

∑
l

χ
(1)
a,kl E

∗
a,l (0, ν

′) + ε0

∑
lmn

χ
(3)
a,klmnÊ∗

p,l Ês,m(0, ν)Ê∗
c,n, (25)

where

Dq(q, ν) = D(ν) + κsgs

Q(ν)
W ′

s + κ∗
a g∗

a

Qϕ (ν)
Wa + κ∗

a g∗
a

Qϕ (ν)

κsgs

Q(ν)
Was, (26)

D(ν) = (T ∗
db − iν)(Tac − iν ′)(Tad − iν)(Tbc − iν ′) + I2

pc + Ip{(Tac − iν ′)(Tad − iν) + (T ∗
db − iν)(Tbc − iν ′)}

+ Ic{(Tac − iν ′)(Tbc − iν ′) + (T ∗
db − iν)(Tad − iν)}, (27)

and contains the linear χ (1)
a,kl and nonlinear χ

(3)
a,klmn susceptibilities with temporal and spatial dispersions. Please note that, while

the susceptibilities for the Stokes χ (1,3)
s correspond to text [31], the susceptibilities for the anti-Stokes defined here χa(−ν) =

[χSZ
a (ν)]∗ are the complex conjugates.
Replacing Eqs. (15) and (16) into Eq. (B3),

Ws = �∗
p�

∗
c

{
−waa

bb

Tab
[Ipc + T ∗

bd (ν)Tbc(ν ′)] + wdd
cc

Tdc
[Ipc− T ∗

bd (ν)Tad (ν)]− wdd
bb [Tbc(ν ′) + Tad (ν)]

}
, (28)

Wa = Ip
wdd

cc

T ∗
dc

[Ipc + T ∗
bd (ν)Tbc(ν ′)] − Ic

waa
bb

T ∗
ab

[Ipc − T ∗
bd (ν)Tad (ν)] − waa

cc {IpTad (ν) + IcTbc(ν ′) + T ∗
bd (ν)Tad (ν)Tbc(ν ′)}, (29)

leads to familiar expressions for the linear susceptibility χ
(1)
kl and third-order susceptibility χ

(3)
klmn.

The term κsgs

Q(ν)Was gives nonlinear dependence on the optical density in χ
(1)
kl . Inserting the definitions of �p = ∑

l gp,l Ep,l eikpz,

�c = ∑
n gc,nEc,neikcz, Â†(0, ν ′) = ∑

l g∗
a,l Ê

†
a,l (0, ν

′)e−ikaz, Ŝ (0, ν) = ∑
l gs,l Ês,l (0, ν)eiksz (l = x, y, z) and Q(ν), Qϕ (ν), we

may write analytical expressions for the susceptibilities (neglecting κsgs

Q(ν)Was) in terms of the parametric oscillator coefficients
Eqs. (45) and (46) (in next section)

χ
(1)
a,kl (q, ν) � −i

Wa

D(ν)Qϕ (ν)

N℘ac,k℘
∗
a,l

ε0 h̄
= −i

(
Ga + iν ′

c

)
Qϕ (ν)(ka/2)

(30)

= i�kl

D(ν)Qϕ (ν)

[
Ic

waa
bb

T ∗
ab

[Ipc − T ∗
bd (ν)Tad (ν)] − Ip

wdd
cc

T ∗
dc

[Ipc + T ∗
bd (ν)Tbc(ν ′)]

+waa
cc {IpTad (ν) + IcTbc(ν ′) + T ∗

bd (ν)Tad (ν)Tbc(ν ′)}

]
, (31)

χ
(3)
a,klmn(q, ν) = N℘kiWs

ε0D(ν)Ê∗
p,l Ês,m(0, ν)Ê∗

c,n

Ŝ (0, ν)

Q(ν)
= iWs

D(ν)Q(ν)

N℘k
∑

lmn℘
∗
p,l℘s,m℘

∗
c,n

�∗
p�

∗
cε0 h̄3

= − gs

g∗
a

iKa
1
2 kaQ(ν)Ê∗

p,l Ê
∗
c,n

(32)

= i
�klmn

D(ν)Q(ν)

{
−waa

bb

Tab
[Ipc + T ∗

bd (ν)Tbc(ν ′)] + wdd
cc

Tdc
[Ipc − T ∗

bd (ν)Tad (ν)] − wdd
bb [Tbc(ν ′) + Tad (ν)]

}
, (33)

where �kl = N℘k℘
∗
a,l/(ε0h̄), �klmn = N℘k℘

∗
p,l℘s,m℘

∗
c,n/(ε0 h̄3).

The associated phases ei(	k+ ν−	ν
c )z and ei( ν

c )z from inverse transform are removed by the definition of susceptibilities in (z, ν).
Equation (30) recovers the susceptibility for electromagnetic induced transparency (EIT) by setting Ip = 0,

χ
(1)
a,kl = i�kl(

q − i	k − i ν−	ν
c

)[
−Ic

waa
bb

T ∗
ab

[Ic + T ∗
bd (ν)Tad (ν)] + {Ic + T ∗

bd (ν)Tad (ν)}Tbc(ν ′)waa
cc

]
(34)

� i�kl(
q − i	k − i ν−	ν

c

)
⎡
⎣Tbc(ν ′)waa

cc − Ic
waa

bb
T ∗

ab

Tac(ν ′)Tbc(ν ′)

⎤
⎦

⎛
⎝ 1 + Ic

T ∗
db(ν)Tad (ν)

1 + Ic

{
1

T ∗
db(ν)Tad (ν) + 1

Tac (ν ′ )Tbc (ν ′ )

}
⎞
⎠, (35)

]D(ν) → (
T ∗

db − iν
)
(Tac − iν ′)(Tad − iν)(Tbc − iν ′) − I2

c + Ic{(Tac − iν ′)(Tbc − iν ′) + (T ∗
db − iν)(Tad − iν)}, (36)
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which reproduces the usual result without laser field,

χa,kl � i
N℘k℘

∗
a,lw

aa
cc

ε0 h̄(−i ν−	ν
c + q − i	k)[Tac − i(ν − 	ν)]

.

Keeping the pump and control fields to first order means setting D → (T ∗
db − iν)(Tac − iν ′)(Tad − iν)(Tbc − iν ′) and Ip, Ic →

0 in the numerator, we have the perturbative third-order susceptibility

χ
(3)
a,klmn = iN℘k

∑
lmn

℘∗
p,l℘s,m℘

∗
c,n

−waa
bb

Tab
T ∗

bd (ν)Tbc(ν ′) − wdd
cc

Tdc
T ∗

bd (ν)Tad (ν) − wdd
bb [Tbc(ν ′) + Tad (ν)]

ε0 h̄3
(
q − i νc

)
(T ∗

db − iν)(Tac − iν ′)(Tad − iν)(Tbc − iν ′)
. (37)

IV. PARAMETRIC OPERATOR EQUATIONS FOR
QUANTUM FIELDS

We can derive the coupled parametric differential equa-
tions by performing only Fourier transformation in time (as
in previous section) on the four HL equations and two prop-
agation equations or the quantum fields Ŝ (z, ν) = F{Ŝ(z, t )}
and Â†(z, ν) = F{Â†(z, t )}:

(
ςs

∂

∂z
+ Gs

)
Ŝ (z, ν) + KsÂ†(z, ν) = F̂s(z, ν), (38)

(
ςa

∂

∂z
+ Ga

)
Â†(z, ν) + KaŜ (z, ν) = F̂†

a (z, ν), (39)

with effective noise operators

F̂s(z, ν) = igsκs

4∑
i=1

C ′
iF̂i(z, ν), (40)

F̂†
a (z, ν) = −ig∗

aκ
∗
a

4∑
i=1

CiF̂i(z, ν), (41)

F̂ac(z, ν) = F{ei	kze−i	νt ei(kaz−νat )F̂ac(z, t )}, (42a)

F̂ad (z, ν) = F{ei(kcsz−νcst )F̂ad (z, t )}, (42b)

F̂bc(z, ν) = F{ei	kze−i	νt e−i(kcaz−νcat )F̂bc(z, t )}, (42c)

F̂bd (z, ν) = F{e−i(ksz−νst )F̂bd (z, t )}, (42d)

where C ′
i = N ′

i
D and Ci = Ni

D and the frequency-dependent co-
efficients

Gs = gsκs
W ′

s

D − iν

c
, (43)

Ks = −gsκs
W ′

a

D , (44)

Ga = g∗
aκ

∗
a

Wa

D − i(ν − 	ν)

c
, (45)

Ka = −g∗
aκ

∗
a

Ws

D . (46)

For Raman-EIT (REIT) scheme, where the first (Stokes) Ra-
man is far-detuned while the second (anti-Stokes) Raman is
resonant, we find Ks ≈ −Ka while |Gs| 
 |Ka|.

A. Solutions of the parametric equations

The coupled parametric equations (38), (39) can be solved
by Laplace transform method, giving the general solutions in
terms of the fields Ŝ0, Â†

0 at z = 0 and the convoluted noise
operators

Ŝ (z) = (�q(z) − Ga
�(z)

ςa
)Ŝ0 + �(z)

ςs
KsÂ†

0

+
∫ z

0

[
Ks

�(z − s)

ςs

F̂†
a (s)

ςa

+
{
�q(z − s) − Ga

�(z − s)

ςa

} F̂s(s)

ςs

]
ds, (47)

Â†(z) =
(
�q(z) − Gs

�(z)

ςs

)
Â†

0 + Ka
�(z)

ςa
Ŝ0

+
∫ z

0

[{
�q(z − s) − Gs

�(z − s)

ςs

} F̂†
a (s)

ςa

+ Ka
�(z − s)

ςa

F̂s(s)

ςs

]
ds, (48)

with the spatially dependent factors

�q(z) = q+e−q+z − q−e−q−z

q+ − q−

= e−αz (α + β )e−βz − (α − β )eβz

2β

= e−αz

(
cosh βz − α

β
sinh βz

)
, (49)

�(z) = e−q+z − e−q−z

q+ − q−
= e−αz e−βz − eβz

2β

= −e−αz sinh βz

β
, (50)

where the two roots q± for any geometry are derived in Ap-
pendix C for finite 	k and for 	k = 0,

q± = α ± β, (51a)

α = 1

2
(Ga/ςa + Gs/ςs), (51b)

β = 1

2

√
α2 − 4

ςaςs
(GaGs − KaKs) (51c)
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=
√(Ga/ςa − Gs/ςs

2

)2

+ KaKs

ςaςs
. (51d)

We take note of the properties

q+ + q− = (Ga/ς + Gs/ςs), (52)

q+q− = 1

ςaςs
(GaGs − KaKs). (53)

We found the following identities that are used to verify the
correctness of the solutions:

∂

∂z
�(z) = −�q(z), (54)

∂

∂z
�q(z) = − ∂2

∂z2
�(z). (55)

It would be useful to define �±
f = (G f � ± �q) and provide

their mathematical relations in Appendix D.

B. Case 1A: Forward geometry, Stokes
and anti-Stokes copropagating toward +z

For n̂s = n̂a = +ẑ (ςs = ςa = 1) with input fields at z = 0,
Ŝ0 = Ŝ (0), Ŝ = Ŝ (z), Â†

0 = Â†(0), Â† = Â†(z) the solutions
are straightforward:

Ŝ (z, ν) = −�−
a (z)Ŝ (0) + Ks�(z)Â†(0) + JS (z), (56)

Â†(z, ν) = −�−
s (z)Â†(0) + Ka�(z)Ŝ (0) + JA(z), (57)

JS (z) =
∫ z

0
[−�−

a (z − s)F̂s(s) + Ks�(z − s)F̂†
a (s)]ds,

(58)

JA(z) =
∫ z

0
[−�−

s (z − s)F̂†
a (s) + Ka�(z − s)F̂s(s)]ds,

(59)

with the response functions to the noise sources F̄s and F̄ †
a that

are spatially nonlocal. Here,

q± = 1
2 (Ga + Gs) ± 1

2

√
(Ga + Gs)2 − 4(GaGs − KaKs).

(60)
If we define

ψ s
s (x, ν) = −�−

a (x), ψ s
a(x, ν) = Ks�(x), (61)

ψa
s (x, ν) = Ka�(x), ψa

a (x, ν) = −�−
s (x), (62)

the solutions can be rewritten using the same symbols as

Ŝ (z, ν) = ψ s
s (z, ν)Ŝ (0, ν) + ψ s

a(z, ν)Â†(0, ν)

+
∫ z

0

[
ψ s

s (ξ, ν)F̂s(s, ν) + ψ s
a(ξ, ν)F̂†

a (s, ν)
]
ds,

(63)
Â†(z, ν) = ψa

a (z, ν)Â†(0, ν) + ψa
s (z, ν)Ŝ (0, ν)

+
∫ z

0

[
ψa

s (ξ, ν)F̂s(s, ν) + ψa
a (ξ, ν)F̂†

a (s, ν)
]
ds,

(64)

where ξ = z − s.
Here we obtain useful relations

∂

∂z
�−

s = KsKa�(z) − Ga�
−
s (z), (65)

∂

∂z
�−

a = KsKa�(z) − Gs�
−
a (z), (66)

using Eqs. (D4) and (D2) that enable us to verify the correct-
ness of the obtained general solutions. The phase matching
condition here is 	k1A = (kp + kc − ks − ka) = 0 for 1D.

C. Case 1B: Forward geometry, Stokes and anti-Stokes
copropagating toward −z

For n̂s = n̂a = −ẑ (ςs = ςa = −1) with input fields at z =
L, Ŝ (L), Â†(L) the solutions are straightforward:

Ŝ (z, ν) = �+
a (z)Ŝ (0) − Ks�(z)Â†(0) + JS (z), (67)

Â†(z, ν) = �+
s (z)Â†(0) − Ka�(z)Ŝ (0) + JA(z), (68)

JS (z) =
∫ z

0
[Ks�(z − s)F̂†

a (s) − �+
a (z − s)F̂s(s)]ds, (69)

JA(z) =
∫ z

0
[Ka�(z − s)F̂s(s) − �+

s (z − s)F̂†
a (s)]ds, (70)

with the boundary fields

Ŝ (L) = �+
a (L)Ŝ (0) − Ks�(L)Â†(0) + JS (L), (71)

Â†(L) = �+
s (L)Â†(0) − Ka�(L)Ŝ (0) + JA(L). (72)

Solving these simultaneously we have

Ŝ (0) = 1

Z (L)
[�+

s (L)Ŝ (L) + Ks�(L)Â†(L)

−�+
s (L)JS (L) − Ks�(L)JA(L)], (73)

Â†(0) = 1

Z (L)
[�+

a (L)Â†(L) + Ka�(L)Ŝ (L)

−�+
a (L)JA(L) − �(L)KaJS (L)], (74)

where the denominator

Z (L) = �+
a (L)�+

s (L) − �(L)2KaKs (75)

can be evaluated as

Z (L) = �2
q + ��q(Ga + Gs) + �2(GaGs − KaKs) (76)

= e−q+Le−q−L = e(Gs+Ga )L, (77)

q± = −1

2
(Gs + Ga) ± 1

2

√
(Gs + Ga)2 − 4(GaGs − KaKs).

(78)

The phase matching condition here is 	k1B = (−kp − kc +
ks + ka) = 0, which means the wave vectors of the lasers must
be opposite to the Case 1A.
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Replacing Ŝ (0), Â†(0) from Eqs. (73) and (74), the solu-
tions Eqs. (67) and (68) are finally expressed in terms of the
boundary operators Ŝ (L), Â†(L):

Ŝ (z, ν) = ψ s
s (z,L, ν)Ŝ (L) + ψ s

a(z,L, ν)Â†(L)

−ψ s
s (z,L, ν)JS (L) − ψ s

a(z,L, ν)JA(L) + JS (z),

(79)
Â†(z, ν) = ψa

s (z,L, ν)Ŝ (L) + ψa
a (z,L, ν)Â†(L)

−ψa
s (z,L, ν)JS (L) − ψa

a (z,L, ν)JA(L) + JA(z),

(80)

ψ s
s (z,L, ν) = 1

Z (L)
{�+

a (z)�+
s (L) − KaKs�(z)�(L)}, (81)

ψ s
a(z,L, ν) = Ks

Z (L)
{�+

a (z)�(L) − �+
a (L)�(z)}, (82)

ψa
s (z,L, ν) = Ka

Z (L)
{�+

s (z)�(L) − �(z)�+
s (L)}, (83)

ψa
a (z,L, ν) = 1

Z (L)
{�+

s (z)�+
a (L) − KaKs�(z)�(L)}. (84)

D. Case 2A: Backward geometry, Stokes (anti-Stokes)
propagating towards +z (−z)

Here, n̂s = +ẑ and n̂a = −ẑ (ςs = 1, ςa = −1) with the
fields must be expressed in terms of the fields at boundaries
Ŝ (0) and Â†(L). The solution of the Stokes and anti-Stokes
fields are

Ŝ (z, ν) = �+
a (z)Ŝ (0) + Ks�(z)Â†(0) + JS (z), (85)

Â†(z, ν) = −�−
s (z)Â†(0) − Ka�(z)Ŝ (0) + JA(z), (86)

JS (z) =
∫ z

0
[�+

a (z − s)F̂s(s) − Ks�(z − s)F̂†
a (s)]ds, (87)

JA(z) =
∫ z

0
[�−

s (z − s)F̂†
a (s) − Ka�(z − s)F̂s(s)]ds. (88)

Using Eqs. (85) and (86) we obtain Ŝ (L), Â†(L) and
rewrite as

Â†(0) = −Â†(L) − Ka�(L)Ŝ (0) + JA(L)

�−
s (L)

. (89)

Replacing Eq. (89) into Eqs. (85) and (86) to eliminate
Â†(0) gives the result

Ŝ (z, ν) =
(
�+

a (z) − KsKa�(z)�(L)

�−
s (L)

)
Ŝ (0)

− Ks�(z)

�−
s (L)

Â†(L) + Ks�(z)

�−
s (L)

JA(L) + JS (z), (90)

Â†(z, ν) = �−
s (z)

�−
s (L)

Â†(L) +
[
�−

s (z)

�−
s (L)

�(L) − �(z)

]
KaŜ (0)

− �−
s (z)

�−
s (L)

JA(L) + JA(z). (91)

At z = L we have

Ŝ (L) = −e−(Gs−Ga )L

�−
s (L)

Ŝ (0) + Ks�(L)
−Â†(L) + JA(L)

�−
s (L)

+ JS (L), (92)

where we used

�+
a (z)�−

s (z) − KsKa�(z)2 = −e−(Gs−Ga )z, (93)

q± = 1

2
(Gs − Ga) ± 1

2

√
(Gs − Ga)2 + 4(GaGs − KaKs).

(94)

In general,

Ŝ (zs, ν) = �s
s (zs, ν)Ŝ (0, ν) + �s

a(zs, ν)Â†(L, ν) (95)

+
∫ L

0

[
ψ s

s (zs, s, ν)F̂s(s, ν)

+ψ s
a(zs, s, ν)}F̂†

a (s, ν)
]
ds, (96)

Â†(za, ν) = �a
a (za, ν)Â†(L, ν) + �a

s (za, ν)Ŝ (0, ν)

(97)

+
∫ L

0

[
ψa

s (za, s, ν)F̂s(s, ν)

+ψa
a (za, s, ν)}F̂†

a (s, ν)
]
ds, (98)

with the coefficients

�s
s (zs, ν) =

(
�+

a (zs) − KsKa�(zs)�(L)

�−
s (L)

)
,

�s
a(zs, ν) = −Ks�(zs)

�−
s (L)

, (99a)

�a
s (za, ν) = Ka

[
�−

s (za)

�−
s (L)

�(L) − �(za)

]
,

�a
a (za, ν) = �−

s (za)

�−
s (L)

, (99b)

ψ s
s (zs, s, ν) = �+

a (zs − s)�(zs − s)

−
(Ks�(zs)

�−
s (L)

)
Ka�(L − s)�(L − s), (100a)

ψ s
a(zs, s, ν) = −Ks�(zs − s)�(zs − s)

+
(Ks�(zs)

�−
s (L)

)
�−

s (L − s)�(L − s), (100b)

ψa
s (za, s, ν) = −Ka�(za − s)�(za − s)

+
(
�−

s (za)

�−
s (L)

)
Ka�(L − s)�(L − s), (100c)

ψa
a (za, s, ν) = �−

s (za − s)�(za − s)

−
(
�−

s (za)

�−
s (L)

)
�−

s (L − s)�(L − s), (100d)

where the Heaviside function � ensures that the first term in ψ

is integrated up to zs or za while the second term is integrated
up to L. The phase-matching condition here is 	k2A = (kp −
kc − ks + ka) = 0.

E. Case 2B: Backward geometry, Stokes (anti-Stokes)
propagating towards −z (+z)

Here, n̂s = −ẑ and n̂a = +ẑ (ςs = −1, ςa = 1) with the
fields must be expressed in terms of the fields at boundaries
Ŝ (L) and Â†(0). The solutions are obtained from Eqs. (90)

053705-8



QUANTUM PARAMETRIC DOUBLE RAMAN OSCILLATORS … PHYSICAL REVIEW A 106, 053705 (2022)

and (91) by the changes Ŝ (z) ↔ Â†(z), Ga ↔ Gs, Ka ↔ Ks,
and F̂†

a (z) ↔ F̂s(z),

Â†(z, ν) =
(
�+

s (z) − KsKa�(z)�(L)

�−
a (L)

)
Â†(0)

−Ka�(z)
Ŝ (L) − JS (L)

�−
a (L)

+ JA(z), (101)

Ŝ (z, ν) = �−
a (z)

Ŝ (L) − JS (L)

�−
a (L)

+
[
�−

a (z)

�−
a (L)

�(L) − �(z)

]
KsÂ†(0) + JS (z),

(102)

JA(z) =
∫ z

0
[�+

s (z − s)F̂†
a (s) − Ka�(z − s)F̂s(s)]ds, (103)

JS (z) =
∫ z

0
[�−

a (z − s)F̂s(s) − Ks�(z − s)F̂†
a (s)]ds. (104)

The phase-matching condition here is 	k2B = (kp − kc +
ks − ka) = 0.

F. Analysis of resonance effect

The resonance conditions for backward Cases 2A and 2B
are determined by the denominator of the solutions, i.e.,

�−
f = 0,

sinh βz

β
(α − G f ) = cosh βz,

tanh βz = β
1
2 (Ga/ςa + Gs/ςs) − G f

,

which is the key to enhancement and mirrorless oscillations
of the quantum fields. For Case 2A, the resonance condition
�−

s (Lr ) = Gs� − �q � 0 gives

tanh βLr = β
1
2 (−Ga + Gs) − Gs

= − 2β

(Ga + Gs)

= −
√

1 − 4KaKs

(Ga + Gs)2 , (105)

where β = 1
2 [(Ga + Gs)2 − 4KaKs]1/2. If (Ga + Gs)2 <

4KaKs, β is imaginary, and using tanh βz + i tan iβz = 0
we can write the condition for the optimal lengths that give
resonant peaks as

tan
Lr

2
aC = −C, (106)

where [4KaKs − (Gs + Ga)2]1/2 = aC and a = (Gs + Ga). So
there are discrete resonant lengths

Lr = 2
tan−1 (−C) + mπ

aC
, (107)

where m = 0, 1, 2 . . . . This formula correctly explains the
resonant peaks in Fig. 3(e) with spacing of 2π/aC = 4.216 ×
104.

For symmetric scheme, i.e., identical pump and control
field parameters 	c = 	p, Tad = Tbc, Ic = Ip = I , we may set

waa
bb = waa

cc = wdd
cc = wdd

bb , Tac = Tab = Tdc, T ∗
bd = T ∗

dc = T ∗
ab,

and g∗
aκ

∗
a � gsκs, with the analytical expressions

a = (Gs + Ga) � − gκw

(γ 2+	2 )
2γ + IV

, (108)

C =
√

4KaKs

(Gs + Ga)2 − 1 �
√

4(IV )2

γ 2 + 	2
− 1, (109)

V =
(

1

Tbc
+ 1

Tad

)
� 1

γbc
+ 1

γad
, (110)

β = 1

2
iaC � 1

2

gκw

(γ 2+	2 )
2γ + IV

√
1 − 4(IV )2

(γ 2 + 	2)
. (111)

In the above expressions we use the steady-state expres-
sions for ρ̃ab and ρ̃dc to obtain simplified expressions for K f

and G f :

Ks � 1

Dgsκsw�p�q

[
Tac

T ∗
dc

+ 1

]
(Tbc + Tad )

� gsκsw�p�c(Tad + Tbc)
2γ

γ − i	
, (112)

Ka � 1

Dg∗
aκ

∗
a w�∗

p�
∗
q

[
T ∗

bd

Tab
+ 1

]
(Tbc + Tad )

� g∗
aκ

∗
a w�∗

p�
∗
c (Tbc + Tad )

2γ

γ + i	
, (113)

KaKs � 1

D2
g∗

aκ
∗
a gsκsw

2IpIc
4γ 2

γ 2+ 	2
(Tbc+ Tad )2, (114)

Gs � − 1

Dgsκsw(TacTad Tbc) − iν

c
, (115)

Ga � − 1

Dg∗
aκ

∗
a w(T ∗

bd Tad Tbc) − i(ν − 	ν)

c
, (116)

(Gs − Ga) = −i2	

D gsκswTad Tbc, (117)

(Gs + Ga) � − 1

DgκwTad Tbc(T ∗
bd + Tac) (118)

= − gκw(
γ 2+	2

2γ

) + I
( Tad +Tbc

Tad Tbc

) , (119)

where we note that

T ∗
bd Tac

(T ∗
bd + Tac)

� (γ 2 + 	2)

2γ
,

and D ≈ (γ 2 + 	2)Tad Tbc + 2γ I (Tad + Tbc).

V. PAIRED CORRELATIONS

From the solutions Ŝ (zs, ν) = Ŝb + Ŝn, Â(za, ν) =
Âb + Ân we have developed a code to compute all the
following pairs: 〈Ŝ†(zs, ν)Ŝ (zs, ν)〉, 〈Ŝ (zs, ν)Ŝ†(zs, ν)〉,
〈Â†(za, ν)Â(za, ν)〉, 〈Â(za, ν)Â†(za, ν)〉, 〈Â(za, ν)Ŝ (zs, ν)〉,
〈Ŝ (zs, ν)Â(za, ν)〉 needed to obtain correlations
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FIG. 2. Effects of propagation length for Raman-EIT scheme: (a) Spectra of linear (n = 1) and third-order (n = 3) susceptibilities χ
(n)
f ,

(b) correlation spectra �(ν ), �(ν ), �(ν ), �(ν ), (c) Cauchy Schwarz correlation of anti-Stokes to Stokes gCS
as (τ ), (d) two-mode squeezing Sq,

and (e) intensities If (z f ) for Stokes ( f = s) at zs = L and anti-Stokes ( f = s) at za = 0 vs propagation length L. At za = zs = 0.5L [similar to
panels (c)–(e)] we plot (f) gCS

as (τ ), (g) Sas, (h) If (z f ) vs propagation length L to show the effect of spatial correlations. For normalization, we
use � = 2π × 5.89 × 106, Ln = c/ωac, ωac = 2πc/(795 nm).
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FIG. 3. Effects of propagation length for Raman resonant doublet (RRD) scheme. For backward case: (a) Spectra of linear (n = 1) and third
order (n = 3) susceptibilities χ

(n)
f , (b) correlation spectra �(ν ), �(ν ), �(ν ), �(ν ), (c) Cauchy Schwarz correlation of anti-Stokes to Stokes

gCS
as (τ ), (d) two-mode squeezing Sas, and (e) intensities If (z f ) for Stokes ( f = s) at zs = L and anti-Stokes ( f = s) at za = 0 vs propagation

length L. Similarly, for forward case: (e) Cauchy Schwarz correlation of anti-Stokes to Stokes gCS
as (τ ), (f) two-mode squeezing Sas, and (g)

intensities If (z f ).
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functions

G(2)
as (τ ) = 〈Ê†

s (zs, t )Ê†
a (za, t + τ )Êa(za, t + τ )Ês(zs, t )〉

(120)

= 1

|gs|2|ga|2 〈Ŝ†(zs, t )Â†(za, t + τ )Â(za, t + τ )Ŝ(zs, t )〉

= 1

|gs|2|ga|2

×
[ |〈Âb(za, τ )Ŝb(zs)〉+ 〈Ân(za, τ )Ŝn(zs)〉|2
+[

Ib
a (za, 0)+ In

a (za, 0)
][

Ib
s (zs, 0)+ In

s (zs, 0)
]],

(121)

G(2)
f f (τ ) = 1

|g f |4
[∣∣Ib

f (z f , τ ) + In
f (z f , τ )

∣∣2

+ [
Ib

f (z f , 0) + In
f (z f , 0)

]2]
, (122)

with f = s, a. The expressions (in time domain)
〈Â�(za, τ )Ŝ�(zs)〉, 〈Ŝ�(zs, τ )Â�(za)〉, I�

s (zs, τ ) =
〈Ŝ�(zs, τ )Ŝ�(zs)〉, I�

a (za, τ ) = 〈Â�(za, τ )Â�(za)〉 for � = b
(boundary terms), n (noise terms) are given in Appendixes
E and F, respectively. The terms 〈Ŝ (zs, ν)Â†(za, ν)〉,
〈Â†(za, ν)Ŝ (zs, ν)〉, 〈Ŝ2(zs, ν)〉, 〈Â2(za, ν)〉 are zero due
to thermal photons.

We also compute the normalized correlations

gCS
as (τ ) = G(2)

as (τ )√
G(2)

ss (0)G(2)
aa (0)

, (123)

g(2)
as (τ ) = G(2)

as (τ )

G(1)
s (0)G(1)

a (0)
= 〈N̂a(τ )N̂s〉 + 〈N̂sN̂a(τ )〉

2〈N̂s〉〈N̂a〉
,

(124)

g(2)
f (τ ) = G(2)

f f (τ )

G(1)
f (0)G(1)

f (0)

=
〈
a†

f (t )a f (t + τ )a†
f (t + τ )a f (t )

〉 − 〈
a†

f (t )a f (t )
〉

〈
a†

f (t )a f (t )
〉2 ,

(125)

g(2)
f (0) =

〈
N̂2

f

〉 − 〈N̂ f 〉
〈N̂ f 〉2 = Q f

〈N̂ f 〉
+ 1, (126)

where N̂ f (t ) = a†
f (t )a f (t ), Q f = 〈	N̂2

f 〉/〈N̂ f 〉 − 1 =
〈N̂ f 〉(g(2)

f (0) − 1), G(2)
f f (τ ) = G(2)

as (τ )|s→ f ,a→ f , I f (τ ) =
|g f |2G(1)

f (τ ), and G(1)
f (0) = 〈Ê†

f (t )Ê f (t )〉 is assumed to

be the same as 〈Ê†
f (t + τ )Ê f (t + τ )〉 for the steady-state

scenario. To relate N̂ f (t ) and Ê†
f (t )Ê f (t ) we have used

1
2 2ε0〈Ê†

f (t )Ê f (t )〉V = h̄v f 〈N̂ f 〉. We get the relations

〈N̂ f 〉 = I f /c f and

G(2)
as (τ ) =

(
h̄
√

vsva

ε0V

)2

〈N̂a(τ )N̂s〉,
where

c f = |g f |2
(

h̄v f

ε0V

)
= Cf

/(
π l

c

)
,

and V = Al is the quantization volume. Typically N̂ f ≈ 1
so ε0V 〈Ê†

f (t )Ê f (t )〉 ∼ h̄v f . Using 〈Ê†
f (t )Ê f (t )〉 ∼ γCf /|g f |2,

Cf = h̄ν f π

ε0Ac |g f |2 gives ε0V
h̄ν f π

ε0Ac γ ∼ h̄v f and finally l π
c γ ≈ 1,

l ∼ c/πγ .
The power of the quantum field is P = dU/dt =

ε0
d
dt

∫ 〈Ê†
f (t )Ê f (t )〉dV = ε0A〈Ê†

f (t )Ê f (t )〉c.
The evaluation of the correlation functions make use of

the paired correlations of the boundary operators and noise
operators as detailed in Appendixes E and F, respectively.

Squeezing

We expect that the noise of the Stokes and anti-Stokes are
somewhat correlated, therefore the quantity (N̂s − N̂a) would
be of interest for noise reduction via relative photon number
detection, such as in quantum interferometry. The investiga-
tion of squeezing is relevant in the context of the quantum
light spectroscopy, as broadly discussed in Ref. [28]. Thus, we
analyze the normalized two-mode relative intensity variance
to detect any sign of nonclassicality, i.e., two-mode squeezing,

Sas(τ ) = Var(N̂s(t ) − N̂a(t + τ ))

〈N̂s(t )〉 + 〈N̂a(t + τ )〉 = 〈(N̂s(t ) − N̂a(t + τ ))2〉 − {〈N̂s(t )〉 − 〈N̂a(t + τ )〉}2

〈N̂s(t )〉 + 〈N̂a(t + τ )〉 (127a)

= 〈N̂2
s 〉 + 〈N̂2

a (τ )〉 − 〈N̂sN̂a(τ )〉 − 〈N̂a(τ )N̂s〉 − 〈N̂s〉2 − 〈N̂a(τ )〉2 + 2〈N̂s〉〈N̂a(τ )〉
〈N̂s〉 + 〈N̂a(τ )〉 (127b)

= 〈	N̂2
s 〉 + 〈	N̂2

a (τ )〉 − 〈N̂sN̂a(τ )〉 − 〈N̂a(τ )N̂s〉 + 2〈N̂s〉〈N̂a(τ )〉
〈N̂s〉 + 〈N̂a(τ )〉 . (127c)

Using [E†
s (t ), N̂a(τ )] = c, [N̂a(τ ), Es(t )] = c∗,

〈N̂sN̂a(τ )〉 = 〈E†
s (t )Es(t )E†

a (t + τ )Ea(t + τ )〉 = 〈
E†

s (t )
{
E†

a (t + τ )Ea(t + τ )Es(t ) − c∗}〉 = G(2)
as − 〈E†

s (t )c∗〉,
〈N̂a(τ )N̂s〉 = 〈E†

a (t + τ )Ea(t + τ )E†
s (t )Es(t )〉 = 〈{E†

s (t )E†
a (t + τ )Ea(t + τ ) − c

}
Es(t )〉 = G(2)

as − 〈cEs(t )〉,
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where 〈cEs(t )〉 + 〈E†
s (t )c∗〉 must be a real number and assume to be small in value, so 〈N̂sN̂a(τ )〉 and 〈N̂a(τ )N̂s〉 approximate the

normal order. We rewrite in terms of the correlations (126) g(2)
f (0) and (124) g(2)

as (τ ),

Sas(τ ) =
〈
	N̂2

s

〉 + 〈
	N̂2

a

〉 − 〈N̂sN̂a(τ )〉 − 〈N̂a(τ )N̂s〉 + 2〈N̂s〉〈N̂a〉
〈N̂s〉 + 〈N̂a〉

, (128)

= 1 +
{
g(2)

s (0) − 1
}〈N̂s〉2 + {

g(2)
a (0) − 1

}〈N̂a〉2 − 2
{
g(2)

as (τ ) − 1
}〈N̂s〉〈N̂a〉

〈N̂s〉 + 〈N̂a〉
, (129)

= 1 +
{
g(2)

s (0) − 1
}( Is

cs

)2 + {
g(2)

a (0) − 1
}( Ia

ca

)2 − 2
(
g(2)

as (τ ) − 1
)( Is

cs

Ia
ca

)
( Is

cs

) + ( Ia
ca

) , (130)

which shows nonclassical squeezing when anti-Stokes is cor-
related to Stokes (i.e., g(2)

as is large) and not otherwise. We
will see (in Fig. 2) that the REIT scheme that gives large
nonclassical correlations also gives large intensity squeezing,
particularly at τ � �−1

p,c. For the coherent state, Var(N̂s(t ) −
N̂a(t )) = 〈	N̂2

s 〉 + 〈	N̂2
a 〉 = 〈N̂s〉 + 〈N̂a〉 means Sas(τ ) = 1

and 〈N̂sN̂a〉 = 〈N̂s〉〈N̂a〉 are uncorrelated.

Written in terms of Mandel’s parameters Q f = 〈	N̂2
f 〉

〈N̂ f 〉 −
1 = 〈N̂ f 〉[g(2)

f (0) − 1],

Sas = 1 + Qs〈N̂s〉 + Qa〈N̂a〉 − (g(2)
as (τ ) − 1)2〈N̂s〉〈N̂a〉

〈N̂s〉 + 〈N̂a〉
,

(131)
which shows squeezing, i.e., Sas < 1 when the photons are
sub-Poissonian Qs,a < 1 and/or highly correlated g(2)

as � 1. If
〈N̂s〉 = 〈N̂a〉 we have

Sas = 1 + 〈N̂〉
(

g(2)
s (0) + g(2)

a (0)

2
− g(2)

as (τ )

)
,

so the necessary for nonclassicality or squeezing is g(2)
as (τ ) >

g(2)
f (0).

Below we discuss the subtle difference between antibunch-
ing and sub-Poissonian based on the definitions of g(2)

f (0),Q f

and antibunching

〈
: 	N̂2

f :
〉 = 〈

a†
f (t ){a†

f (t )a f (t )}a f (t )
〉 − 〈N̂ f 〉2

= 〈
	N̂2

f

〉 − 〈N̂ f 〉
= 〈N̂ f 〉2{

g(2)
f (0) − 1

} = 〈N̂ f 〉Q f < 0. (132)

Sub-Poissonian means Q f < 0 or 〈: 	N̂2
f :〉 < 0 (negative

values) or g(2)
f (0) < 1. Although antibunching means, by defi-

nition, g(2)
f (0) < g(2)

f (τ > 0) the situation where g(2)
f (0) ≈ 0 is

considered as antibunching since it is essentially a minimum
value and would satisfy g(2)

f (0) < g(2)
f (τ > 0).

Note that g(2)
f (0) ≈ 0 (antibunching) obviously also

means sub-Poissonian Q f ≈ −〈N̂ f 〉, although the reverse is
not always true, i.e., sub-Poissonian may not necessarily
mean antibunching (but can be accompanied by bunching).
In any case, one can safely mention sub-Poissonian
when 〈: 	N̂2

f :〉 is negative and only say antibunching when

〈: 	N̂2
f :〉 = −〈N̂ f 〉2.

VI. RESULTS

Based on the semi-analytical expressions above we have
computed the spectra of linear χ

(1)
f (ν) and nonlinear χ

(3)
f (ν)

susceptibilities, spectra of correlations �(ν), �(ν), �(ν),
�(ν), power or intensity of Stokes and anti-Stokes I f (τ =
0), normalized photon correlations g(2)

as (τ ), Cauchy-Schwarz
correlation gCS

as (τ ), and relative intensity squeezing Sas(τ )
versus time delay for several cases of laser fields: Raman-
EIT (REIT), Raman resonant doublet (RR, and Raman
off-resonant doublet (ROD). The default detunings and Rabi
frequencies used in the figures are

(a) REIT: 	p = −25γac, 	c = 0, �p = 2.5γac, �c =
10γac, with τpγac = π

�c/γac
= π

10 .
(b) RRD: 	p = 0, 	c = 0, �p = �c = 5γac, with

τpγac = π
�c/γac

= π
5 .

(c) ROD: 	p = −20γac, 	c = −20γac, �p = �c = 5γac,
with τpγac = πγac[(	p

2 )2 + �2
c]−1/2 = π

5
√

5
.

The τp refers to the period of oscillations in the g(2)
as (τ ). We

have used same detuning for each Raman transition δs = 	p,
δa = 	c, number density N = 8 × 1017 m−3 of Rb-87 and
radius r = 100 μm. To normalize the axes of time, frequency
and length, we use � = 2π × 5.89 × 106, Ln = c/ωac, ωac =
2πc/(795 nm). To compute the total spectrum, we add the
contributions of boundary and noise terms Z (ν) = Z f (ν) +
Zn(ν), where Z ∈ �, �, �, � are given in Appendixes E
and F.

A. Effects of propagation length

For REIT (Fig. 2), the nonlinear spectra for Stokes and
anti-Stokes are surprisingly identical χ (3)

s = χ (3)
a , as shown

in Fig. 2(a). The χ (1)
s shows four resonances corresponding

to loss at ν − ωac = ±�c and gain at |	p| ± �c. The peaks
in the noise correlation spectra � of Fig. 2(b) correspond
to the two central peaks of χ (3)

s,a in Fig. 2(a). The � noise
correlation shows three peaks corresponding to the peaks
of χ (1)

s . The two central peaks in spectra S(v) and A(v)
correspond to gain as shown in Fig. 2(b). The correlation
spectra tell a lot about the dependency on time delay as they
are related by Fourier transform. Note that �(ν),�(ν) are
real.

For backward(zs = L and za = 0), the photon correlation
gCS

as shown in Fig. 2(c) between Stokes and anti-Stokes fields
oscillate with τ but decays rapidly with L, implying the loss
of interference effect and reduced correlation time are due
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to the many-particle effect as the size of medium increases.
Although the oscillations (side lobes due to interference) in
gCS

as as well as g(2)
as vanish as L increases, the main peak is

essentially constant.
Nonclassical squeezing shown by the dip of Sas at τp in

Fig. 2(d), corresponds to indistinguishability and maximum
quantum correlations. Since g(2)

as (τ ) � g(2)
ss (τ ) and g(2)

aa (τ ) for
the REIT case, the shape of S(τ ) is identical to g(2)

as (τ ) ex-
cept that it is inverted. The Stokes and anti-Stokes intensities
are essentially the same [Fig. 2(e)], Is(L, τ = 0) = Ia(L, τ =
0) due the cross-coupling nature of the propagation, even
though the Stokes is largely detuned while the anti-Stokes is
resonant.

For the backward case the correlation gCS
as at the same point

in the midway zs = za = 0.5L shows a similar qualitative
dependence. As L increases, the correlation peaks [Fig. 2(f)]
increase with L from maximum peak value of around unity
to some saturated values while maintaining the features of
complete antibunching and oscillations. In the two-mode
squeezing [Fig. 2(g)] there is a significant dip (Sas < 1) at
delay τp, which show nonclassicality that coincides with the
first peak of g(2)

as (τ ). However, quantitatively, the dip is only
to 0.88, which can be said to essentially represent classical
correlation regime. We therefore noted that quantum correla-
tions is not fully developed in the middle of the sample at L/2,
i.e., the value for gCS

as is smaller than the former case, while
Is(L, 0) and Ia(L, 0) are noticeably different due to asymmetry
[Fig. 2(h)].

The situation is differently more interesting for RRD
(Fig. 3) where the two lasers are on resonant, specifically in
the case of backward geometry. The spectra for Stokes and
anti-Stokes show the characteristic χ (1,3)

s = −χ (1,3)
a due to

symmetry of the two Raman transitions in RRD scheme with
three strong resonances composed of a mixture of absorption
and gain at ν − ωac = 0,±|�p + �c|, as shown in Fig. 3(a),
corresponding to the three (Mollow) peaks in the noise spec-
tra [Fig. 3(b)]. However, for large L the central peak close
to ν − ωac ≈ 0 becomes dominant. The correlation in RRD
scheme [Fig. 3(c)] is essentially classical due to the small
value of gCS

as (τ ) with antibunching and oscillations appearing
only for small L. As L increases, gCS

as (0) oscillates between
0 (antibunching) and 1 (coherent). The squeezing also varies
in a similar fashion as L increases but it is entirely classical
[(Fig. 3(d)]. The periodic points Lr where bunching occurs
correspond to high-intensity resonant peaks of Is(Lr, 0) =
Ia(Lr, 0) in Fig. 3(e) that satisfy the analytical formula (107)
we have obtained, recast as

Lr =
(
γ 2 + 	2 + 2γ IV

γ gκ|w|
) tan−1

(
−

√
4(IV )2

γ 2+	2 − 1
)

+ mπ√
4(IV )2

γ 2+	2 − 1
.

The plot of Lr vs detuning 	p (with 	c = 0) and Rabi �p

(with �c = �p or 5γac; Fig. 10). shows very small resonance
length is needed to achieve resonance with weak fields �p ≈
γac at discrete values of detuning.

For RRD with forward geometry, the oscillations in the
correlation vanish [Fig. 3(f)] and the photons become classical
(coherent state) as L increases. However, there is nonclassical
squeezing [Fig. 3(g)] where Sas reaches a saturation level

at moderate negative values as L increases. The contrasting
results show that propagation effect can render one quantity
classical yet and another quantity nonclassical. This allows
for spatial control of quantum correlation given the desired
quantity. The intensity Is,a(L) grows exponential-like with L
for forward RRD [Fig. 3(h)] due to the large gain but satura-
tion is not shown as it is presently not included in our model.

For ROD, the spectra for Stokes and anti-Stokes for nonlin-
ear and linear susceptibilities are symmetric χ (3)

s = χ (3)
a and

antisymmetric χ (1)
s (ν − ωac) = −χ (1)

a (ωac − ν), respectively,
as shown in Fig. 4(a). The linear susceptibilities clearly show
a single peak shifted by the large detuning |	p| but in op-
posite manner. The noise spectra [Fig. 4(b)] display single
dominant peak around ν − ωac ≈ 0. The correlation is small
[Fig. 4(c)], with the oscillations being washed out at larger
L for both forward and backward cases. The nonclassical
squeezing (Sas < 1) at delay τp increases log-like with L
[Fig. 4(d)]. This behavior is much like the case of RRD.

For backward case with zs = za = 0.5L, we have different
feature in the correlation [Fig. 4(f)], which increases with
τ while oscillating (but eroded as L increases), while the
squeezing [Fig. 4(g)] is entirely classical for any propagation
length. The intensities of quantum fields grow linearly with
length [Fig. 4(h)], indicating noncooperative effect of the off-
resonant scheme.

B. Effects of pump- and control-laser detunings

The results of both forward and backward geometries are
essentially the same for REIT and ROD schemes, even for
large L. The effects of backward propagation is only sig-
nificant for RRD scheme with sufficiently large L, i.e., 5 ×
103/ko, where interesting resonant features are found. While
the spectra vary depending on the sign of 	p and 	c, the
correlations and squeezing depend on just the magnitudes,
|	p| and |	c|. For forward case (not shown), we find the
correlation spectra show no qualitative difference (only small
quantitative difference) are totally unaffected compared with
the backward case. This robustness against laser geometry
is an interesting and surprising characteristic of the REIT
scheme.

1. Spectra of susceptibilities

We have plotted the susceptibilities versus detunings for
different pump and control Rabi frequencies in Fig. 5.

Only at 	c = 0 and large 	p the spectral lines of the linear
susceptibilities [in Figs. 5(a) and 5(d)] show symmetric EIT
absorption peaks at around ωac ± �c as they correspond to the
Raman-EIT case, the region that produces highly correlated
photon pairs.

The symmetric EIT peaks at resonance 	c = 0 in χ (1)
a

[Fig. 5(a)] become increasingly asymmetric, shifted, and
separated as 	c increases. Figures 5(b), the strong off-
resonant anti-Stokes Raman enhances the EIT peaks in χ (1)

s
due to the weak pump laser �p = 2.5γac in the resonant
Stokes Raman transition. The separation between the EIG
(gain) peaks and the EIT (absorption) peaks in χ (1)

a widens
with increasing 	c. In Fig. 5(c) shows closely spaced (due
to weak pump) EIT peaks in χ (1)

s when 	p = 0 with one of
the peaks diminishing while shifted with the pump frequency.
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FIG. 4. Effects of propagation length for Raman off-resonant doublet (ROD) scheme: (a) Spectra of linear (n = 1) and third-order (n = 3)
susceptibilities χ

(n)
f , (b) correlation spectra �(ν ), �(ν ), �(ν ), �(ν ), (c) Cauchy Schwarz correlation of anti-Stokes to Stokes gCS

as (τ ), (d) two-
mode squeezing Sq and (e) intensities If (z f ) for Stokes ( f = s) at zs = L and anti-Stokes ( f = s) at za = 0 vs propagation length L. Similar to
panels (c)–(e) but at za = zs = 0.5L we plot (f) gCS

as (τ ), (g) Sq, (h) If (z f ) vs propagation length L to show the effect of spatial correlations.
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FIG. 5. Linear susceptibilities χ (1)
s,a versus 	p(c) with (a), (c) 	c(p) = −25γac and (b), (d) 	c(p) = 0 for different pump and control Rabi

frequencies �p = 2.5γac, �c = 10γac.

The off-resonant Stokes Raman enhances the asymmetrical
peaks in χ (1)

a (due to strong off-resonant anti-Stokes tran-
sition). In Fig. 5(d) we have gain peaks in χ (1)

s that are
diminishing and transforming into absorption peaks as 	p

increases.
The spectra of χ (3)

s and χ (3)
a are identical for any |	p(c)|

if one of the detunings is fixed at 	c(p) = −25γac [Figs. 6(a)
and 6(c)], but they are identical only for large |	p(c)| if one of
the lasers is resonant 	c(p) = 0 [Figs. 6(b) and 6(d)]. When

	p and 	c are close to 0γac the spectra are antisymmetric
χ (1,3)

s ≈ −χ (1,3)
a [Figs. 5(b), 5(d) and 6(b), 6(d)]. These

features are the same even if the pump and control Rabi
frequencies are the same.

2. Correlations and squeezing

While the reverse correlation gCS
sa remains essentially clas-

sical, below unity [Fig. 7(a)], the correlation gCS
as is still

nonclassical but the (side lobes) oscillations are washed out

053705-16



QUANTUM PARAMETRIC DOUBLE RAMAN OSCILLATORS … PHYSICAL REVIEW A 106, 053705 (2022)

FIG. 6. Third-order susceptibilities χ (3)
s,a versus 	p(c) with (a), (c) 	c(p) = −25γac and (b), (d) 	c(p) = 0 for different pump and control

Rabi frequencies �p = 2.5γac, �c = 10γac.

[Fig. 7(b)] after a finite propagation length. These correlations
and the two mode squeezing Sas [Fig. 7(c)] are not much
affected by 	c. This is consistent with the corresponding
correlation spectra, �(ν), �(ν), �(ν), �(ν) that vary more
significantly with detunings 	p than 	c(not shown). Surpris-
ingly, the intensities I f (τ = 0) increase [Fig. 7(d)] as |	c|
increases. This can be explained as matching of the value
of detuning with |	p| = 25γac. However, if we increase |	p|
instead, the oscillations in gCS

sa and gCS
as for small |	p| would

disappear [Fig. 7(e)] and the nonclassicality in gCS
as contin-

ues to increase (typical Raman-EIT characteristic) [Fig. 7(f)]
although the photon numbers I f (τ = 0) for the Stokes and
anti-Stokes drop, as expected.

Two mode squeezing Sas is classical for Sas(0) > 1 and
shows nonclassical squeezing mainly at time delay τp <

1/2.5γac when |	p| � 2γac [Fig. 7(g)]. Here, the intensities
I f (τ = 0) are still large [Fig. 7(h)] as the detuning is close to
the matching value of |	c| = 0, but drop as |	p| increases.
The lack of nonclassical squeezing here is because the length
here is koL = 5 × 103, much greater than the small resonant
length (koLr ≈ 102) for the Raman EIT regime (large 	p,

small �p), according to Fig. 10.
In Fig. 8, we use RRD parameters �p = �c = 5γac with

resonant 	p,	c = 0 by default. Specifically, first, we vary

|	p|. The correlations gCS
sa [Fig. 8(a)(i)] and gCS

as [Fig. 8(b)(i)]
are small, they are equal due to symmetry only when
	p = 0. The normalized correlations g(2)

sa , g(2)
as [Figs. 8(a)(ii)

and 8(b)(ii)] only show a quantitative difference from the
Cauchy-Schwarz correlations. We have large nonclassical Sas

[Fig. 8(c)], but only for backward case, at around 	p =
�p + �c = 10γac (	c = 0) we have the double-resonance
dips (down to negative values) with the corresponding peak
output power of anti-Stokes (Ia) at 50% of the Stokes (Is)
[Fig. 8(d)]. Similar single resonance occurs at 	p = 13.4γac

and the peaks agree exactly with Fig. 10(b)(iii). The “zoom-in
panels” (with red borders) reveal more details at 	p ∼ 10γac

and ∼13.4γac, each of the narrow peaks has a hole-burning
effect. At these detunings, we have interesting effects, i.e., the
ridges in gCS

sa , gCS
as show persistent photon correlations for any

time delay τ and the oscillations across τ are suppressed. The
separation between the resonant peaks in 	p increases from
3.3γac to 12.75γac as we reduce the Rabi frequency from 5γac

to 4γac.
However, if we vary 	c instead of 	p, we find that the dips

in Sas become large positive peaks while the correlations and
intensities gCS

sa , gCS
as , Ia, Is remain identical, with the Stokes and

anti-Stokes indices interchanged.
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FIG. 7. Effects of laser detuning for asymmetric Raman scheme (different Rabi frequencies, default parameters follow Raman-EIT 	p =
−25γac, 	c = 0, �p = 2.5γac, �c = 10γac) for backward geometry with L/Ln = 5 × 103. We only show backward case since results for the
forward case are essentially the same. Effects of control laser detuning 	c on: (a) Cauchy Schwarz correlation of Stokes to anti-Stokes gCS

sa (τ ),
(b) anti-Stokes to Stokes gCS

as (τ ), (c) two-mode squeezing Sas, and (d) intensities If (z f ) for Stokes ( f = s) and anti-Stokes ( f = a). Similarly
we plot the effects of pump-laser detuning 	p for backward geometry in panels (e)–(h).

When dips become peaks in Sas (which is like a noise
figure), the noise above the shot noise limit can be another
state which is nonsqueezed, just like the antibunching (dip)
can become a bunching (peak) in g(2)

as . While both g(2)
as and Sas

represent fourth-order correlations, their normalization and
their physics are different. The statistics of Sas can change
dramatically while g(2)

as remains the same with the change
of the detuning from 	p to 	c. This is because Sas is very
sensitive to this resonance structure than g(2)

as .
For the forward case, those resonances do not appear and

we have squeezing (very small) only when 	p is close to zero.
The plots for Sas vs 	p are generally different from Sas vs 	c

but they are only identical around zero detunings. For forward
case, gCS

as shows increasing nonclassicality [Figs. 8(e) and 8(f)]
but Sas becomes more classical [Fig. 8(g)] and the intensities
drop [Fig. 8(h)] as the detuning |	p| goes to a larger value
(or |	c| goes to zero). This behavior is essentially towards the
REIT scheme.

Our analysis reveal the symmetric properties: gCS
as , gCS

sa ,
Is(τ = 0), Ia(τ = 0), �(ν), �(ν), �(ν), �(ν) versus 	p for
forward (backward) geometry are identical to gCS

sa , gCS
as , Ia(τ =

0), Is(τ = 0), �(ν), �(ν), �(ν), �(ν) versus 	c for forward
(backward) geometry, respectively.

For ROD parameters �p = �c = 5γac with large detuning
	p = −20γac and varying |	c|, or 	c = −20γac varying |	p|
(Fig. 9), the spectra of χ (3)

s and χ (3)
a are identical as we vary

both 	p and 	c. However, χ (1)
s ≈ −χ (1)

a when 	p and 	c

are close to each other (i.e., around −20γac) since ROD is
symmetric for Stokes and anti-Stokes. The above observations
are similar to the RRD case.

The gCS
sa [Figs. 9(a) and 9(e)], gCS

as [Figs. 9(b) and 9(f)] and
Sas [Figs. 9(c) and 9(g)] are different for forward and back-
ward cases. They show classicality for all values of detuning
|	p| and time delay τ . However, gCS

as and Sas show some
nonclassicality as the detuning |	c| goes to zero, which is
essentially towards the REIT characteristics. The time delay
of nonclassicality for gCS

as (large peak) and Sas < 1 always
coincide. Similar to RRD, gCS

as , gCS
sa , Is(τ = 0), Ia(τ = 0),

�(ν), �(ν), �(ν), �(ν) versus 	p for forward (backward)
geometry are identical to gCS

sa , gCS
as , Ia(τ = 0), Is(τ = 0), �(ν),

�(ν), �(ν), �(ν) versus 	c for forward (backward) ge-
ometry, respectively. This is due to the symmetry of the
ROD scheme. However, the squeezing Sas vs 	p,	c, forward
[Figs. 9(e)–9(h)] and backward are all different. While both
Stokes and anti-Stokes intensities drop with 	c [Fig. 9(d)] in
the backward case, the anti-Stokes intensity rises with 	c after
reaching a minimum value at 	c = 7.5γac [Fig. 9(h)].

C. Resonances vs laser parameters

For a set of laser parameters there exists a resonant
length Lr that gives large Stokes and anti-Stokes photons
and nonclassical intensity squeezing. Based on Eq. (107)
we can now know how the resonant length changes with
detuning 	p,c and Rabi frequency �p,c. Figure 10(a) shows
that, in general, for large �p or �c and small 	p (	c = 0)
we need larger Lr but the situation is different otherwise
(	p = 	c). Very small Lr is needed for small �p � 2γac

with certain discrete detunings 	p only if the control laser is
resonant(	c = 0).
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FIG. 8. Effects of varying pump-laser detuning 	p with symmetric default parameters of Raman resonant doublet (RRD) scheme 	p =
	c = 0, �p = �c = 5γac. For backward geometry: (a) Cauchy Schwarz and normalized correlations of Stokes to anti-Stokes gCS

sa (τ ), g(2)
sa (τ ),

(b) anti-Stokes to Stokes gCS
as (τ ), g(2)

as (τ ), (c) two-mode squeezing Sas, and (d) intensities If (z f ) for Stokes ( f = s) and anti-Stokes ( f = a) for
L/Ln = 5 × 103. The plots within red borders (b.i.I), (c.i.I), (d.i.I), (b.i.II), (c.i.II), (d.i.II) are zoom-in around the resonant peaks. Similar plots
vs 	p for forward geometry in panels (e)–(h). The results are the same as varying 	c and setting 	p = 0 due to symmetry of the RRD scheme.
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FIG. 9. Effects of varying laser detuning 	c for symmetric default parameters of Raman off-resonant double (ROD) scheme 	p = 	c =
−20γac, �p = �c = 5γac. For backward geometry: (a) Cauchy Schwarz and normalized correlations of Stokes to anti-Stokes gCS

sa (τ ), g(2)
sa (τ ),

(b) anti-Stokes to Stokes gCS
as (τ ), g(2)

as (τ ), (c) two-mode squeezing Sas, and (d) intensities If (z f ) for Stokes ( f = s) and anti-Stokes ( f = a)
with L/Ln = 5 × 103. Similarly, for forward geometry in (e)–(h). The results are the same as varying 	p (with 	c = −20γac) instead, due to
symmetry of ROD scheme.
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FIG. 10. Resonant effects of quantities versus pump detunings 	p (	c = 0) and Rabi frequency: (i) �p (�c = 5γac), (ii) �c (�p = 5γac),
and (iii) �c = �p, (a) Resonant propagation length Lr according to Eq. (107) for zeroth order, m = 0 (ko = ωac/c) [red arrows plateau without
resonance, red cross in (iii) corresponds to the first peak in Fig. 3(e)], (b) log of relative squeezing, log10 Sas showing nonclassical regions
(negative values) corresponding to the resonant peaks in panel, (c) log of Stokes photon number, log10 Ns.

We have also plotted [in Fig. 10(b)] sgn ln |Sas| (where
sgn is the sign of Sas − 1 that determines nonclassicality)
and Is,a(L, τ = 0) vs 	p (	c = 0) and vs (i) �p (�c = 5γac),
(ii) �c (�p = 5γac), and (iii) �c = �p. We have nonclassical
squeezing (Sas < 1) only when 	p varies (	c = 0). Parabolic
contour indicates that squeezing happens at two values 	p

only when �c � 5γac, i.e., for both �p = 5γac and �c = �p.
The red line intersects the nonclassical (dip) region exactly at
	p = 10γac and 13.4γac as depicted in Fig. 8(d).

We have computed the possible nine scenarios below.
(a)
(i) 	p (	c = 0): �p (�c = 5γac), Raman EIT for large 	p,

small �p;
(ii) 	p (	c = 0): �c (�p = 5γac), Raman EIT for large

	p,�c;
(iii) 	p (	c = 0): �c = �p, RRD for 	c = 0;
(b)
(i) 	c (	p = 0): �p (�c = 5γac), reverse Raman EIT for

large 	c, large �p;
(ii) 	c (	p = 0): �c (�p = 5γac), opp a i) reverse Raman

EIT for large 	c, small �c;
(iii) 	c (	p = 0): �c = �p, RRD for 	c = 0;
(c)

(i) 	c = 	p: �p (�c = 5γac), asymmetric Raman;
(ii) 	c = 	p: �c (�p = 5γac), asymmetric Raman;
(iii) 	c = 	p: �c = �p, ROD for large 	c = 	p and

RRD for 	c = 	p = 0.
Only cases in (a) show nonclassical squeezing. We verify

that (b)(i), (b)(ii), and (b)(iii) are the same as (a)(ii), (a)(i),
and (a)(iii), respectively, due to symmetry except their Sas are
positive (classical).

VII. DISCUSSIONS

A. Main findings

The results here go beyond the nontrivial general analyt-
ical solutions of the quantum fields at any point inside the
coherent medium with noise operators self-consistently and
properly included. Analytical solutions of all four possible
cases of co- and counterpropagating geometries are presented
in an elegant and holistic manner, not available in previous
publications. Our full quantum formalism with analytical re-
sults lead to three-dimensional (3D) plots of various limiting
Raman schemes that provide more comprehensive picture and
insightful illustration of the effects of co- and counterprop-
agating geometries and laser parameters on the quantities of
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interest, especially the nonclassical properties. Results for
Cases 2A and 2B are qualitatively the same for backward ge-
ometry. We learn that quantum correlations between photons
at any two points inside the coherent medium are smaller than
between the ends of the medium, as shown in Figs. 2(f) and
4(f).

Thorough critical analysis and observations lead to dis-
covery of many new features. Most striking are the resonant
length condition and laser parameters (detuning) that give
large quantum fields, nonclassical correlations and relative in-
tensity squeezing for backward geometry, as shown in Figs. 3,
8, 10. The backward geometry has significant effects on the
nonclassicality of two-photon correlations and the intensity
squeezing properties particularly when the lasers are resonant.
One important finding is that persistent correlation over very
long delay τ exists only under certain conditions associated
with resonance.

Detuning either the pump or the control laser determines
whether we have classical or nonclassical intensity difference
squeezing Sas in the case of backward propagation, since it
determines whether anti-Stokes is correlated to Stokes or oth-
erwise. The results of intensity difference squeezing are useful
and relevant to future works involving noise-free detection of
Raman photons.

When one of the lasers makes resonant Raman transition
with certain propagation lengths the backward-propagating
photons show interesting new resonant features as very high
intensity Is,a and large nonclassical squeezing Sas (provided
�p,�c � 5γac ) at two detunings whose separation decreases
with �p, as shown in Fig. 10. This analysis is operationally
useful, providing the optimal laser parameters and optimal
propagation length to generate nonclassical squeezing.

The complex susceptibilities (Fig. 5) of double Raman
scheme show the rich physics in the aspects of symmetries
and laser control parameters. Clearer symmetrical properties
can be seen in the spectra of the susceptibilities (Figs. 2–4),
i.e., χ (3)

s = χ (3)
a for REIT and ROD, χ (1,3)

s = −χ (1,3)
a antisym-

metric for RRD.

B. Quantum memory

Although our theory and solutions are not valid for pulses
typically used in quantum memory, the cw pump and control
lasers scenario (that serves as a clean reference case) makes
extensive analytical solutions possible. The analytical solu-
tions of the field operators obtained here provide insights on
the structure of the solutions for the controllable quantum
fields and the simulated results have helped in understanding
the effects of counterpropagating geometry on the photon
correlations and the spectral content of the quantum fields.
This serves as an important reference and foundation for
further understanding of nonclassical properties of correlated
photons in transient studies of quantum fields when extending
to pulsed lasers and pulsed input in actual quantum memory.

Our present Heisenberg-Langevin formulation is fully
quantum that includes quantum noise in a correct and self-
consistent manner that would be the appropriate theory
to describe the quantum noise performance of the time-
dependent quantum fields in quantum memory. The present
formulation can also compute other performance parameters

of quantum memory such as efficiency and fidelity by com-
bining numerical approach with analytical solutions under
certain approximations. The theory can be adopted to study
enhanced counterpropagating fields inside a cavity [33] and
atomic motion averaging technique [34] that were able to
circumvent atomic motion problem at room temperature for
achieving scalable and broadband Raman quantum memory
with higher efficiency.

C. Phase matching in higher dimensions

A spatial propagation in higher dimensions [two dimen-
sions (2D) or 3D] is needed to fully account for phase
matching of the FWM wave vectors, i.e., to include the trans-
verse directions (x and y). This is beyond the present scope
where we consider only 1D propagation, i.e., all wave vectors
are along z direction. The phase-matching condition arises
because of the different refractive indexes or linear dispersions
for the nondegenerate FWM where the two lasers and the two
quantum fields have different carrier frequencies. While per-
fect phase matching condition is needed to obtain maximum
FWM signal, this is not always critically necessary while it
is possible to adjust the transitions such that the refractive
indexes do not change much across the frequencies of all the
four fields.

For noncollinear lasers, such as lasers crossed at a
small angle [35], the transverse components (ε = x, y) of
the wave vectors are finite and give rise to transverse
phase matching condition (	k1A)ε = (kp+kc−ks−ka)ε ,
in addition to the (axial) phase matching of the z-
component wave vectors: (	k1A) = (kp + kc − ks − ka) =
0, (	k1B) = (−kp − kc + ks + ka) = 0, (	k2A) = (kp − kc −
ks + ka) = 0, (	k2B) = (kp − kc + ks − ka) = 0 as given in
earlier section for our 1D propagation.

The small angle between the lasers is used in seeded
experiment for convenience, where phase matching can be
controlled by the input fields. It does not change our results of
propagation length dependence too much as the z-component
wave vectors are only slightly less than the wave vectors
of perfectly collinear case while the radial and transverse
component wave vectors are much smaller. The interaction
length can be adjusted by balancing the laser beam width
and the small angle between the two lasers. Alternatively
one can adopt the fully collinear geometry and use prisms to
separate different wavelengths. For nonseeded (spontaneously
generated FWM) this is not a problem as we can place the
detectors anywhere.

D. Doppler effect

The atomic center of mass motion effect is related to the
“velocity-selective coherent population trapping” effect and
requires the inclusion of Doppler and recoil shifts. Perfect
phase matching is achieved only at certain velocity class
of atoms. The Doppler effect can be included by adding
the Doppler frequency shift k j ·u =k ju (for the jth field in
1D case) to the photon frequencies v j − k j ·u in the de-
tunings 	c = vc − ωab, δa = va − ωac, 	p = vp − ωdc, δs =
vs − ωdb and the quantized electric fields is the sum over all
velocities u in the Maxwell-Boltzmann distribution. For 1D,

053705-22



QUANTUM PARAMETRIC DOUBLE RAMAN OSCILLATORS … PHYSICAL REVIEW A 106, 053705 (2022)

the polarization has to be averaged over all velocities with
a normalized weight function P(u) = √

m/(πkBT )e−mu2/kBT

that depends on temperature T . For example,

(
1

c

∂

∂t
+ ∂

∂z

)
Ŝ(z, t ) = igsκs

∫ ∞

−∞
P(u) p̂bd (z, t ; u)du. (133)

Due to the integral, the numerous analytical expressions
obtained above would not be possible unless we regard S(z, t )
as S(u, z, t ) the field associated with a particular value of u,
where the total field is Ŝ(z, t ) = ∫ ∞

−∞ P(u)Ŝ(u, z, t )du.
The spectra of the parameters in the parametric equa-

tion are expected to be smeared out by the Doppler effect
depending on the width of P(u) and this would cause the effi-
ciency to drop, physically the resonant peaks are randomized
or dispersed by Doppler broadening of the atomic gas.

Zhou et al. [35] obtained higher efficiency FWM by using
counterpropagating control lasers. The scheme is different
from our double Raman. Their phase-matching condition
kp − 2kc + kr = 0 (kr = −zkr due to reflection) can be con-
nected to our counterpropagating double Raman [Case 2A
(	k2A) = kp − kc − ks + ka] where their control lasers can
take the roles of both our control laser and Stokes photon that
are always antiparallel (kc = ks), which is known to be more
efficient than the copropagating case. Further elaboration re-
quires proper formulation and careful analysis (to be reported
in subsequent submission) of the Doppler (and recoil) shift in
phase-matching effects on Raman and FWM efficiency.

E. Hyperfine sublevels

In actual experiments the presence of relevant hyperfine
sublevels depends on the laser polarizations, may extend the
pumping cycle beyond few-level (three or four levels) scheme
in optical pumping, EIT and also influence the efficiency
of Raman parametric oscillations. The polarization of lasers
is important when taking account of the multiplets. Right-
circularly (left-circularly) polarized laser would couple the
diagonal transitions between mF at lower level to mF ± 1
(	mF = ±1) at higher level. Similarly, linearly polarized
laser connects the vertical transitions with 	mF = 0. So there
are several simultaneous Raman transitions during the in-
teractions. Populations can move outside the four levels by
spontaneous emissions into other multiplets (via 	mF = 0
transitions) with some branching ratios depending on the
dipole transition matrix element and the laser interaction cycle
is not strictly closed. Hence, the efficiency of Raman process
would be lower. In degenerate hyperfine magnetic sublevels
of the states [36] (e.g., F = 1 and F = 2 in 87Rb) several
pairs of transitions that are (vertically) diagonally coupled
simultaneously by (linearly) circular polarized laser fields can
have effect on spatial localization through interaction time.
However, the effects of multi-Zeeman-sublevel atoms on EIT
and coherent population trapping (CPT) [37] can be mini-
mized by using strong pumping scheme to maintain close to
ideal three states lambda system. In our case of quasisteady
state only the few sublevels need to be considered that are
coupled in an (almost) closed cycle by the circularly polarized
lasers in lambda configuration.

F. Proposed experiments

For standard forward propagating geometries we propose
an experimental setup similar to those used in Refs. [38].
Furthermore, the theoretical results in Ref. [27] which are
based on a simplified nonpropagating model, while using the
same limiting conditions as in our present work as shown in
Figs. 3(d) and 3(e). These results are confirmed experimen-
tally in Ref. [23] in the hot Rb vapor cell irradiated by a
100 mW Ti:sapphire pump power and weak 20 μW probe
beam mixed in a copropagating geometry at 7 mrad angle
inside a 12 mm long vapor cell containing 85Rb gas at 113 ◦C
temperature. We therefore propose to use similar setup for the
D1 line in a counterpropagating geometry with small angle of
the mrad range for the phase-matching control.

Several advantageous properties of counterpropagating ge-
ometry have been mentioned in the introduction, including
intrinsic high efficiency due to internal auto-feedback [39].
However, for thermal atoms, counterpropagating Raman fields
geometry may yield a lower efficiency (depending on atomic
density) since only the fraction of atoms with zero axial veloc-
ity component (along laser direction) with nearly no Doppler
effect are resonantly coupled. In other words, counterpropa-
gating Raman fields are able to selectively excite only atoms
with zero axial velocity into resonances.

One practical advantage of the counterpropagating geome-
try is the greater spatial overlapping of the counterpropagating
fields. The counterpropagating collinear laser beams (need not
cross at an angle) can completely overlapped and discernible
by using polarization control. Thus, the situation of backward
geometry is closer to our theory and the results for forward
geometry are shown for comparison.

G. Laser phase

We emphasize that the pump and control lasers need to
be phase locked, especially when we have Raman transition
involving the lasers and with the quantum fields. Generally
our scheme would have two-photon effective Rabi frequency
�eff = �1�

∗
2/	 that may be averaged out to zero if the phases

ϕ j of the two fields or lasers are random ( j = 1, 2). Here,
� j is the complex single-photon Rabi frequency that includes
the phase eiϕ j and 	 finite single-photon detuning. There are
terms like g(∗)

f �p�c, g(∗)
f �p, or g(∗)

f �c in the coefficients K f ,

G f and the F̂ f noise operators of the parametric equations (38)
and (39) that require stable relative phase between the lasers
and with the fields. The phase locking is also necessary
when phase-sensitive detection is used, such as the case of
interferometric (home-heterodyne) detection, especially in the
measurement of squeezing effect.

H. Relevance

Our work has high relevance to the existing theoretical and
experimental works. The population dynamics in Rb vapor
and susceptibility plotted in Figs. 8 and 10 in Ref. [37] and
also Ref. [40] resembles our susceptibilities shown in Figs. 3
and 4, while using similar method for calculation of propaga-
tion in the context of EIT in � scheme based on Rb levels.

In Ref. [35] a Doppler-free propagation is demonstrated
experimentally in the counterpropagating geometry enhanced
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by the EIT effect in the similar way our result indicate the
propagation effects in the squeezing and gain of the four-
wave mixing. A noise reduction in the spectra of the noise
due to squeezing has been shown in D1 and D2 lines in Rb
vapor [26], where operation has been in the similar parameter
regime as shown in our Figs. 3 and 4.

Most experiments are performed in copropagating ge-
ometry. The counterpropagating we study here has several
important advantages. First, it allows us to control and reduce
the inhomogeneous broadening caused by Doppler effect [41]
enabling detection using counterpropagating geometries in
oxygen lasing. Second, the counterpropagating geometry is
highly relevant for stand-off detection and sensing and air
lasing, which became an important topic over the last decades
in a context of remote sensing applications [42]. Further dis-
cussion of these applications and relevant calculations could
be done in the upcoming works as it is outside of the scope of
the present work.

VIII. CONCLUSIONS

We have studied all possible forward- and backward-
propagating geometries of quantum parametric oscillators
medium with finite length composed of four-level double
Raman system, driven by arbitrary detuning and strength
of the pump and control lasers using the full quantum
Heisenberg-Langevin framework with noise operators. The
coupled parametric oscillator equations yield analytical solu-
tions for the quantum fields that depend on the propagation
length, frequency, and strength of the lasers. Systematic and
comprehensive analysis show how the nonclassical photon

correlations and intensity difference squeezing are affected
by the propagation length, the parameters of the lasers and
interaction geometry (forward or backward). Systematic anal-
ysis of limiting Raman schemes with different detuning and
Rabi frequencies provided useful insight on the conditions
for enhancing and controlling nonclassicality. We have dis-
cussed practical aspects that connect our work well with
recent development in low-noise nonclassical light and quan-
tum spectroscopy through the analysis of squeezing. We have
laid out a proper full quantum framework that can be extended
to pulsed regime, particularly useful for the study of quantum
memory with backward geometry. The promising findings
of this study, especially the resonant effects and nonclas-
sicality of two-mode relative intensity squeezing are useful
for quantum metrology and spectroscopy, especially in the
unprecedented levels of high precision, spatial and temporal
resolution through new modes of measurements.
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APPENDIX A: HEISENBERG-LANGEVIN EQUATIONS

The Heisenberg equation of motion d
dt Ô = 1

ih̄ [Ô, Ĥ ] gives

d

dt
σ̂aa = i(gaÊaeikaz p̂ac + �ceikcz p̂ab − g∗

aÊ†
a e−ikaz p̂ca − �∗

ce−ikcz p̂ba) − (�ab + �ac)σ̂aa + F̂aa, (A1a)

d

dt
σ̂bb = i(�∗

ce−ikcz p̂ba + g∗
s Ê†

s e−iksz p̂bd − �ceikcz p̂ab − gsÊse
iksz p̂db) + �abσ̂aa + �dbσ̂dd + F̂bb, (A1b)

d

dt
σ̂cc = −i(�peikpz p̂dc + gaÊaeikaz p̂ac − �∗

pe−ikpz p̂cd − g∗
aÊ†

a e−ikaz p̂ca) + �acσ̂aa + �dcσ̂dd + F̂cc, (A1c)

d

dt
σ̂dd = i(�peikpz p̂dc + gsÊse

iksz p̂db − �∗
pe−ikpz p̂cd − g∗

s Ê†
s e−iksz p̂bd ) − (�db + �dc)σ̂dd + F̂dd , (A1d)

d

dt
p̂ba = −T ∗

ab p̂ba + i(gaÊaeikaz p̂bc + �ceikcz(σ̂bb − σ̂aa) − gsÊse
iksz p̂da) + eiνct F̂ ,+ab (A2a)

d

dt
p̂ca = −T ∗

ac p̂ca + i((σ̂cc − σ̂aa)gaÊaeikaz + �ceikcz p̂cb − �peikpze−i	νt p̂da) + eiνat F̂+
ac , (A2b)

d

dt
p̂cb = −T ∗

bc p̂cb + i(�∗
ce−ikcz p̂ca + g∗

s Ê†
s e−iksze−i	νt p̂cd − gaÊaeikaz p̂ab − �peikpze−i	νt p̂db) + e−iνqat F̂+

bc , (A2c)

d

dt
p̂ad = −Tad p̂ad + i(�peikpz p̂ace−i	νt + gsÊse

iksz p̂ab − g∗
aÊ†

a e−ikaze−i	νt p̂cd − �∗
ce−ikcz p̂bd ) + e−iνqst F̂ad , (A2d)

d

dt
p̂bd = −T ∗

db p̂bd + i(�peikpze−i	νt p̂bc + gsÊse
iksz(σ̂bb − σ̂dd ) − �ceikcz p̂ad ) + eiνst F̂+

db, (A2e)

d

dt
p̂cd = −T ∗

dc p̂cd + i(�peikpz(σ̂cc − σ̂dd ) + gsÊse
ikszei	νt p̂cb − gaÊaeikaz p̂ad ) + eiνpt F̂+

dc, (A2f)
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where ναβ = να − νβ with α, β = p, s, c, a and the complex decoherences

Tac = iδa + γac, (A3a)

Tad = i(	c − δs) + γad , (A3b)

Tbc = i(δa − 	c) + γbc, (A3c)

Tdb = iδs + γdb, (A3d)

Tab = i	c + γab, (A3e)

Tdc = i	p + γdc, (A3f)

effective decoherence rates γuv

γac
.= 1

2 {�ac(2nac + 1) + �ab(nab + 1)} + γ dep
ac , (A4a)

γad = 1
2 {�db(ndb + 1) + �dc(ndc + 1) + �ab(nab + 1) + �ac(nac + 1)} + γ

dep
ad , (A4b)

γbc = 1
2 {�abnab + �dbndb + �acnac + �dcndc} + γ

dep
bc , (A4c)

γdb
.= 1

2 {�db(2ndb + 1) + �dc(ndc + 1)} + γ
dep
db , (A4d)

where �αβ are the spontaneous emission rates, n̄αβ = (eh̄ωαβ/kBT − 1)−1 and γ
dep
αβ are the dephasings due to phonons in condensed

phase or atomic collisions in gas. Here, the noise operators F̂uv , u, v = a, b, c, d appear self-consistently, whose full expressions
are obtained from quantized radiation fields [32].

APPENDIX B: COEFFICIENTS IN FOURIER FREQUENCY

To include two-photon detuning 	ν = νp + νc − νs − νa (assuming 	c = δa, 	ν = νp − νs − ωbc)

e−i	νt

(
d

dt
+ Tac

)
p̂ac =

(
d

dt
+ Tac + i	ν

)(
p̂ace−i	νt

)
, (B1)

e−i	νt

(
d

dt
+ Tbc

)
p̂bc =

(
d

dt
+ Tbc + i	ν

)(
p̂bce−i	νt

)
, (B2)

gives Tac(ν ′) = Tac − i(ν − 	ν), Tbc(ν ′) = Tbc − i(ν − 	ν), where ν ′ = ν − 	ν and we use d
dt (Ae−i	t ) = −i	Ae−i	t +

e−i	t d
dt A. The main coefficients in the susceptibilities are

W ′
s = N ′

2ρ̃ba − N ′
3ρ̃cd − N ′

4w
dd
bb , (B3a)

W ′
a = N ′

2ρ̃dc − N ′
3ρ̃ab − N ′

1w
aa
cc , (B3b)

Ws = N2ρ̃ba − N3ρ̃cd − N4w
dd
bb , (B3c)

Wa = N2ρ̃dc − N3ρ̃ab − N1w
aa
cc , (B3d)

Was = {W ′
sWa − WsW ′

a}/D, (B3e)

where

N ′ =

⎧⎪⎪⎨
⎪⎪⎩

�p�c[Tad (ν) + Tbc(ν ′)]
i�c[Ipc − Tac(ν ′)Tbc(ν ′)]
i�p[Ipc + Tac(ν ′)Tad (ν)]

Tac(ν ′)Tad (ν)Tbc(ν ′) + IpTbc(ν ′) + IcTad (ν)

⎫⎪⎪⎬
⎪⎪⎭, (B4)

N =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

IpTad (ν) + IcTbc(ν ′) + T ∗
bd (ν)Tad (ν)Tbc(ν ′)

i�∗
p[Ipc + T ∗

bd (ν)Tbc(ν ′)]
i�∗

c [Ipc − T ∗
bd (ν)Tad (ν)]

�∗
p�

∗
c [Tbc(ν ′) + Tad (ν)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (B5)
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where Txy(ν) = Txy − iν and Ip = �p�
∗
p, Ic = �c�

∗
c , Ipc = Ip − Ic.

Dq = D + κsgs

Q(ν)
W ′

s + κ∗
a g∗

a

Qϕ (ν)
Wa + κ∗

a g∗
a

Qϕ (ν)

κsgs

Q(ν)
Was (B6)

= D
(

1 + κsgs

Q(ν)DW ′
s + κ∗

a g∗
a

Qϕ (ν)DWa + κ∗
a g∗

a

Qϕ (ν)D
κsgs

Q(ν)D {W ′
sWa − WsW ′

a}
)
, (B7)

D = T ∗
db(ν)Tac(ν ′)Tad (ν)Tbc(ν ′) + (Ip − Ic)2 + Ip{Tac(ν ′)Tad (ν) + T ∗

db(ν)Tbc(ν ′)} + Ic{Tac(ν ′)Tbc(ν ′) + T ∗
db(ν)Tad (ν)}

= Tad (ν)Tbc(ν ′){T ∗
db(ν) + δs}{Tac(ν ′) + δa}[1 − βsβa]. (B8)

The coefficients associated with the noise are

G ′ = N ′ + κ∗
a g∗

a

Qϕ (ν)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

iρ̃ab�pTad (ν) + iρ̃dc�cTbc(ν)
−Ipcρ̃ab + iwaa

cc �cTbc(ν)
−Ipcρ̃dc − iwaa

cc �pTad (ν)
iρ̃dc�

∗
pTbc(ν) + iρ̃ab�

∗
cTad (ν) − waa

cc Tad (ν)Tbc(ν)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (B9)

G = N + κsgs

Q(ν)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−{iρ̃cd�pTad (ν) + iρ̃ba�cTbc(ν) + wdd
bb Tad (ν)Tbc(ν)}

Ipcρ̃cd − iwdd
bb �

∗
pTbc(ν)

Ipcρ̃ba + iwdd
bb �

∗
cTad (ν)

−{
iρ̃ba�

∗
pTbc(ν) + iρ̃cd�

∗
cTad (ν)

}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (B10)

and the noise operators

⎛
⎜⎜⎜⎝
F̂ac(q, ν)

F̂ad (q, ν)

F̂bc(q, ν)

F̂bd (q, ν)

⎞
⎟⎟⎟⎠ = LF

⎛
⎜⎜⎜⎝

ei	kzeikaze−i	νt e−i(νat )F̂ac

eikcszei(−νcst )F̂ad

ei	kze−ikcaze−i	νt ei(νcat )F̂bc

e−ikszei(νst )F̂+
db

⎞
⎟⎟⎟⎠. (B11)

APPENDIX C: ROOTS OF PARAMETRIC EQUATIONS

To find roots of Dq we factorize

Q(ν) = ςsq − iν/c + ςsq± + iν/c = ςs(q + q±), (C1)

Qϕ (ν)Q(ν) + PsQϕ (ν) + PaQ(ν) + R = ςaςs[q
2 + qX + Y ] = ςaςs(q + q+)(q + q−) = ςa

ςs
(Q + Q+)(Q + Q−) (C2)

= ςaςs

(
q + Q+ − iν/c

ςs

)(
q + Q− − iν/c

ςs

)
, (C3)

Q± = ςsq± + iν/c, (C4)

X = θ + α + Ps/ςs + Pa/ςa, (C5a)

Y = αθ + Psθ/ςs + Paα/ςa + R/ςaςs, (C5b)

θ = −i(ν − 	ν)/ςac − i	k, (C5c)

α = −iν/ςsc, (C5d)

q± = 1

2
(θ + α + Ps/ςs + Pa/ςa) ±

√(−θ + α + Ps/ςs − Pa/ςa

2

)2

+ ςs

ςa
KaKs

(C6)

= 1

2
(−i	k + Ga/ςa + Gs/ςs) ±

√(
i	k + Gs/ςs − Ga/ςa

2

)2

+ ςs

ςa
KaKs. (C7)
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For forward,

Q± = q± + iν/c = 1

2
(Pa + Ps + iϕ) ±

√(Pa + Ps + iϕ

2

)2

− (R + iϕPs)

= 1

2
(Gs + Ga) + iν

c
− i	k

2
±

√(
1

2
(Gs + Ga) + iν

c
− i	k

2

)2

−
{(

Gs + iν

c

)(
Ga + iν

c
− i	k

)
− KaKs

}

= 1

2
(Gs + Ga) + iν

c
− i	k

2
±

√(
1

2
(Gs − Ga + i	k)

)2

+ KaKs. (C8)

For 	k = 0 we have

q± = 1

2
(Ga + Gs) ± 1

2

√
(Ga + Gs)2 − 4(GaGs − KaKs). (C9)

APPENDIX D: SPATIALLY DEPENDENT RELATIONS

To check the validity of the solutions, the definitions of the spatial factors �±
f and their relations have been useful:

�±
f = (G f � ± �q), (D1)

∂

∂z
�±

f =
(

−G f ± ∂

∂z

)
�q(z) (D2)

= −G f �q(z) ∓
(Ga

ςa
+ Gs

ςs

)
�q(z) ∓ (KsKa − GsGa)

�(z)

ςsςa
. (D3)

Thus we have the identity [
∂

∂z
+

(Ga

ςa
+ Gs

ςs

)]
�q(z) = (GsGa − KsKa)

�(z)

ςsςa
, (D4)

(
∂

∂z
+ q+ + q−

)
�q(z) = q+q−�(z). (D5)

We also found the following identities that are used to verify the correctness of the solutions:

∂�(z)

∂z
= −�q(z),

∂�q(z)

∂z
= −∂2�(z)

∂z2
. (D6)

APPENDIX E: BOUNDARY-BOUNDARY CORRELATIONS (FOR BACKWARD GEOMETRY)

〈N̂a(za, τ )N̂s(zs)〉, 〈N̂s(zs, τ )N̂a(za)〉, In
s (zs, τ ) = 〈Ŝn(zs, τ )Ŝn(zs)〉, In

a (za, τ )
To obtain 〈Â(za, t + τ )Ŝ (zs, t )〉 we need[

�a∗
a (za, ν)Â(0, ν) + �a∗

s (za, ν)Ŝ†(L, ν)
][
�s

s (zs, ν)Ŝ (L, ν) + �s
a(zs, ν)Â†(0, ν)

]
,

〈Âb(za, τ )Ŝb(zs, 0)〉 =
∫ ∞

−∞
�b(zs, za, ν)eiντ dν

2π
. (E1)

To obtain 〈Ŝ (zs, t + τ )Â(za, t )〉 we reverse the order:[
�s

s (zs, ν)Ŝ (L, ν) + �s
a(zs, ν)Â†(0, ν)

][
�a∗

a (za, ν)Â(0, ν) + �a∗
s (za, ν)Ŝ†(L, ν)

]
,

〈Ŝb(zs, τ )Âb(za, 0)〉 =
∫ ∞

−∞
�b(zs, za, ν)e−iντ dν

2π
, (E2)

For the boundary contributions to 〈Ŝ†(zs, t + τ )Ŝ (zs, t )〉 we need[
�s∗

s (zs, ν)Ŝ†(L, ν) + �s∗
a (zs, ν)Â(0, ν)

][
�s

s (zs, ν)Ŝ (L, ν) + �s
a(zs, ν)Â†(0, ν)

]
,

Ib
s (zs, τ ) = 〈Ŝb†(zs, τ )Ŝb(zs)〉 =

∫ ∞

−∞
�b(zs, ν)eiντ dν

2π
. (E3)
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For the boundary contributions to 〈Â†(za, t + τ )Â(za, t )〉 we need{
�a

a (za, ν)Â†(0, ν) + �a
s (za, ν)Ŝ (L, ν)

}{
�a∗

a (za, ν)Â(0, ν) + �a∗
s (za, ν)Ŝ†(L, ν)

}
,

Ib
a (0, τ ) = 〈Âb†(0, τ )Âb(0)〉 =

∫ ∞

−∞
�b(za, ν)e−iντ dν

2π
, (E4)

where

�b(zs, za, ν) = [
Ca(n̄a + 1)�a∗

a (za, ν)�s
a(zs, ν) + Csn̄s�

a∗
s (za, ν)�s

s (zs, ν)
]
, (E5)

�b(zs, za, ν) = [
Can̄a�

s
a(zs, ν)�a∗

a (0, ν) + Cs(n̄s + 1)�s
s (zs, ν)�a∗

s (0, ν)
]
, (E6)

�b(zs, ν) = [
Ca(n̄a + 1)

∣∣�s
a(zs, ν)

∣∣2 + Csn̄s

∣∣�s
s (zs, ν)

∣∣2]
, (E7)

�b(za, ν) = [
Cs(n̄s + 1)

∣∣�a
s (0, ν)

∣∣2 + Can̄a

∣∣�a
a (0, ν)

∣∣2]
. (E8)

where Cf = h̄ν f π

ε0Ac |g f |2, A = πr2 is the cross section, and n̄ f = (eh̄ν f /kBT − 1)−1 the mean photon number.
We have used the quantum field at the boundary:

Ê f (r, t ) = i
∑
k f

√
h̄ν f

2εoV
âk f e

i(k f ·r−ν f t ), (E9)

Ê f (r, ν) =
∫

eiνt Ê f (r, t )dt = i
∑
k f

√
h̄ν f

2εoV
âk f e

ik f ·r
∫

ei(ν−ν f )t dt (E10)

= i
∑
k f

√
h̄ν f

2εoV
âk f e

ik f ·r2πδ(ν − ν f ) → i
∑
k f

√
h̄ν f

2εoV
âk f e

ik f ·r2πδ(ν − ν f ), (E11)

with δ(ν − ν f ) = 1
2π

∫
ei(ν−ν f )t dt , the convention X (t ) = 1

2π

∫
X (ν)e−iνt dt and the commutation

[Ê f (0, ν), Ê†
f (0, ν ′)] =

∑
k f ,k′

f

h̄
√
ν f ν

′
f

2εoV
ei(k f −k′

f )·r(2π )2δ(ν − ν f )(ν ′ − ν f ) (E12)

� (2π )2
∑
k f

h̄ν f

2εoV
δ(ν − ν f )(ν ′ − ν f ) (E13)

= (2π )2h̄

2εoAL

L

2πc

∫
ν f δ(ν − ν f )δ(ν ′ − ν f )dν f (E14)

= π h̄ν

εoAc
δ(ν − ν ′). (E15)

APPENDIX F: NOISE-NOISE CORRELATIONS

The noise correlations are expressed as

〈Ân(za, τ )Ŝn(zs)〉 = ei	kz
∫ ∞

−∞
eiντ�n(zs, za, ν)

dν

2π
, (F1)

〈Ŝn(zs, τ )Ân(za)〉 = ei	kz
∫ ∞

−∞
e−iντ�n(zs, za, ν)

dν

2π
, (F2)

with the phase mismatch 	k and the intensities In
f (z) = In

f (z, τ = 0) are obtained from the self-correlation amplitudes

In
s (zs, τ ) = 〈Ŝn†(zs, τ )Ŝn(zs)〉 =

∫ ∞

−∞
eiντ�n(zs, ν)

dν

2π
, (F3)

In
a (za, τ ) = 〈Ân†(za, τ )Ân(za)〉 =

∫ ∞

−∞
e−iντ�n(za, ν)

dν

2π
. (F4)
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The contributions of noise terms become important for significant propagation length [43]. This is because the correlation
amplitudes are the Fourier transforms of the spectral functions that depend on propagation length L,

�n(zs, za, ν) = (2π )2

AN

∑
x,x′

∫ L

0
2D̃n

x,x′ (z)Ka∗
x (za, s, ν)Ks

x′ (zs, s, ν)ds, (F5)

�n(zs, za, ν) = (2π )2

AN

∑
x,x′

∫ L

0
2D̃an

x,x′ (z)Ks
x (zs, s, ν)Ka∗

x′ (za, s, ν)ds, (F6)

�n(zs, ν) = (2π )2

AN

∑
x,x′

∫ L

0
2D̃n

x,x′ (z)Ks∗
x (zs, s, ν)Ks

x′ (zs, s, ν)ds, (F7)

�n(za, ν) = (2π )2

AN

∑
x,x′

∫ L

0
2D̃an

x,x′ (z)Ka
x (za, s, ν)Ka∗

x′ (za, s, ν)ds, (F8)

where s represents dependency on z, zs, za and L and x, x′ = ac, ad , bc, bd , and

Ks
i (zs, s, ν) = igsκsC ′

i (ν)ψ s
s (zs, s, ν) − ig∗

aκ
∗
aCi(ν)ψ s

a(zs, s, ν), (F9)

Ka
j (za, s, ν) = igsκsC ′

j (ν)ψa
s (za, s, ν) − ig∗

aκ
∗
aC j (ν)ψa

a (za, s, ν). (F10)

We have evaluated 〈F̂†
s (z′′, ν)F̂s(z′, ν)〉, 〈F̂†

s (z′′, ν)F̂†
a (z′, ν)〉, 〈F̂a(z′′, ν)F̂s(z′, ν)〉, 〈F̂a(z′′, ν)F̂†

a (z′, ν)〉 using Eqs. (40) and
(41): 〈

F̂†
j (s′, ν ′)F̂i(s, ν)

〉 = 2π

AN
Dn

jiδ(s′ − s)δ(ν ′ − ν), (F11)

which follows from

〈F̂βα (z, t )F̂δγ (z′, t ′)〉 � Dβα,δγ (z, t )δ(z′ − z)δ(t − t ′)
(2π )2

(AN )
, (F12)

〈
F̂ †

x j
(z j, t j )F̂xi (zi, ti )

〉 = Dn
xj xi

δ(z j − zi )δ(t j − ti )
(2π )2

AN
, (F13)

〈
F̂x j (z j, t j )F̂

†
xi

(zi, ti )
〉 = Da

xj xi
δ(z j − zi )δ(t j − ti )

(2π )2

AN
. (F14)

Hence, we obtain the commutations

[F̂i(z
′, ν ′), F̂†

j (z′′, ν ′′)] = 2π

AN

{
Da

i j − Dn
ji

}
δ(z′ − z′′)δ(ν ′ − ν ′′), (F15a)

[F̂s(z
′, ν ′), F̂†

s (z′′, ν ′′)] = 2π

AN
δ(z′ − z′′)δ(ν ′ − ν ′′)

4∑
i, j=1

C ′
iC ′∗

j

{
Da

i j − Dn
ji

}
, (F15b)

[F̂†
a (z′, ν ′), F̂a(z′′, ν ′′)] = 2π

AN
δ(z′ − z′′)δ(ν ′ − ν ′′)

4∑
i, j=1

CiC∗
j

{
Da

i j − Dn
ji

}
. (F15c)

All terms due to the boundary-noise correlations vanish as the initial fields are uncorrelated to the noise for the case of thermal
radiation. To compute the total spectrum, Z (ν) = Z f (ν) + Zn(ν), where Z ∈ �, �, �, �. Note that the inverse transform of
I f (τ ) is essentially the spectrum, for example �(zs, ν) = ∫ ∞

0 e−iντ Is(zs, τ )dτ .
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