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Autocorrelative weak-value amplification and simulating the protocol under strong Gaussian noise
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By choosing more orthogonality between preselection and postselection states, one can significantly improve
the sensitivity in general optical quantum metrology based on the weak-value amplification (WVA) approach.
However, increasing the orthogonality decreases the probability of detecting photons and makes the weak
measurement difficult, especially when the weak measurement is disturbed by strong noise and the pointer is
drowned in noise with a negative-decibel signal-to-noise ratio (SNR). In this article we introduce and numerically
evaluate a modified weak-measurement protocol with a temporal pointer, namely, the autocorrelative weak-value
amplification (AWVA) approach. Specifically, a small longitudinal time delay (tiny phase shift) τ of a Gaussian
pulse is measured by implementing two simultaneous autocorrelative weak measurements under Gaussian white
noise with different SNRs. The small quantities τ are obtained by measuring the autocorrelation coefficient of
the pulses instead of fitting the shift of the mean value of the probe in the standard WVA technique. Simulation
results show that the AWVA approach outperforms the standard WVA technique in the time domain with smaller
statistical errors, remarkably increasing the precision of weak measurement under a strong noise background.
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I. INTRODUCTION

Higher precision in the measurement of various quanti-
ties is a persistent goal of scientific communities. It is well
known that the pre- and postselection of the measured system
have played a crucial role in amplifying detector signals in
a weak measurement. The use of the pre- and postselection
[1] originated from the work of Aharonov et al. They found
theoretically that the measurement result of the component
of a particle spin, called the weak value, can be amplified
by a large number, which opened up a pathway for quantum
metrology [2–8] with weak-value amplification (WVA).

Chronologically, a standard weak measurement includes
an initial preparation of the measured system (preselection),
weak coupling between the system and the pointer, a posts-
election of the system, and a projective measurement on the
pointer to read out the results [9]. For now, the widely used
pointers in weak measurements are shifts of mean values, such
as temporal shifts [10–13], momentum shifts [14,15], fre-
quency shifts [16,17], and even angular rotation shifts [18,19].
Even so, the WVA scheme entails an inherent dilemma: When
the pre- and postselection are nearly orthogonal to achieve
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higher sensitivity, the probability of a successful postselection
will be reduced greatly [20,21]. To obtain an observable dis-
tribution function, the measurement must be repeated many
times and the requirements on the apparatus are stringent
[22]. For example, the resolution of the apparatus for de-
tecting the minimum change in the input signal should be
high enough and the intensity of the light source ought to
be sufficiently strong to compensate for the low postselection
probability. In addition, the use of photon-subtracted thermal
states, which show a similar nature, has also attracted interest
because of their applications in quantum metrology [23–25].
Surprisingly, an experiment [24] by implementing photon
subtraction on the light exiting the interferometer can lead to
an enhancement in both the magnitude of the signal and the
signal-to-noise ratio (SNR).

Meanwhile, the determination of the pointer shift would in-
evitably be influenced by technical noise and the surrounding
environment. Numerous studies [20,21,26] have been done to
investigate the advantage of WVA in the presence of noise.
In particular, Knee and Gauger [21] argued that the amplified
displacement offered no fundamental metrological advantage,
due to the necessarily reduced probability of success. Us-
ing statistically rigorous arguments, Ferrie and Combes [20]
showed that the technique of WVA does not perform bet-
ter than standard statistical techniques for single-parameter
estimation or signal detection. Considering the measured
system cannot be completely isolated from the surrounding
environment and the instability of the element itself, the deter-
mination of the pointer shift will inevitably be influenced by
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many sources [26]: instability of the light source’s spectrum
and intensity, interference of the beam with itself, thermal
noise and shot noise of the detection, and other noise sources.
A natural thought is to equate these types of noise with Gaus-
sian white noise. In addition, Gaussian white noise has been
replaced by colored noise (non-Gaussian) [27–30] in a variety
of areas of physics, such as quantum Brownian motion in a
general environment with nonlocal dissipation and colored
noise [28] and non-Gaussian noise-enhanced stability of a
foraging colony system [29]. Colored noise also appears in
gravitational wave interferometer, where the specific noise
distribution depends on the quantum state of the gravita-
tional field [31]. However, it has long been known that white
Gaussian noises can be implemented for simulating realistic
experimental scenarios not only in traditional signal process-
ing [32–34] but also in modern quantum techniques [35–37].
Therefore, in this paper we assume that the contribution of all
noise is Gaussian white noise and investigate the weak-value
amplification technique under a strong Gaussian white noise
background.

It is encouraging that the WVA scheme based on the
imaginary weak value (in the frequency domain) has sound
potential to outperform the standard measurement in the pres-
ence of technical noise [10,38–42]. Furthermore, Brunner and
Simon [10] proposed that the WVA scheme using the imag-
inary weak-value amplification can result in three orders of
magnitude higher precision than the traditional interference
method. Therefore, the WVA scheme based on the imaginary
weak value is currently used in the field of biosensors, such
as a new chiral sensor based on weak measurement for esti-
mation of a trace amount of chiral molecule [43], a tunable
and high-sensitivity temperature-sensing method via WVA of
Goos-Hänchen shifts in a graphene-coated system [44], and
even an optical system based on optical rotation via weak
measurement for detection of the single- and double-strand
states of DNA [45]. Furthermore, there have been several
optimization schemes to improve the WVA scheme based on
analysis of its Fisher information [26,41,46,47].

Improving the precision of temporal pointers has been
studied relatively little, especially under a strong noise
background. In this paper we propose a modified weak-
measurement protocol with a temporal pointer, namely,
autocorrelative weak-value amplification (AWVA). It is moti-
vated by the widely used autocorrelation technique for signal
denoising in engineering [48–50], where autocorrelation is a
signal processing method describing the correlation of a signal
with a delayed copy of itself [49]. The AWVA technique can
realize the WVA scheme under a strong noise background. In
particular, the measurements with Gaussian white noises are
studied at a certain SNR. By simulating these measurements
in SIMULINK and MATLAB, we show that the measurement with
AWVA is superior to the measurement with WVA under a
strong noise background.

The paper is organized as follows. In Sec. II A we briefly
review the standard WVA technique for measuring a time
delay τ , which serves as the coupling strength in WVA. In
Sec. II B we derive the AWVA technique for the time delay
τ measurement and introduce the autocorrelative intensity �

(units of voltage) to evaluate the weak value. In Sec. III we
present both the WVA scheme and the AWVA scheme under

FIG. 1. Scheme of the standard WVA technique. The Gaussian
beam is produced by the laser and modulator, Then photons are
preselected by polarizer 1 (P1) with the optical axis set at 45◦. A
time delay τ (corresponding to a phase shift between the horizontal
polarized state |H〉 and vertical polarized state |V 〉) is induced by a
birefringent crystal. Finally, the photons are postselected by the sec-
ond polarizer (P2) with an optical axis set at α − 45◦ and the arrival
time of single photons is measured with an avalanche photodiode
(APD).

Gaussian white noises. In Sec. IV we show the analytic results
with various types of noises and various coupling strengths.
Section V is devoted to a summary and discussion.

II. THEORY

A. Standard WVA technique

Let us briefly review the standard WVA technique of
Ref. [10] with a two-level system (corresponding to the po-
larization state of the beam) in a quantum state |�〉 and a
measurement device represented by a temporal pointer |�〉
to estimate a time delay. The scheme is shown in Fig. 1. First,
the system is preselected in a polarized state

|�i〉 = sin

(
π

4

)
|H〉 + cos

(
π

4

)
|V 〉 = 1√

2
(|H〉 + |V 〉),

(1)
where |H〉 and |V 〉 represent the horizontal and vertical po-
larized states, respectively. Thus, the initial joint state of the
system and the pointer is given by

|�i〉 ⊗ |�i〉 ≡ |�i〉 |�i〉 = 1√
2

(|H〉 + |V 〉) |�i〉 , (2)

where ⊗ denotes tensor product. Note that the laser prepares a
(bright) quantum coherent state of the field for the autocorre-
lation measurements. A coherent state is what a laser prepares,
but other types of light would work for our scheme as well. In
particular, the state must be strong or bright so that we can
neglect the SNR due to the photon statistics of the particular
quantum state of light in the following analysis in Sec. IV A.
Then the system and the pointer are weakly coupled with
the interaction Hamiltonian Ĥ = τ Â ⊗ p̂, where the observ-
able operator Â = |H〉 〈H | − |V 〉 〈V |. For a temporal pointer,
q̂ is the longitudinal position along the central propagation
direction in a frame copropagating with the light. In turn, the
momentum operator p̂ is the frequency in the spectrum of the
pointer light. In the regime of weak measurement, the time
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shift τ is much smaller than the pointer spread ω, and the final
state of the pointer is given by

|� f 〉 = 〈� f | e−iτ Â⊗p̂ |�i〉 |�i〉
≈ 〈� f | [1 − iτ Â ⊗ p̂] |�i〉 |�i〉
= 〈� f |�i〉[1 − iτAw p̂] |�i〉
= 〈� f |�i〉e−iτAw p̂ |�i〉 , (3)

where Aw := 〈� f | Â |�i〉/〈� f |�i〉, the so-called weak value
[1], represents the mean value of observable Â. Note that the
time shift τ can be amplified by the weak value Aw. Normally,
the weak value Aw is a complex number [51]. In particular, the
imaginary part of Aw is associated with a shift of the pointer
in momentum space, while the time shift τ in the position of
the pointer is amplified by the real part of Aw [52]:

	〈q̂〉 =
∫

dq q|〈q|� f 〉|2∫
dq|〈q|� f 〉|2 = τ Re(Aω ). (4)

In this paper we design the weak measurement in the time do-
main and prepare the initial pointer with the Gaussian profile
by a modulator, where the modulator represents an acoustic
optical or electro optical modulator for creating Gaussian-
shaped pulses of length ω. Normally, a standard laboratory
function generator and a high-voltage amplifier are required
to drive the modulator. Then the initial pointer I in

1 (t ; τ ) can be
obtained,

I in
1 (t ; τ ) = |〈t |�i〉|2 = I0

1

(2πω2)1/4
e−(t−t0 )2/4ω2

, (5)

where I0 represents the normalization factor. In order to am-
plify the ultrasmall time shift τ , the system is postselected into
the state

|� f 〉 = sin

(
− π

4
+ α

)
|H〉 + cos

(
− π

4
+ α

)
|V 〉 , (6)

where α 
= 0 in Eq. (6) to ensure the postselection probability
is not zero. One then obtains the weak value as

Aw = sin(−π
4 + α) − cos( π

4 + α)

sin(−π
4 + α) + cos( π

4 + α)
= −cotα. (7)

The corresponding time shift τ can be obtained from the peak
shift δt = |τ Re(Aw )| = τ cotα of the signal detected by an
avalanche photodiode (APD), with the detected signal Iout

1
calculated from Eq. (3) as

Iout
1 (t ; τ ) = |〈� f |�i〉|2e−2iτAw p̂|〈q|�i〉|2

≈ I0
(sinα)2

(2πω2)1/4
e−(t−t0−δt )2/4ω2

. (8)

In principle, a larger peak shift δt and a larger weak value
are obtained by choosing a smaller α, at the cost of decreasing
the probability of postselection P = |〈� f |�i〉|2 = (sinα)2.
Note that the low probability P leads to a weak signal and
makes the weak measurement more difficult under a strong
noise background. In the next section, we will improve it with
the AWVA technique.

FIG. 2. Scheme of the AWVA technique. The light path is similar
to that in the WVA scheme (Fig. 1), except for a 50:50 beam splitter
being inserted between polarizer P1 and the birefringent crystal to
add a light path for an autocorrelative measurement. The optical axis
of polarizer 3 (P3) is also set at α − 45◦.

B. AWVA technique with autocorrelative intensity

We display the scheme of the AWVA technique in Fig. 2,
in which we introduce an autocorrelative intensity � for
estimating the time shift τ introduced by the birefringent
crystal. The main difference between the two schemes is that
an additional light path is added in the AWVA scheme, by
dividing the light after preselection into two light paths with
a beam splitter (BS) (splitting ratio 50:50). In one path, light
passes through the birefringent crystal and polarizer 2 (P2) as
in the WVA scheme, while in the other path light passes only
through polarizer 3 (P3) for an autocorrelative measurement.
The autocorrelative measurement is prepared for obtaining the
autocorrelative intensity �, which is defined in Eq. (11) and
will be explained later in this section.

The signal Iout
21 (t ) detected at APD1 is similar to Eq. (8)

except the intensity is halved by the BS,

Iout
21 (t ; τ ) = I0

2

(sinα)2

(2πω2)1/4
e−(t−t0−δt )2/4ω2

. (9)

Considering the light only passing through P3, there is no
shift of the mean value of the pointer and the signal Iout

22 (t ; τ )
detected at APD2 is given as

Iout
22 (t ; τ ) = I0

2

(sinα)2

(2πω2)1/4
e−(t−t0 )2/4ω2

. (10)

Note that there are two subscripts in Iout
21 (t ; τ ) and Iout

22 (t ; τ ).
The first subscript 2 represents the result of the AWVA mea-
surement. The second subscripts 1 and 2 represent the signals
from APD1 and APD2, respectively. In this paper we intro-
duce the new quantity � to estimate the time shift τ rather
than the peak shift of the pointer. Here � is measured with the
scheme shown in Fig. 3. The signals Iout

21 (t ; τ ) and Iout
22 (t ; τ )

detected at APD1 and APD2 pass through the product and the
integrator. Finally, the scope detects the � signal, which is
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FIG. 3. Scheme of the signal processing module with the AWVA
technique

mathematically given as

�A(t ; τ ) =
∫ t

0
Iout
21 (t ′; τ )Iout

22 (t ′; τ )dt ′ (11)

= I2
0

4

(sinα)4

(2πω2)1/8

∫ t

0
e−[(t ′−t0 )2+(t ′−t0−δt )2]/4ω2

dt ′.

The numerical results in the absence of noises in the WVA
scheme and the AWVA scheme are displayed in Fig. 4. In
the WVA scheme, the time shift τ can be estimated by fitting
the Gaussian signals Iout

1 (τ = 0 × 10−9 s) and Iout
1 (τ = 3 ×

10−9 s) by means of the least-squares method. In the AWVA
scheme, the time shift τ is estimated with the values of �.
Equation (11) also indicates that the value of �A(t ; τ ) depends
strongly on the integral time t , which affects the sensitivity of
the measurement with the AWVA technique. We will show
and discuss the results in the next section.

Note that the additional resources employed for the AWVA
scheme in comparison to the WVA scheme include the beam
splitter, polarizer 3, and correlated intensity detection, which
can be implemented with product and integrator modules in
Fig. 3 or coincidence detection using time-correlated single-
photon counting for the measurements in the photon-starved
regime. Furthermore, in the meteorological sense, the re-
sources are the fundamental restrictions that determine the
precision (e.g., the total measurement time, the total number
of input photons, or the number of photons that interact with
the sample or the number that are detected). Therefore, we
highlight the following information for the difference between
the WVA protocol and the AWVA protocol: The AWVA pro-
tocol uses twice as many input photons as the WVA protocol.
However, the number of photons that interact with the crystal
is the same for AWVA and WVA. Other resources (e.g., mea-

surement time) are the same for both WVA and AWVA, so
they are less important to discuss.

The signal processing module shown in Fig. 3 can be
implemented by both digital circuits and analog circuits. How-
ever, in this paper we will only simulate the signal processing
process in SIMULINK and MATLAB (see the Appendixes). The
tools in SIMULINK allow us to implement weak measurements
under various types of noise; these simulation results will be
shown in the following section.

III. WVA AND AWVA UNDER GAUSSIAN
WHITE NOISE

It has been pointed out that technical noise [20,21,26] has a
great influence on weak measurements. To simulate the WVA
and AWVA schemes with the temporal pointer on SIMULINK in
a realistic situation, the effects of Gaussian white noises with
different SNRs on the two schemes are investigated first.

In this paper we approximate the optical noise due to the
instability of the light source, interference in the light path,
thermal noise and shot noise of the detection, the partition
noise (vacuum noise) due to the beam splitter, and noises from
other unknown sources as Gaussian noise. The characteristic
of Gaussian white noise is that its power spectral density
and the fast Fourier transform (FFT) result are uniformly
distributed. In our work the Gaussian normal distribution
denoted by N(t, σ 2, ξ ) is generated by the pseudorandom
number generator in SIMULINK, where σ 2 is the variance of
the random signal and ξ is the random seed and represents
the initial value used to generate a pseudorandom number in
SIMULINK. The noise N(t, σ 2, ξ ) with different ξ corresponds
to the results of multiple measurements (different times). Note
that thermal noise and shot noise of the detection may cause
the different series of noises detected on APD1 and APD2. In
addition, the influence of the noise of different time series is
also investigated in Sec. IV F.

The Gaussian white noise N(t, σ 2 = 1.0 × 10−5, ξ = 0),
the power spectral density PSD( f , σ 2 = 1.0 × 10−5, ξ = 0),
and the corresponding FFT( f , σ 2 = 1.0 × 10−5, ξ = 0) re-
sults are shown in Fig. 5. Note that Gaussian white noise is
not only uncorrelated but also statistically independent be-
tween random variables at two different moments. Thus, on
the basis of the autocorrelation technique for signal denoising

FIG. 4. Simulation results with WVA and AWVA schemes in the absence of noise: (a) signals Iout
1 (t ; τ ) with τ = 0 × 10−9 s and τ =

3 × 10−9 s in the WVA scheme, (b) signals Iout
21 (t ; τ ) as well as Iout

22 (t ; τ ) with τ = 3 × 10−9 s in the AWVA scheme, and (c) signals IAC
A with

τ = 0 × 10−9 s and τ = 3 × 10−9 s in the AWVA scheme. The quantities Iout
21 (t ; τ ), Iout

21 (t ; τ ), and Iout
22 (t ; τ ) are in units of I0 and the quantity

IAC
A is in units of voltage.
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FIG. 5. (a) Gaussian noise signals N(t, σ 2 = 1.0 × 10−5, ξ = 0) in the time domain, (b) its power spectral densities PSD( f , σ 2 = 1.0 ×
10−5, ξ = 0), and (c) its FFT result FFT( f , σ 2 = 1.0 × 10−5, ξ = 0).

in engineering [48–50], the �NN(t; τ ) of the Gaussian white
noise N(t, σ 2) is defined as

�NN(t ; τ ) =
∫ t

0
N(t ′, σ 2, ξ1)N(t ′, σ 2, ξ2)dt ′

= 0(t −→ ∞), (12)

where ξ1 and ξ2 represent the different random seeds of the
Gaussian white noise N(t, σ 2, ξ). In this paper, for the mea-
surements with the AWVA technique, the corresponding time
series of noises N(t, σ 2, ξ1) and N(t, σ 2, ξ2) detected at APD1
and APD2, respectively, ought to be different. Even if the
two noises only originate from the laser (before the BS),
the noise N(t, σ 2, ξ1) which passes through the birefringent
crystal and the different lengths of the two optical paths in
Fig. 2 will cause a time delay between the noises N(t, σ 2, ξ1)
and N(t, σ 2, ξ2).

Then we add the noise N(t, σ 2; ξ ) to both the WVA
scheme and the AWVA scheme. For the measurement with
the WVA technique, we get the final signal Iout

1+N(t ; τ ) under
N(t, σ 2, ξ) as

Iout
1+N(t ; τ ) = Iout

1 (t ; τ ) + N(t, σ 2, ξ). (13)

Now we need to evaluate the mean shift δt by the Gaussian
fitting the result of Iout

1+N(t ; τ ). Obviously, the noise N(t, σ 2, ξ )
will lead to an uncertainty of estimating δt . The simulation
results with different simulation conditions are shown in Fig. 6
and Tables II and IV.

For the measurement with the AWVA technique, we ob-
tain the quantity �A+N(τ ) with the noises N(t, σ 2, ξ1) and
N(t, σ 2, ξ2). Then �A+N(τ ) is defined as

�A+N(t ; τ ) =
∫ t

0
Iout
21+N(t ′; τ )Iout

22+N(t ′; τ )dt ′

= �A(t ; τ ) + �21N(t ; τ ) (14)

+�22N(t ; τ ) + �NN(t ; τ ),

with

�21N(t ; τ ) =
∫ t

0
Iout
21 (t ′; τ )N(t ′, σ 2, ξ1)dt ′, (15)

�22N(t ; τ ) =
∫ t

0
Iout
22 (t ′)N(t ′, σ 2, ξ2)dt ′. (16)

However, due to the noncorrelation between the signal and the
random noise, we obtain that �21N(t ; τ ) = �22N(t ; τ ) = 0.

Finally, we can get the relation �A+N(t ; τ ) = �A(t ; τ ) from
the theoretical analysis when the integral time t is infinite,
which means that the noise has no influence on evaluating
the values of � by assuming that the noises N(t, σ 2, ξ1) and
N(t, σ 2, ξ2) detected at APD1 and APD2, respectively, are
strictly time independent. In particular, we first investigate the
accuracy of the formula (12) using simulations on SIMULINK,
based on Eq. (14).

Figure 7(a) shows the autocorrelative intensity �NN(t ; τ )
of various noises with different seeds ξ1 and ξ2 at
SNR∗ = −18.6 dB and 1/T = 1 MHz. The values of
�NN(t ; τ ) with different initial time (seed) are on the order
of 2.0 × 10−11, which is smaller than the theoretical maxi-
mum value of �A(t ; τ ) calculated from Eq. (11) in Fig. 4.
However, with the SNR of the Gaussian noise decreasing as
shown in Fig. 7(b), the values of �NN(t ; τ ) increase. The
larger values may have more negative effects on the AWVA
technique. We will investigate the total autocorrelative inten-
sity �A+N (t ; τ ) in the next section. Note that “infinite” is a
relative concept: When the number of integral nodes (sample
time) M � 1 in the integral time t , the integral time can
also be regarded as infinite. Therefore, the autocorrelative
results of noises N(t, σ 2, ξ1 = 0) and N(t, σ 2, ξ2 = 700) at
SNR∗ = −18.6 dB with different sampling frequency 1/T (T
corresponding to sampling interval) are displayed in Fig. 7(c).
The curves indicate that increasing the sampling rate 1/T of
the APD can decrease the value of �NN(t ; τ ) and improve the
accuracy of the formula (12).

In conclusion, the equality �A+N(τ ) = �A(τ ) represents
that the AWVA scheme has strong robustness1 against noise.
The features of the realistic kinds of noise are indeed more
complicated than the features of the Gaussian noise [27–30].
However, it is necessary to first consider the effects of the
strong Gaussian noise on the weak measurements theoreti-
cally; the simulation results are shown in the next section.

IV. NUMERICAL RESULTS

After adding the Gaussian white noise with different SNRs
to the signals, we fit the peak shift δt in the WVA scheme

1The “robustness” of the control system refers to the ability of the
system to keep a certain performance invariable under the distur-
bance (noise) of uncertainty.
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FIG. 6. Simulation results in two schemes under the Gaussian white noise with different SNR: (a), (d), (g), and (j) signals Iout
1 (t ; τ ) in the

WVA scheme under noise N(t, σ 2, ξ = 0); (b), (e), (h), and (k) signals Iout
21 (t ; τ ) and Iout

22 (t ; τ ) in the AWVA scheme; and (c), (f), (i), and (l)
autocorrelative intensity � in the AWVA scheme under noises N(t, σ 2, ξ1 = 0) and N(t, σ 2, ξ2 = 700) with sampling frequency 1/T = 1 MHz.
The quantities Iout

21 (t ; τ ), Iout
21 (t ; τ ), and Iout

22 (t ; τ ) are in units of I0 and the quantity IAC
A is in units of voltage.

and compute the values of � in the AWVA scheme. In our
simulation, the initial temporal probe is chosen as

I in
1 (t ; τ ) = |〈q|�i〉|2

= 1

(2π × 0.00022)1/4
e−(t−0.0015)2/0.00042

, (17)

where I0 is set as unity and the angle for postselection is set at
α = 0.01 rad. Note that the sampling frequency 1/T of APDs
has a great impact on the autocorrelative intensity �NN in the
AWVA scheme, which was discussed in the preceding section.
Therefore, the simulation of the final autocorrelative inten-
sity �A+N with 1/T = 1, 10, and 100 MHz is investigated.
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FIG. 7. Autocorrelative intensity �NN(t ; τ ) of various noises with different sampling frequencies 1/T of the APD: (a) autocorrelative
results of noises N(t, σ 2, ξ1) and N(t, σ 2, ξ2) with different seeds ξ1 and ξ2 at SNR∗ = −18.6 dB and 1/T = 1 MHz, (b) autocorrelative
results of noises N(t, σ 2, ξ1 = 0) and N(t, σ 2, ξ2 = 700) at sampling frequency 1/T = 1 MHz with different SNR∗, and (c) autocorrelative
results of noises N(t, σ 2, ξ1 = 0) and N(t, σ 2, ξ2 = 700) at SNR∗ = −18.6 dB with different sampling frequencies 1/T .

The measured results along with various types of noise with
different sampling frequency 1/T are shown in Figs. 6 and
8. On this basis we compare the sensitivity and the stability
(robustness) of the two schemes.

A. Signal-to-noise rate

Herein we use a general definition of SNR with voltage
magnitudes of signals and noises in the WVA scheme,

SNR = 20 log10
max[VI (t )]

max[VN (t )]
= 20 log10

max[Iout
1 (t )]

max[N(t )]
, (18)

where max[I (t )] and max[N(t )] represent the maximum am-
plitude of the signal and the noise, respectively. The voltage
magnitude VI (t ) = KIout

1 (t ) is proportional to the amplitude
of the signal Iout

1 (t ) and the voltage magnitude VN (t ) = KN(t )
is proportional to the amplitude of the noise N(t ), where the
factor K represents the coefficient of photoelectric conversion
of the APD. Note that the SNR may not be well defined, due to
max[N(t )] increasing without bound as the number of samples
is increased. Note that Fig. 9(a) indicates that the value of
max[N(t )] varies very little in the sampling frequency 1/T
range of 1–100 MHz. Thus, we neglect this uncertainty of the
SNR and calculate the SNR with the value of max[N(t )] at
1/T = 10 MHz. Take the example shown in Fig. 9(a), which
gives SNR = 20 × log10

1.40×10−4

3.70×10−5 = 11.5 dB. The numerical
results in the WVA scheme with various kinds of noise are
presented in Table II.

For the measurements with the AWVA technique, we de-
fine the sensitivity SNR∗ as an intermediate step in the AWVA
scheme and the sensitivity SNR∗ is obtained by

SNR∗ = 20 × log10
max[Iout

21 (t )]

max[N(t )]
. (19)

In the WVA scheme, the position of noise in the optical path
has no effect on the calculation of SNR in our simulation,
because there is only a single optical path in the WVA scheme.
However, in the AWVA scheme, it is worth noting that the
50:50 beam splitter (shown in Fig. 2) will reduce the strength
of the signal and introduce vacuum noise. Thus, where the
noise appears will lead to the different values of SNR∗. When
the noise is assumed to occur only in the optical path before
the BS element, the value of SNR∗ is equal to the value of
SNR. Note that the relationship SNR∗ = SNR is true when
we neglect the vacuum noise. This is the reason why a bright
laser beam must be used; in that case the vacuum noise is
small compared to the shot noise. In general, vacuum noise
introduced by the BS element will cause SNR∗ > SNR. When
the noise is assumed to occur only in the optical path after
the BS element, the value of SNR∗ is reduced and SNR∗ =
0.5 SNR. In addition, the value of SNR∗ will be obtained at
the range 0.5 SNR < SNR∗ < SNR when the noises occur
throughout the optical path in the AWVA scheme. In this
paper, in order to highlight the advantages of the scheme, we
investigate the lowest SNR∗ = 0.5 SNR, because the lower
the SNR∗ is, the harder it is to detect a useful signal. In addi-

FIG. 8. Simulation results of the autocorrelative intensity � in the AWVA scheme noises N(t, σ 2, ξ1 = 0) and N(t, σ 2, ξ2 = 700) at
SNR∗ = −18.6 dB with different sampling frequencies: (a) 1/T = 1 MHz, (b) 1/T = 10 MHz, and (c) 1/T = 100 MHz.
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FIG. 9. Examples of estimating the SNR and the sensitivity the maximum sensitivity KM
2 : (a) example of estimating the SNR in the

WVA scheme under Gaussian white noise N(t, σ 2 = 10−11, ξ = 0) with different sampling frequencies, (b) dependence of the sensitivity
with different SNR∗ on the integral time t under the noises N(t, σ 2, ξ1 = 0) and N(t, σ 2, ξ2 = 700) at sampling frequency 1/T = 1 MHz,
and (c) dependence of the sensitivity with different sampling frequencies 1/T on the integral time t under the noises N(t, σ 2, ξ1 = 0) and
N(t, σ 2, ξ2 = 700) at SNR∗ = −18.6 dB. The gray band represents the measurements failing to effectively detect the final signal.

tion, by comparing the results with larger SNR∗ to the results
with SNR∗ = 0.5 SNR in the AWVA scheme, our simulation
can also model the effect of noise before the beam splitter. The
results will be discussed in Sec. IV C.

Note that the relationship �A+N(τ ) = �A(τ ) is only true if
the integral time is infinite in Eq. (14). On the other hand, the
sampling time (corresponding to the integral time) is finite and
the pseudorandom number generator cannot generate truly
random numbers. Thus, the various types of noise will affect
the value of � and cause uncertainty in estimating the sensi-
tivity of the scheme with the AWVA technique. In addition,
the analysis of the sensitivity to various types of noise and
the discussion of comparison with these results in the WVA
scheme are given in the next section.

B. Sensitivity with the standard error

In order to calculate the sensitivity in the two schemes, we
perform the simulation with both schemes with the time shift
τ . In the WVA scheme, the sensitivity is defined as

K1 = 	(δt )

	(τ )
= δtτ − δt0

τ
, (20)

where the peak value shift δt0 of the temporal pointer and
its standard error Et0 represent the results with the time shift
τ = 0 s. The peak value shift δtτ of the temporal pointer and
its standard error Etτ are obtained by fitting the Gaussian
profile of the signal Iout

1 (t, τ ) with the least-squares method.
Then the statistical error E1 for estimating the value of K1 can
be calculated from Eq. (20) with the law of error propagation
E1 = (|Etτ | + |Et0|)/τ . Finally, the sensitivity K1 with its the
statistical error E1 under different simulation conditions are
shown in Tables II and IV.

Note that the quantities measured in the AWVA scheme
are the values of �; therefore, the sensitivity in the AWVA
scheme is defined as

K2(t ) = 	[�(t ; τ )]

	(τ )
= �0 − �τ

τ
, (21)

where �τ represents the result �A+N (t ; τ ) calculated from
Eq. (15) and �0 represents the initial value of the measure-
ment without the time shift τ and can be calculated from the

data Iout
22+N on APD2 in Fig. 2:

�0 =
∫ t

0
Iout
22+N(t ′)Iout

22+N(t ′)dt ′. (22)

Note that the sensitivity K2(t ) depends on the scope of time
integral t . The dependence of the sensitivity on t with various
types of noise is shown in Figs. 9(b) and 9(c) and we can find
that the maximum sensitivity KM

2 is achieved when integrated
to t = 1.5 ms. In addition, we neglect the standard error
of KM

2 , since � can be estimated by using a high-vertical-
resolution oscilloscope. We show the maximum sensitivity
KM

2 without standard errors in Tables III and V. In this paper
we define the central value K2 with its statistical error E2 in
the AWVA scheme, which is created by calculating the seven
statistical averages of KM

2 with different measurements:

K2 =
n∑

i=1

KM
2 (i)/n, E2 = max{|K2 − KM

2 (i)|}, (23)

where the KM
2 (i) represents the result of the ith measurement

with the different value of ξ , n represents the total number of
measurements, and n = 7. For different simulation conditions,
the central value K2 with its statistical error E2 in the AWVA
scheme is displayed in Tables III and V.

To compare the sensitivity in the two schemes, we further
normalize them with their corresponding theoretical results in
Figs. 10 and 11. Note that when the value of the sensitivity
K <0, corresponding to the loss of sensitivity area, the mea-
surement is invalid. The central value K2 with its statistical
error E2 in the AWVA scheme is displayed as the red data
points with an error bar in Figs. 10 and 11.

C. Effects of Gaussian noise with different SNRs

Figure 6 displays the results in the two schemes under
Gaussian white noise with different SNRs. In addition, the
corresponding results of the sensitivity are shown in Tables II
and III. Combining the results of the normalized sensitivity in
Fig. 10, we arrive at the following summaries of the effects of
noises in the two schemes.

(i) In general, the AWVA scheme outperforms the WVA
scheme, because the statistical error of the normalized
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FIG. 10. Normalized sensitivity in the WVA scheme and in the AWVA scheme under Gaussian noises with different SNRs and sampling
frequencies: (a) normalized sensitivity in the WVA scheme under noises N(t, σ 2, ξ ) with different SNRs, (b) normalized sensitivity in the
AWVA scheme under noises N(t, σ 2, ξ1) and N(t, σ 2, ξ2 ) at sampling frequency 1/T = 1 MHz with different SNR, and (c) normalized
sensitivity in the AWVA scheme under noises N(t, σ 2, ξ1) and N(t, σ 2, ξ2) at SNR = −18.6 dB with different sampling frequencies 1/T . The
gray band represents the measurements failing to effectively detect the final signal. The red data points with the error bar represent the final
results of seven statistical averages in the AWVA scheme.

sensitivity in the AWVA scheme is much smaller than that
in the WVA scheme at the same level of SNR. Note that our
results may be obtained by assuming that the time resolution
and the vertical resolution of the oscilloscope can meet the
requirements of our scheme, where the vertical resolution of
the oscilloscope limits the accuracy of the value of �. On
the other hand, the signal processing modules (Fig. 3) do not
need to be implemented in hardware if the weak measurement
does not meet the real-time measurement and this process
may generate other kinds of noise. Thus, the results of �

can be calculated mathematically after the measurement from
the collected data on APD1 and APD2 of the scheme in
Fig. 2.

(ii) There is no doubt that the intensity of noise sig-
nificantly affects the results in both schemes. As shown
in Fig. 10, the statistical errors of K1 and K2 increase
when the SNR is smaller. However, when the SNR is
smaller than −6.6 dB, the central values of the measure-
ment under noise N(SNR = −6.6 dB, ξ = 500), N (SNR =
−13.2 dB, ξ = 300), N(SNR = −13.2 dB, ξ = 500), and
N(SNR = −13.2 dB, ξ = 600) deviate greatly from the the-
oretical values in the WVA scheme. In addition, the mea-
surements under noise at SNR = −13.2 dB in the WVA
scheme are invalid due to the error bars extending into the loss
of sensitivity area. Meanwhile, under the strong noise with
negative-decibel SNR, the scheme with the AWVA technique

FIG. 11. Shifts 	(δt ) as well as (a)–(c) shifts 	(�) and (d)–(f) corresponding sensitivity with respect to the coupling strength τ under
the Gaussian noise with SNR = −13.2 dB. Results are shown (a) and (d) under noises N(t, σ 2, ξ ) with different seeds ξ in the WVA scheme,
(b) and (e) at sampling frequency 1/T = 10 MHz under noises N(t, σ 2, ξ1) and N(t, σ 2, ξ2) with different seeds ξ1 and ξ2 in the AWVA
scheme, and (c) and (f) at sampling frequency 1/T = 100 MHz under noises N(t, σ 2, ξ1) and N(t, σ 2, ξ2) with different seeds ξ1 and ξ2 in the
AWVA scheme. The red data points with the error bar represent the final results of seven statistical averages in the AWVA scheme.
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gives more accurate results with smaller statistical errors than
the scheme with the WVA technique.

(iii) Note that we obtain SNR∗ = 0.5 SNR in the AWVA
scheme by assuming that noise occurs after the beam splitter.
When the noises occur throughout the optical path, the value
of SNR∗ will be obtained in the range 0.5 SNR < SNR∗ <

SNR. As shown in Fig. 10, the results corresponding to
0.5 SNR < SNR∗ < SNR are equivalent to shifting the curve
to the right and lead to a smaller error bar compared to
the results with SNR∗ = 0.5 SNR. Therefore, the AWVA
scheme outperforms the WVA scheme no matter where the
noise appears.

In conclusion, the advantage of the scheme with the AWVA
technique is more obvious when the SNR is lower. Note that
the statistical errors in the AWVA scheme get larger when the
SNR is lower. Therefore, there is also a lower limit (corre-
sponding to the minimum SNR) to how effective the AWVA
scheme can be measured.

D. Effects of sampling frequency

In this paper we only investigate the influence of the
sampling frequency 1/T on estimating the autocorrelative
intensity � in the AWVA scheme due to the estimation of �

strongly depending on the sampling frequency. In Sec. III the
influence of the different sampling frequency 1/T on the auto-
correlative intensity �NN of noises was discussed. Figure 7(c)
indicates that increasing the sampling frequency gets a lower
�NN. The effects of the different sampling frequencies on the
autocorrelative intensity �A+N of noises and the sensitivity in
the AWVA scheme are shown in Table III and Fig. 10(c). Pre-
dictably, increasing sampling frequency 1/T can dramatically
enhance the AWVA scheme’s robustness.

It is worth noting that the upper limit of the sampling
frequency 1/T is set at 100 MHz. There are two reasons
for the choice in our simulation. One is that the results
with 1/T = 100 MHz are obviously better than the results
with 1/T = 10 MHz. In addition, our simulation with
1/T = 1000 MHz on SIMULINK takes a prohibitively long
time. Therefore, the simulation with a larger 1/T = 100 MHz
is unnecessary. Another reason is that, in order to achieve
sampling accuracy, the realistic sampling frequency normally
needs to reach 3–10 times the theoretical sampling frequency
according to the Nyquist theorem [53]. The upper limit of
sampling frequency is bound by the APD or analog-to-digital
conversion. In addition, the sampling frequency 1/T set
in this paper can be realized in the current Si or InGaAs
Avalanche Photodetectors from Thorlabs.2 Furthermore, it is
difficult to guarantee that the time resolution (1/T ) and the
vertical resolution of the oscilloscope meet the requirements
at the same time since the vertical resolution must be high
enough to detect the shift of �.

E. Effects of coupling strength

In the two schemes for measuring the time shifts τ induced
by a birefringent crystal, the time shift τ serves as the coupling

2Thorlabs offers Menlo Systems’ APD310 variable-gain, high-
sensitivity avalanche photodetector, which offers high-speed re-
sponse up to 1 GHz [54].

strength in the weak measurements. Next we will show the
results with the two schemes at different coupling strengths τ .
Note that this discussion is necessary because the two schemes
can be transformed to measure other physical quantities. In
Fig. 11 we show the results of δt in the WVA scheme and
the shift of �(t = 1.5 ms) in the AWVA scheme, as well as
their corresponding sensitivities, under the noise N(t, σ 2 =
4.0 × 10−7) with SNR = −13.2 dB. Note that the sensitivities
K1 and K2 have been normalized to highlight the deviation
from the theoretical values. Figure 11 shows the deviations of
the results in the two schemes from the theoretical value. We
arrive at the following summaries of the effects of the coupling
strength in the two schemes.

(i) Figures 11(a)–(c) display the shifts 	(δt ) in the WVA
scheme and the shifts 	(�) in the AWVA scheme dependence
of the coupling strength τ . Under the same noise with SNR =
−13.2 dB, the measurements with their error bars in the WVA
scheme extending into the loss of sensitivity area are invalid,
while all the measurements in the AWVA scheme give valid
results with statistical errors. In addition, the central values of
measuring 	(�) in the AWVA scheme agree with the theoret-
ical results in the absence of noise. Nevertheless, the central
values of measuring 	(δt ) in the WVA scheme deviate greatly
from the theoretical values. In addition, the magnitudes of the
statistical errors in the WVA scheme are independent of the
coupling strength τ , which is easy to verify when discarding
the measurements with the noise N(σ = 10−5, ξ = 500) and
N(σ = 10−5, ξ = 600). In contrast, the magnitudes of the
error bars in the AWVA scheme get bigger when the coupling
strength τ increases.

(ii) Figures 11(d)–(f) display the normalized dependence
of sensitivities K1 and K2 of the coupling strength τ . The
results in the WVA scheme indicate that the statistical errors
of estimating K1 get smaller when the coupling strength τ

increases, while results in the AWVA scheme indicate that the
statistical errors of estimating K2 are independent of the cou-
pling strength τ . Furthermore, if the experimental conditions
permit multiple measurements, the measurements where the
central value deviates greatly from the theoretical value can
be eliminated to obtain the results with smaller error bars.

(iii) Figures 11(b) and 11(e) (1/T = 10 MHz) and
Figs. 11(c) and 11(f) (1/T = 100 MHz) show the influ-
ence of the sampling frequency on the results in the AWVA
scheme. There is little deviation between the central value
and the theoretical value with sampling frequency 1/T =
100 MHz. Therefore, increasing the sampling frequency can
enhance the robustness of detecting the change of the coupling
strengths τ .

In conclusion, the scheme with the WVA technique is
superior to the scheme with the AWVA technique when the
coupling strength τ > 1.5 × 10−8 s. On the other hand, the
advantage of the scheme with the AWVA technique is more
obvious when the coupling strength is lower and the sampling
frequency is higher.

F. Measurements with different random seeds

So far, the previous results and discussion have been based
on the assumption that the thermal noise and shot noise of the
detection may not cause the different series of noise detected
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TABLE I. Numerical average results (dimensional quantities in unit of s) of the multiple measurement time shift τ = 3.0 × 10−9 s under
Gaussian noise with different SNRs.

SNR 1/T δt0(±Et0 ) δt τ (±Etτ ) 	(δt ) K1(±E 1)/1.0 × 103

11.5 1 8.97 × 10−7 (±2.09 × 10−6) 3.09 × 10−5 (±2.30 × 10−6) 3.00 × 10−5 (±4.39 × 10−6) 1.000(±0.146)
2.8 1 4.02 × 10−6 (±9.58 × 10−6) 3.38 × 10−5 (±1.07 × 10−5) 2.98 × 10−5 (±2.03 × 10−5) 0.993(±0.676)
−6.6 1 1.84 × 10−4 (±1.07 × 10−3) 2.11 × 10−4 (±1.06 × 10−3) 2.70 × 10−5 (±2.13 × 10−3) 0.900(±71.00)
−13.2 1 1.59 × 10−4 (±1.27 × 10−3) 1.76 × 10−4 (±1.27 × 10−3) 1.70 × 10−5 (±2.54 × 10−3) 0.566(±84.66)

SNR 1/T �0(±Ec0 ) �τ (±Ecτ ) 	� K2(±E 2)/0.0258

11.5 1 1.2450 × 10−9 (±1.41 × 10−11) 1.1672 × 10−9 (±1.45 × 10−11) 7.78 × 10−11 (±2.86 × 10−11) 1.005(±0.369)
2.8 1 1.2426 × 10−9 (±1.41 × 10−10) 1.1646 × 10−9 (±1.43 × 10−10) 7.80 × 10−11 (±2.84 × 10−10) 1.008(±3.669)
−6.6 1 1.2235 × 10−9 (±5.92 × 10−10) 1.1452 × 10−9 (±5.96 × 10−10) 7.83 × 10−11 (±1.19 × 10−09) 1.012(±15.37)
−13.2 1 1.5567 × 10−9 (±2.17 × 10−09) 1.4886 × 10−9 (±1.77 × 10−09) 6.81 × 10−11 (±3.94 × 10−09) 0.880(±50.90)
−13.2 10 1.5728 × 10−9 (±7.52 × 10−10) 1.4961 × 10−9 (±7.46 × 10−10) 7.67 × 10−11 (±1.50 × 10−09) 0.991(±19.38)
−13.2 100 1.2764 × 10−9 (±3.67 × 10−10) 1.1993 × 10−9 (±3.67 × 10−10) 7.71 × 10−11 (±7.34 × 10−10) 0.996(±9.483)

on APD1 and APD2 in the AVWA scheme. Therefore, the
shift 	� and sensitivity K2 were calculated from the data
for �(τ = 0) and �(τ ) with the same ξ . In other words, the
noise is the same when �(τ = 0) and �(τ ) are measured.
Meanwhile, we calculate 	(δt ) from the data for δt0 and
δtτ with the same ξ . Note that these measurements can only
be completed under special experimental conditions. Further,
we use the data with the different ξ to estimate the shifts
	(δt ) and 	�. In particular, the results of the measurements
with different random seeds were calculated and are shown
in Table I, where the average results δt0(±Et0), δt τ (±Etτ ),
�0(±Ec0), and �τ (±Ecτ ) of multiple measurements are re-
defined as

δt0 =
n∑

i=1

δt0(i)/n, Et0 = max{|δt0 − δt0(i)|}, (24)

δt τ =
n∑

i=1

δtτ (i)/n, Etτ = max{|δt0 − δtτ (i)|}, (25)

�0 =
n∑

i=1

�0(i)/n, Ec0 = max{|�0 − �0(i)|}, (26)

�τ =
n∑

i=1

�τ (i)/n, Ecτ = max{|�τ − �τ (i)|}, (27)

where (i) represents the result of the ith measurement with the
different value of ξ , n represents the total number of measure-
ments, and n = 7. Then the corresponding shifts 	(δt ) and
	� are obtained by the relationships 	(δt ) = δt τ − δt0 and
	� = �0 − �τ . Furthermore, the sensitivity K1(±E1) in the

WVA scheme and the sensitivity K2(±E2) can be calculated
by

K1 = δt/τ, E1 = (Et0 + Etτ )/τ, (28)

K2 = δt/τ, E2 = (Ec0 + Ecτ )/τ. (29)

Finally, we display these average results of the multiple
measurements with different random seeds in Table I. The
simulation results show that the AWVA scheme with larger
error bars has no advantage over the WVA scheme in the
environment of weak noises with SNR = 11.5 and 2.8 dB

when the sampling frequency is set 1/T = 1 MHz; however,
the error bars can decrease when a larger sampling frequency
is employed. When multiple measurements are completed
under strong noises with SNR = −6.6 and −13.2 dB, the

central value K2/0.0258 (0.0258 corresponding to the theo-
retical value without noise) is closer to the theoretical value
1 and the values of E2/0.0258 are much smaller than those
of statistical errors E1/1.0 × 103. In addition, the results of
multiple measurements with a larger sampling frequency 1/T

have smaller deviation of the central value K2/0.0258 from
the theoretical value and statistical errors E2. In general, when
multiple measurements are completed under strong noises
with a negative-decibel SNR, the AWVA scheme may have
the potential to outperform the WVA scheme with a smaller
deviation from the theoretical value and statistical errors. The
AWVA technique is a kind of easily realized scheme that can
adapt to strong noise for real-time estimation of unknown
small evolution parameters.

V. CONCLUSION

We have performed a scheme with autocorrelative weak-
value amplification for precision phase estimation. A sim-
ulated experiment for estimating the time shift with the
standard weak-value amplification technique and the autocor-
relative weak-value amplification technique has been derived
under Gaussian white noise with different signal-noise-ratios.
In addition, a new quality (pointer), namely, the autocorrel-
ative intensity �, is defined in our scheme with the AWVA
technique to estimate the small signal. Compared to fitting
the shift of the Gaussian pointer with the standard WVA
technique, measuring the shift of � has the advantage of
suppressing noise and the advantage of the scheme with
the AWVA technique is more obvious when the SNR and
the coupling strength are lower. Therefore, our results have
demonstrated that the AWVA technique outperforms the stan-
dard WVA technique in the time domain even when the signal
is submerged in noise (SNR < 0). The robustness suggests
that the AWVA technique can be applied for a vast range of
weak measurements in the time domain.
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Note that we assumed that the contribution of all noise is
Gaussian white noise in this paper. However, the real tech-
nical noise and environmental noise are far more complex
than Gaussian white noise. In addition, in many areas of
physics Gaussian noise has been replaced by colored noise
(non-Gaussian) [27–30]. Therefore, the autocorrelative weak-
value amplification technique under colored noises or real
noises should be investigated in future work. In addition, our
analysis pertains only to values of α = 0.01 rad corresponding
to a particular regime of near orthogonality of the initial and
final states. This is because the value around 0.01 rad is the
most relevant regime for high sensitivity of weak-value ampli-
fication [12,16,55]. However, it is worth further comparing the
WVA scheme and the AWVA scheme with a different regime
of near orthogonality. Furthermore, Hermite-Gaussian and
Laguerre-Gaussian pointer states [56] and other nonclassical
pointer states (squeezed vacuum and Schrödinger-cat states)
[57] have shown their advantages in the WVA measurement
over using the Gaussian beam profile. Certainly it is worth
going beyond the Gaussian beam profile and comparing the
WVA measurement and the AWVA measurement. Finally, we
must admit that the precision and robustness of the AWVA
technique depends on both the sampling frequency 1/T and
the vertical resolution of the oscilloscope. Thus, our scheme
needs further experimental verification.

The general definition of SNR in Eqs. (18) and (19) with
voltage magnitudes of signals and noises can be replaced by
Fisher information [26,41,46,47] in information theory. Fisher
information is a way of calculating the fundamental limit of
the minimum uncertainty for the parameter estimation and
has been widely used to estimate the SNR in the standard
weak measurement. Indeed, the SNR calculation based on
Fisher information is more reasonable and investigation of the
fundamental limit of the AWVA scheme is left for future work.

After completion of this work, we found that the AWVA
technique can also be achieved on the weak measurement in
the frequency domain. The quantity � can also be obtained
mathematically by the integral of momentum. The work is in
progress.
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APPENDIX A: OVERVIEW OF SIMULINK

SIMULINK, a MATLAB-based graphical programming envi-
ronment, is widely used in automatic control and digital signal
processing for multidomain simulation and model-based de-
sign. Its primary interface is a graphical block diagramming
tool and a customizable set of block libraries [58]. For model-
ing, SIMULINK provides a graphical user interface for building

models as block diagrams. It includes a comprehensive library
of predefined blocks to be used to construct graphical models
of systems using drag-and-drop mouse operations. The user
is able to produce an up-and-running model that would oth-
erwise require hours to build in the laboratory environment.
It offers tight integration with the rest of the MATLAB envi-
ronment and can either drive MATLAB or be scripted from it.
Therefore, SIMULINK and MATLAB can interact with each other
through the MATLAB workspace. Normally, one can generate
data or signal from Sources in SIMULINK or bring in data
from the MATLAB workspace. Similarly, one can use sinks to
visualize data or bring it back out into the MATLAB workspace.
In this paper we used several blocks for modeling: the Random
Number block with different variance, seed, and sampling
time; the Sum block; the Product block; the Integrator
block; the BusCreator block for creating a bus signal; and
the Scope block for presenting the data and bringing it to the
workplace of MATLAB. We will elaborate on our measurement
scheme in the following Appendixes.

APPENDIX B: PREPARING FOR THE MOLDING
ON SIMULINK

To simulate the WVA and AWVA schemes with the tem-
poral pointer on SIMULINK in a realistic situation, the effects
of Gaussian white noises with different SNRs on the two
schemes are investigated first. In this paper we approximate
the optical noise due to the instability of the light source,
interference in the light path, thermal noise and shot noise
of the detection, the partition noise (vacuum noise) due to
the beam splitter, and noises from other unknown sources as
Gaussian noise. We add the noise N(t, σ 2; ξ ) into both the
WVA scheme and the AWVA scheme. For the measurement
with the WVA technique, one gets the final signal Iout

1+N(t ; τ )
under N(t, σ 2, ξ) as

Iout
1+N(t ; τ ) = Iout

1 (t ; τ ) + N(t, σ 2, ξ). (B1)

For the measurement with the AWVA technique, one gets the
final signal Iout

21+N(t ; τ ) on APD1 and Iout
22+N(t ; τ ) on APD2

under N(t, σ 2, ξ1) and N(t, σ 2, ξ2), respectively:

Iout
21+N(t ; τ ) = Iout

21 (t ; τ ) + N(t, σ 2, ξ1), (B2)

Iout
22+N(t ; τ ) = Iout

22 (t ; τ ) + N(t, σ 2, ξ2). (B3)

Note that the signals Iout
1 (t ; τ ), Iout

21 (t ; τ ), and Iout
22 (t ; τ ) repre-

sent the results without noises. Therefore, they can directly
calculated by the definition in the main text:

Iout
1 (t ; τ ) = I0

(sinα)2

(2πω2)1/4
e−(t−t0−δt )2/4ω2

, (B4)

Iout
21 (t ; τ ) = I0

2

(sinα)2

(2πω2)1/4
e−(t−t0−δt )2/4ω2

, (B5)

Iout
22 (t ; τ ) = I0

2

(sinα)2

(2πω2)1/4
e−(t−t0 )2/4ω2

, (B6)

where I0 is set equal to unity, ω is set as 0.0002, t0 is set as
0.0015 s, and the angle for postselection is set at α = 0.01 rad.
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FIG. 12. Scheme of the WVA measurement in SIMULINK. The signal01.mat block and signal02.mat block represent the array of the
signals Iout

1 (t ; τ ) with different τ in the MATLAB workplace. The Random Number 1 block represents the random number generator. The Add 1

and Add 2 blocks represent adding inputs. The Scope 1 block represents the oscilloscope. The Bus Creator block combines a set of signals
into a bus.

These functions can be easily implemented in MATLAB and
used as the source or input in SIMULINK.

APPENDIX C: SCHEME FOR THE WVA MEASUREMENT

The scheme for the WVA measurement on SIMULINK is
shown in Fig. 12. The signal01.mat block represents the
array of the signals Iout

1 (t ; τ = 0 ns), while the signal02.mat
block represents the array of the signals Iout

1 (t ; τ ). The Random
Number block generates normally distributed random num-
bers. We can generate a repeatable sequence using any
Random Number block with the same non-negative seed and
parameters. The seed resets to the specified value each time a
simulation starts. By default, the block produces a sequence
that has a mean of 0 and a variance of 1. The Bus Creator
block combines a set of signals into a bus. To bundle a group
of signals with a Bus Creator block, we set the block pa-
rameter of number of inputs to the number of signals in the
group. The block displays the number of ports that we specify.
We connect to the resulting input ports those signals that we
want to group. In the main text, we discuss that the simulation
results are dependent on the noise strength, the seed of the
noise, and the sampling time. These features can be set by
changing the parameters of the Random Number 1 blocks as
shown in Fig. 13. Changing the value of Variance can set the
strength of noises. Different values of Seed can generate dif-
ferent noises with different initial times. The sampling period
of our system can be set by varying the value of the Sample
time.

After determining the simulation conditions, we run our
simulation and we can present the final signals on Scope 1
and save them as an array in the workplace of MATLAB. Then
the data can be fitted as the Gaussian profile by Origin to es-
timate the shift of the mean value. Next we take the parameter
in Fig. 13 as an example. By calculating the outputs Iout

1 (t ; τ =
0 ns) and Iout

1 (t ; τ = 3 ns) without noises and saving them as
signal01.mat and signal02.mat arrays, the results of the

measurements τ = 0 and 3 ns are shown in Fig. 14. Finally,
data on Scope 1 can be saved in the workplace and fitted with
a Gaussian profile in Origin. Figure 15 display the Gaussian
fitting results of the measurement τ = 0 ns and the measure-
ment τ = 3 under Gaussian noise with the seed equal to 600
at SNR equal to 11.5 dB. The shifts of the mean value can
be directly read δt0(±Et0) = −1.20 × 10−6(±1.28 × 10−6)
and δtτ (±Etτ ) = 2.88 × 10−5(±1.28 × 10−6). By changing
the values of the Variance and Seed, the simulation results
with various SNRs and different ξ can be obtained and are
displayed in Tables II and IV.

APPENDIX D: SCHEME FOR THE AWVA MEASUREMENT

The scheme for the AWVA measurement on SIMULINK is
shown in Fig. 16. The signal1.mat, signal2.mat, Random
Number 2, Random Number 3, Add 3, Add 4, Add 5, Add

FIG. 13. Block parameters of Random Number 1.
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FIG. 14. Example of the display of Scope 1. The data are taken from the simulation of the measurement τ = 0 ns and the measurement
τ = 3 under Gaussian noise with seed equal to 600 at SNR equal to 11.5 dB.

6, Scope 2, and Scope 3 blocks represent the same fea-
tures as the scheme for the WVA measurement in Fig. 12. In
addition, the Product 1 and Product 2 blocks output the
result of multiplying two inputs: two scalars, a scalar and a
nonscalar, or two nonscalars that have the same dimensions.
The Integrator 1 and Integrator 2 blocks output the
value of the integral of its input signal with respect to time.
The signal1.mat block represents the array of the signals
Iout
21 (t ; τ = 0 ns), while the signal2.mat block represents

the array of the signals Iout
22 (t ; τ ). Note that the seeds in the

Random Number 2 block and the Random Number 3 block
need to be set at different values according to the discussion
in the main text. By setting the seed equal to 000 in the
Random Number 2 block and equal to 700 in the Random
Number 3 block at SNR = 11.5 dB with sampling frequency
1/T = 1 MHz as shown in Fig. 17, the signals Iout

21 (t ; τ )
and Iout

22 (t ; τ ) can be obtained from Scope 3 as displayed in
Fig. 18 and the autocorrelative intensity �NN with different
τ can be obtained from Scope 2 as displayed in Figs. 19
and 20.

After determining the simulation conditions, we run our
simulation; we can present the final signals on Scope 2
and Scope 3 and save them as an array in the workplace
of MATLAB. Figure 19 displays the autocorrelative intensity
�NN of the measurement τ = 0 ns and the measurement
τ = 3 ns under Gaussian noise with seed equal to 000 in
the Random Number 2 block and seed equal to 700 in the
Random Number 3 block at SNR = 11.5 dB. It can be found
that the intensity �NN can be directly read out from Scope 2.
By changing the values of the Variance, Seed, and Sample
time, the simulation results with various SNRs, different ξ1

and ξ2, and sampling frequency can be obtained and displayed
in Tables III, V and VI.

APPENDIX E: SIMULATION DATA FOR THE MAIN TEXT

To simulate the WVA measurements and AWVA measure-
ments under hypothetical conditions, several simulations of
both the WVA measurements and AWVA measurements are
implemented.

FIG. 15. Example of Gaussian fitting. The data are taken from the simulation of (a) the measurement τ = 0 ns and (b) the measurement
τ = 3 under Gaussian noise with seed equal to 600 at SNR equal to 11.5 dB.
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FIG. 16. Scheme of the AWVA measurement in SIMULINK. The signal1.mat block and signal2.mat block represent the array of signals
Iout
21 (t ; τ ) and Iout

22 (t ; τ ) with different τ in the MATLAB workplace. The Random Number 2 and Random Number 3 blocks represent the random
number generator. The Add 3, Add 4, Add 4, and Add 6 blocks represent adding inputs. The Product 1 and Product 2 blocks represent
multiplying inputs. The Integrator 1 and Integrator 2 blocks represent multiplying inputs. The Scope 2 and Scope 3 blocks output
the value of the integral of its input signal with respect to time. The Bus Creator block combines a set of signals into a bus.

(i) Figure 6 displays the simulation results in two schemes
under Gaussian white noise with different SNRs. The sam-
pling frequency is set at 1/T = 1 MHz.

(ii) Table II shows the numerical results of measuring time
shift τ = 3.0 × 10−9 under Gaussian noise N(t, ξ ) with dif-
ferent SNRs in the WVA scheme. The sampling frequency is
set at 1/T = 1 MHz.

(iii) Table III shows the numerical results of mea-
suring the time shift τ = 3.0 × 10−9 under Gaussian
noises N(t, σ 2, ξ1) and N(t, σ 2, ξ2) with different SNRs
and different sampling frequencies 1/T in the AWVA
scheme.

(iv) Table IV shows the numerical results of measuring the
different τ under the strong noise N(t, ξ ) at SNR = −13.2 dB
in the WVA scheme. The sampling frequency is set at 1/T =
1 MHz.

(v) Table V shows the numerical results for measur-
ing the different τ under the strong noises N(t, σ 2, ξ1) and
N(t, σ 2, ξ2) at SNR = −13.2 dB in the AWVA scheme. The
sampling frequency is set at 1/T = 10 MHz.

(vi) Table VI shows the numerical results for measur-
ing the different τ under the strong noises N(t, σ 2, ξ1) and
N(t, σ 2, ξ2) at SNR = −13.2 dB in the AWVA scheme. The
sampling frequency is set at 1/T = 100 MHz.
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FIG. 17. Example of the parameter set of (a) the Random Number 2 block and (b) the Random Number 3 for the measurement τ = 0 ns
and the measurement τ = 3 ns under Gaussian noise, respectively, with (a) seed equal to 000 in the Random Number 2 block and (b) seed
equal to 700 in the Random Number 3 block at SNR equal to 11.5 dB.

FIG. 18. Example of the display of Scope 3. The data are taken from the simulation of the measurement τ = 0 ns and the measurement
τ = 3 ns under Gaussian noise with seed equal to 000 in the Random Number 2 block and seed equal to 700 in the Random Number 3 block
at SNR equal to 11.5 dB.
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FIG. 19. Example of the display of Scope 2. The data are taken from the simulation of the measurement τ = 0 ns and the measurement
τ = 3 ns under Gaussian noise with seed equal to 000 in the Random Number 2 block and seed equal to 700 in the Random Number 3 block
at SNR equal to 11.5 dB.

FIG. 20. Example of the display of Scope 2. The data are taken from the simulation of the measurement τ = 0 ns and the measurement
τ = 3 ns under Gaussian noise with seed equal to 000 in the Random Number 2 block and seed equal to 700 in the Random Number 3 block
at SNR equal to −13.2 dB.
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TABLE II. Parameters and some characteristic numerical results (dimensional quantities in units of s) of measuring the time shift τ =
3.0 × 10−9 under Gaussian noise with different SNRs in the WVA scheme. The contents Et0 and Etτ in parentheses represent the standard error
for estimating the time shifts δt0 and δtτ , respectively. Here N(ξ = 0), N(ξ = 100), . . . , N(ξ = 600) represent multiple measurements with
different initial times.

SNR Noise δt0(±Et0) δtτ (±Etτ ) K1(±E1)

no noise 0.00 × 10−3 (±1.8 × 10−12) 3.00 × 10−5 (±1.8 × 10−12) 10.0 × 103 (±1.21 × 10−3)

11.5 N (ξ = 000) 9.20 × 10−7 (±1.21 × 10−6) 3.07 × 10−5 (±1.21 × 10−6) 9.92 × 103 (±0.81 × 103)

11.5 N (ξ = 100) 1.25 × 10−6 (±1.24 × 10−6) 3.11 × 10−5 (±1.24 × 10−6) 9.95 × 103 (±0.82 × 103)

11.5 N (ξ = 200) 2.33 × 10−6 (±1.20 × 10−6) 3.23 × 10−5 (±1.20 × 10−6) 9.99 × 103 (±0.80 × 103)

11.5 N (ξ = 300) −1.30 × 10−7 (±1.21 × 10−6) 2.97 × 10−5 (±1.21 × 10−6) 9.90 × 103 (±0.81 × 103)

11.5 N (ξ = 400) −2.90 × 10−7 (±1.18 × 10−6) 2.98 × 10−5 (±1.18 × 10−6) 9.93 × 103 (±0.78 × 103)

11.5 N (ξ = 500) 2.99 × 10−6 (±1.20 × 10−6) 3.32 × 10−5 (±1.20 × 10−6) 10.0 × 103 (±0.80 × 103)

11.5 N (ξ = 600) −1.20 × 10−6 (±1.28 × 10−6) 2.88 × 10−5 (±1.28 × 10−6) 10.0 × 103 (±0.85 × 103)

2.8 N (ξ = 000) 3.83 × 10−6 (±5.28 × 10−6) 3.29 × 10−5 (±5.29 × 10−6) 9.69 × 103 (±3.52 × 103)

2.8 N (ξ = 100) 5.62 × 10−6 (±5.49 × 10−6) 3.51 × 10−5 (±5.47 × 10−6) 9.82 × 103 (±3.65 × 103)

2.8 N (ξ = 200) 1.05 × 10−5 (±5.40 × 10−6) 4.05 × 10−5 (±5.36 × 10−6) 10.0 × 103 (±3.59 × 103)

2.8 N (ξ = 300) −5.70 × 10−7 (±5.28 × 10−6) 2.85 × 10−5 (±5.29 × 10−6) 9.69 × 103 (±3.52 × 103)

2.8 N (ξ = 400) −1.33 × 10−6 (±5.32 × 10−6) 2.89 × 10−5 (±5.32 × 10−6) 10.0 × 103 (±3.55 × 103)

2.8 N (ξ = 500) 1.36 × 10−5 (±5.53 × 10−6) 4.45 × 10−5 (±5.48 × 10−6) 10.3 × 103 (±3.66 × 103)

2.8 N (ξ = 600) −3.5 × 10−6 (±5.40 × 10−6) 2.65 × 10−5 (±5.41 × 10−6) 10.0 × 103 (±3.60 × 103)

−6.6 N (ξ = 000) 7.63 × 10−6 (±1.13 × 10−5) 3.57 × 10−5 (±1.14 × 10−5) 9.35 × 103 (±7.53 × 103)

−6.6 N (ξ = 100) 1.26 × 10−5 (±1.20 × 10−5) 4.13 × 10−5 (±1.18 × 10−5) 9.56 × 103 (±7.93 × 103)

−6.6 N (ξ = 200) 2.38 × 10−5 (±1.21 × 10−5) 5.37 × 10−5 (±1.19 × 10−5) 9.96 × 103 (±7.93 × 103)

−6.6 N (ξ = 300) −1.23 × 10−6 (±1.14 × 10−5) 2.69 × 10−5 (±1.14 × 10−6) 9.37 × 103 (±7.60 × 103)

−6.6 N (ξ = 400) −3.21 × 10−6 (±1.20 × 10−5) 2.74 × 10−5 (±1.19 × 10−5) 10.2 × 103 (±7.93 × 103)

−6.6 N (ξ = 500) 1.2577 × 10−3 (±7.91 × 10−5) 1.2682 × 10−3 (±7.96 × 10−5) 0.35 × 103 (±52.6 × 103)1

−6.6 N (ξ = 600) −7.9 × 10−6 (±1.20 × 10−5) 2.22 × 10−5 (±1.21 × 10−5) 10.0 × 103 (±8.00 × 103)

−13.2 N (ξ = 000) 1.23 × 10−5 (±2.12 × 10−5) 3.87 × 10−5 (±2.14 × 10−5) 8.80 × 103 (±14.2 × 103)1

−13.2 N (ξ = 100) 2.52 × 10−5 (±2.28 × 10−5) 5.22 × 10−5 (±2.23 × 10−5) 9.82 × 103 (±15.1 × 103)1

−13.2 N (ξ = 200) 7.61 × 10−4 (±3.93 × 10−5) 7.64 × 10−4 (±3.98 × 10−5) 0.12 × 103 (±26.4 × 103)1

−13.2 N (ξ = 300) −2.40 × 10−6 (±2.14 × 10−5) 2.41 × 10−5 (±2.15 × 10−5) 8.83 × 103 (±14.3 × 103)1

−13.2 N (ξ = 400) −6.60 × 10−6 (±2.42 × 10−5) 2.41 × 10−5 (±2.42 × 10−5) 10.2 × 103 (±16.1 × 103)1

−13.2 N (ξ = 500) 1.4261 × 10−3 (±30.0 × 10−5) 1.4259 × 10−3 (±29.2 × 10−5) −0.06 × 103 (±190 × 103)1

−13.2 N (ξ = 600) −1.0995 × 10−3 (±3.75 × 10−5) −1.0961 × 10−3 (±3.89 × 10−5) 1.13 × 103 (±25.4 × 103)1

1Measurement is invalid.
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TABLE III. Parameters and some characteristic numerical results of the measuring time shift τ = 3.0 × 10−9 under Gaussian noise with
different SNRs in the AWVA scheme. Here 1/T (units of MHz) represents the sampling frequency of the APD.

SNR∗ 1/T N (t, ξ1) N (t, ξ2) �0 �τ 	� KM
2 K2(±E2)

no noise no noise 1.2442 × 10−9 1.1666 × 10−9 7.76 × 10−11 0.0258

7.2 1 ξ1 = 000 ξ2 = 700 1.2462 × 10−9 1.1678 × 10−9 7.84 × 10−11 0.0261 0.02590(±0.0007)
7.2 1 ξ1 = 100 ξ2 = 710 1.2427 × 10−9 1.1657 × 10−9 7.70 × 10−11 0.0256 0.02590(±0.0007)
7.2 1 ξ1 = 200 ξ2 = 720 1.2452 × 10−9 1.1654 × 10−9 7.98 × 10−11 0.0266 0.02590(±0.0007)
7.2 1 ξ1 = 300 ξ2 = 730 1.2440 × 10−9 1.1674 × 10−9 7.66 × 10−11 0.0255 0.02590(±0.0007)
7.2 1 ξ1 = 400 ξ2 = 740 1.2454 × 10−9 1.1680 × 10−9 7.74 × 10−11 0.0258 0.02590(±0.0007)
7.2 1 ξ1 = 500 ξ2 = 750 1.2322 × 10−9 1.1545 × 10−9 7.77 × 10−11 0.0259 0.02590(±0.0007)
7.2 1 ξ1 = 600 ξ2 = 770 1.2591 × 10−9 1.1817 × 10−9 7.74 × 10−11 0.0258 0.02590(±0.0007)
−3.0 1 ξ1 = 000 ξ2 = 700 1.1508 × 10−9 1.0698 × 10−9 8.10 × 10−11 0.0270 0.02595(±0.0030)
−3.0 1 ξ1 = 100 ξ2 = 710 1.3055 × 10−9 1.2308 × 10−9 7.47 × 10−11 0.0249 0.02595(±0.0030)
−3.0 1 ξ1 = 200 ξ2 = 720 1.1987 × 10−9 1.1117 × 10−9 8.70 × 10−11 0.0290 0.02595(±0.0030)
−3.0 1 ξ1 = 300 ξ2 = 730 1.2190 × 10−9 1.1465 × 10−9 7.25 × 10−11 0.0241 0.02595(±0.0030)
−3.0 1 ξ1 = 400 ξ2 = 740 1.2657 × 10−9 1.1893 × 10−9 7.64 × 10−11 0.0254 0.02595(±0.0030)
−3.0 1 ξ1 = 500 ξ2 = 750 1.1748 × 10−9 1.0971 × 10−9 7.77 × 10−11 0.0259 0.02595(±0.0030)
−3.0 1 ξ1 = 600 ξ2 = 770 1.3835 × 10−9 1.3072 × 10−9 7.63 × 10−11 0.0254 0.02595(±0.0030)
−12.6 1 ξ1 = 000 ξ2 = 700 0.6719 × 10−9 0.5867 × 10−9 8.52 × 10−11 0.0284 0.02608(±0.0067)
−12.6 1 ξ1 = 100 ξ2 = 710 1.6234 × 10−9 1.5524 × 10−9 7.10 × 10−11 0.0236 0.02608(±0.0067)
−12.6 1 ξ1 = 200 ξ2 = 720 0.9655 × 10−9 0.8671 × 10−9 9.84 × 10−11 0.0328 0.02608(±0.0067)
−12.6 1 ξ1 = 300 ξ2 = 730 1.1025 × 10−9 1.0363 × 10−9 6.62 × 10−11 0.0220 0.02608(±0.0067)
−12.6 1 ξ1 = 400 ξ2 = 740 1.3512 × 10−9 1.2762 × 10−9 7.50 × 10−11 0.0250 0.02608(±0.0067)
−12.6 1 ξ1 = 500 ξ2 = 750 1.0343 × 10−9 0.9565 × 10−9 7.78 × 10−11 0.0259 0.02608(±0.0067)
−12.6 1 ξ1 = 600 ξ2 = 770 1.8158 × 10−9 1.7411 × 10−9 7.47 × 10−11 0.0249 0.02608(±0.0067)
−18.6 1 ξ1 = 000 ξ2 = 700 1.3079 × 10−9 1.2151 × 10−9 9.28 × 10−11 0.0309 0.02264(±0.0085)
−18.6 1 ξ1 = 100 ξ2 = 710 2.8789 × 10−9 2.8145 × 10−9 6.44 × 10−11 0.0214 0.02264(±0.0085)
−18.6 1 ξ1 = 200 ξ2 = 720 0.4317 × 10−9 0.3892 × 10−9 4.25 × 10−11 0.0141 0.02264(±0.0085)
−18.6 1 ξ1 = 300 ξ2 = 730 0.6522 × 10−9 0.5974 × 10−9 5.48 × 10−11 0.0182 0.02264(±0.0085)
−18.6 1 ξ1 = 400 ξ2 = 740 1.6710 × 10−9 1.5987 × 10−9 7.23 × 10−11 0.0241 0.02264(±0.0085)
−18.6 1 ξ1 = 500 ξ2 = 750 0.6262 × 10−9 0.5484 × 10−9 7.78 × 10−11 0.0259 0.02264(±0.0085)
−18.6 1 ξ1 = 600 ξ2 = 770 3.3287 × 10−9 3.2569 × 10−9 7.18 × 10−11 0.0239 0.02264(±0.0085)
−18.6 10 ξ1 = 000 ξ2 = 700 1.5115 × 10−9 1.4299 × 10−9 8.16 × 10−11 0.0272 0.02551(±0.0028)
−18.6 10 ξ1 = 100 ξ2 = 710 2.2062 × 10−9 2.1381 × 10−9 6.81 × 10−11 0.0227 0.02551(±0.0028)
−18.6 10 ξ1 = 200 ξ2 = 720 0.8213 × 10−9 0.7503 × 10−9 7.10 × 10−11 0.0236 0.02551(±0.0028)
−18.6 10 ξ1 = 300 ξ2 = 730 1.5151 × 10−9 1.4387 × 10−9 7.64 × 10−11 0.0254 0.02551(±0.0028)
−18.6 10 ξ1 = 400 ξ2 = 740 1.8597 × 10−9 1.7841 × 10−9 7.56 × 10−11 0.0252 0.02551(±0.0028)
−18.6 10 ξ1 = 500 ξ2 = 750 1.2757 × 10−9 1.1975 × 10−9 7.82 × 10−11 0.0260 0.02551(±0.0028)
−18.6 10 ξ1 = 600 ξ2 = 770 1.8199 × 10−9 1.7344 × 10−9 8.55 × 10−11 0.0285 0.02551(±0.0028)
−18.6 100 ξ1 = 000 ξ2 = 700 1.2195 × 10−9 1.1449 × 10−9 7.46 × 10−11 0.0248 0.02568(±0.0008)
−18.6 100 ξ1 = 100 ξ2 = 710 1.5641 × 10−9 1.4852 × 10−9 7.89 × 10−11 0.0263 0.02568(±0.0008)
−18.6 100 ξ1 = 200 ξ2 = 720 0.9090 × 10−9 0.8319 × 10−9 7.71 × 10−11 0.0257 0.02568(±0.0008)
−18.6 100 ξ1 = 300 ξ2 = 730 1.2707 × 10−9 1.1929 × 10−9 7.78 × 10−11 0.0259 0.02568(±0.0008)
−18.6 100 ξ1 = 400 ξ2 = 740 1.2711 × 10−9 1.1931 × 10−9 7.80 × 10−11 0.0260 0.02568(±0.0008)
−18.6 100 ξ1 = 500 ξ2 = 750 1.2311 × 10−9 1.1559 × 10−9 7.52 × 10−11 0.0250 0.02568(±0.0008)
−18.6 100 ξ1 = 600 ξ2 = 770 1.4695 × 10−9 1.3910 × 10−9 7.85 × 10−11 0.0261 0.02568(±0.0008)
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TABLE IV. Numerical results (dimensional quantities in unit of s) for measuring the different τ under the strong noise at SNR equal to
−13.2 dB in the WVA scheme. The contents Et0 and Etτ in parentheses represent the standard error for estimating the time shifts δt0 and δtτ ,
respectively. Here N(ξ = 0), N(ξ = 100), . . . , N(ξ = 600) represent the multiple measurements with the different initial times.

τ Noise δt0(±Et0) δtτ (±Etτ ) K1(±E1)

6 × 10−9 N (ξ = 000) 1.23 × 10−5 (±2.12 × 10−5) 6.57 × 10−5 (±2.16 × 10−5) 8.90 × 103 (±7.13 × 103)

6 × 10−9 N (ξ = 100) 2.52 × 10−5 (±2.28 × 10−5) 7.85 × 10−5 (±2.20 × 10−5) 8.88 × 103 (±7.46 × 103)

6 × 10−9 N (ξ = 200) 7.6086 × 10−4 (±3.93 × 10−5) 7.7576 × 10−4 (±4.28 × 10−5) 2.48 × 103 (±13.6 × 103)1

6 × 10−9 N (ξ = 300) −2.40 × 10−6 (±2.14 × 10−5) 5.07 × 10−5 (±2.15 × 10−5) 8.85 × 103 (±7.15 × 103)

6 × 10−9 N (ξ = 400) −6.60 × 10−6 (±2.42 × 10−5) 5.49 × 10−5 (±2.41 × 10−5) 10.2 × 103 (±8.05 × 103)

6 × 10−9 N (ξ = 500) 1.4261 × 10−3 (±30.0 × 10−5) 1.4251 × 10−3 (±28.2 × 10−5) −0.16 × 103 (±98.6 × 103)1

6 × 10−9 N (ξ = 600) −1.0995 × 10−3 (±3.75 × 10−5) −1.0920 × 10−3 (±4.07 × 10−5) 1.25 × 103 (±13.0 × 103)1

9 × 10−9 N (ξ = 000) 1.23 × 10−5 (±2.12 × 10−5) 9.34 × 10−5 (±2.19 × 10−5) 9.01 × 103 (±4.84 × 103)

9 × 10−9 N (ξ = 100) 2.52 × 10−5 (±2.28 × 10−5) 10.4 × 10−5 (±2.18 × 10−5) 8.75 × 103 (±5.22 × 103)

9 × 10−9 N (ξ = 200) 7.6086 × 10−4 (±3.93 × 10−5) 7.8843 × 10−4 (±4.58 × 10−5) 3.05 × 103 (±9.45 × 103)1

9 × 10−9 N (ξ = 300) −2.40 × 10−6 (±2.14 × 10−5) 7.72 × 10−5 (±2.16 × 10−5) 8.84 × 103 (±4.77 × 103)

9 × 10−9 N (ξ = 400) −6.60 × 10−6 (±2.42 × 10−5) 8.58 × 10−5 (±2.39 × 10−5) 10.3 × 103 (±5.34 × 103)

9 × 10−9 N (ξ = 500) 1.4261 × 10−3 (±30.0 × 10−5) 1.4238 × 10−3 (±26.8 × 10−5) −0.25 × 103 (±65.5 × 103)1

9 × 10−9 N (ξ = 600) −1.0995 × 10−3 (±3.75 × 10−5) −1.0869 × 10−3 (±4.31 × 10−5) 1.38 × 103 (±8.95 × 103)1

12 × 10−9 N (ξ = 000) 1.23 × 10−5 (±2.12 × 10−5) 12.2 × 10−5 (±2.23 × 10−5) 9.12 × 103 (±3.62 × 103)

12 × 10−9 N (ξ = 100) 2.52 × 10−5 (±2.28 × 10−5) 13.1 × 10−5 (±2.18 × 10−5) 8.77 × 103 (±3.75 × 103)

12 × 10−9 N (ξ = 200) 7.6086 × 10−4 (±3.93 × 10−5) 8.1703 × 10−4 (±5.26 × 10−5) 4.68 × 103 (±7.65 × 103)1

12 × 10−9 N (ξ = 300) −2.40 × 10−6 (±2.14 × 10−5) 10.4 × 10−5 (±2.16 × 10−5) 9.21 × 103 (±2.68 × 103)

12 × 10−9 N (ξ = 400) −6.60 × 10−6 (±2.42 × 10−5) 11.7 × 10−5 (±2.37 × 10−5) 10.3 × 103 (±3.99 × 103)

12 × 10−9 N (ξ = 500) 1.4261 × 10−3 (±30.0 × 10−5) 1.4217 × 10−3 (±25.2 × 10−5) −0.36 × 103 (±45.8 × 103)1

12 × 10−9 N (ξ = 600) −1.0995 × 10−3 (±4.66 × 10−5) −1.0797 × 10−3 (±4.63 × 10−5) 1.65 × 103 (±7.40 × 103)1

15 × 10−9 N (ξ = 000) 1.23 × 10−5 (±2.12 × 10−5) 15.7 × 10−5 (±2.27 × 10−5) 9.23 × 103 (±2.92 × 103)

15 × 10−9 N (ξ = 100) 2.52 × 10−5 (±2.28 × 10−5) 15.6 × 10−5 (±2.18 × 10−5) 8.76 × 103 (±2.96 × 103)

15 × 10−9 N (ξ = 200) 7.6086 × 10−4 (±3.93 × 10−5) 8.6756 × 10−4 (±6.45 × 10−5) 7.11 × 103 (±6.92 × 103)

15 × 10−9 N (ξ = 300) −2.40 × 10−6 (±2.14 × 10−5) 13.1 × 10−5 (±2.16 × 10−5) 8.86 × 103 (±2.86 × 103)

15 × 10−9 N (ξ = 400) −6.60 × 10−6 (±2.42 × 10−5) 14.7 × 10−5 (±2.34 × 10−5) 10.3 × 103 (±3.17 × 103)

15 × 10−9 N (ξ = 500) 1.4261 × 10−3 (±30.0 × 10−5) 1.4187 × 10−3 (±24.0 × 10−5) −0.49 × 103 (±36.0 × 103)1

15 × 10−9 N (ξ = 600) −1.0995 × 10−3 (±3.75 × 10−5) −1.0687 × 10−3 (±5.24 × 10−5) 2.05 × 103 (±5.99 × 103)1

1Measurement is invalid.
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TABLE V. Parameters and some characteristic numerical results for measuring the different τ under the strong noises N(t, σ 2, ξ1) and
N(t, σ 2, ξ2) at SNR∗ equal to −18.6 dB in the AWVA scheme. The sampling frequency is set at 1/T = 10 MHz.

τ (s) N(t, ξ1) N(t, ξ2) �0 �τ 	� KM
2 K2(±E2)

no noise no noise 1.2443 × 10−9 1.0837 × 10−9 16.1 × 10−11 0.0268

6 × 10−9 N (ξ1 = 000) N (ξ2 = 700) 1.5116 × 10−9 1.3418 × 10−9 17.0 × 10−11 0.0283 0.02643(±0.00287)

6 × 10−9 N (ξ1 = 100) N (ξ2 = 710) 2.2062 × 10−9 2.0626 × 10−9 14.3 × 10−11 0.0238 0.02643(±0.00287)

6 × 10−9 N (ξ1 = 200) N (ξ2 = 720) 0.8214 × 10−9 0.6742 × 10−9 14.7 × 10−11 0.0245 0.02643(±0.00287)

6 × 10−9 N (ξ1 = 300) N (ξ2 = 730) 1.5151 × 10−9 1.3575 × 10−9 15.7 × 10−11 0.0261 0.02643(±0.00287)

6 × 10−9 N (ξ1 = 400) N (ξ2 = 740) 1.8597 × 10−9 1.7035 × 10−9 15.6 × 10−11 0.0260 0.02643(±0.00287)

6 × 10−9 N (ξ1 = 500) N (ξ2 = 750) 1.2757 × 10−9 1.1136 × 10−9 16.2 × 10−11 0.0270 0.02643(±0.00287)

6 × 10−9 N (ξ1 = 600) N (ξ2 = 760) 1.8199 × 10−9 1.6441 × 10−9 17.6 × 10−11 0.0293 0.02643(±0.00287)

no noise no noise 1.2443 × 10−9 0.9973 × 10−9 24.7 × 10−11 0.0274

9 × 10−9 N (ξ1 = 000) N (ξ2 = 700) 1.5116 × 10−9 1.2490 × 10−9 26.2 × 10−11 0.0291 0.02720(±0.00280)

9 × 10−9 N (ξ1 = 100) N (ξ2 = 710) 2.2062 × 10−9 1.9815 × 10−9 22.4 × 10−11 0.0249 0.02720(±0.00280)

9 × 10−9 N (ξ1 = 200) N (ξ2 = 720) 0.8214 × 10−9 0.5944 × 10−9 22.7 × 10−11 0.0252 0.02720(±0.00280)

9 × 10−9 N (ξ1 = 300) N (ξ2 = 730) 1.5151 × 10−9 1.2730 × 10−9 24.2 × 10−11 0.0269 0.02720(±0.00280)

9 × 10−9 N (ξ1 = 400) N (ξ2 = 740) 1.8597 × 10−9 1.6194 × 10−9 24.0 × 10−11 0.0266 0.02720(±0.00280)

9 × 10−9 N (ξ1 = 500) N (ξ2 = 750) 1.2757 × 10−9 1.0260 × 10−9 25.0 × 10−11 0.0277 0.02720(±0.00280)

9 × 10−9 N (ξ1 = 600) N (ξ2 = 760) 1.8199 × 10−9 1.5501 × 10−9 27.0 × 10−11 0.0300 0.02720(±0.00280)

no noise no noise 1.2443 × 10−9 0.9091 × 10−9 33.5 × 10−11 0.0279

12 × 10−9 N (ξ1 = 000) N (ξ2 = 700) 1.5116 × 10−9 1.1535 × 10−9 35.8 × 10−11 0.0298 0.02770(±0.00250)

12 × 10−9 N (ξ1 = 100) N (ξ2 = 710) 2.2062 × 10−9 1.8966 × 10−9 30.9 × 10−11 0.0257 0.02770(±0.00250)

12 × 10−9 N (ξ1 = 200) N (ξ2 = 720) 0.8214 × 10−9 0.5128 × 10−9 30.8 × 10−11 0.0256 0.02770(±0.00250)

12 × 10−9 N (ξ1 = 300) N (ξ2 = 730) 1.5151 × 10−9 1.1870 × 10−9 32.8 × 10−11 0.0273 0.02770(±0.00250)

12 × 10−9 N (ξ1 = 400) N (ξ2 = 740) 1.8597 × 10−9 1.5336 × 10−9 32.6 × 10−11 0.0271 0.02770(±0.00250)

12 × 10−9 N (ξ1 = 500) N (ξ2 = 750) 1.2757 × 10−9 0.9364 × 10−9 33.9 × 10−11 0.0282 0.02770(±0.00250)

12 × 10−9 N (ξ1 = 600) N (ξ2 = 760) 1.8199 × 10−9 1.4566 × 10−9 36.3 × 10−11 0.0302 0.02770(±0.00250)

no noise no noise 1.2443 × 10−9 0.8208 × 10−9 43.4 × 10−11 0.0282

15 × 10−9 N (ξ1 = 000) N (ξ2 = 700) 1.5116 × 10−9 1.0575 × 10−9 45.4 × 10−11 0.0303 0.02811(±0.00229)

15 × 10−9 N (ξ1 = 100) N (ξ2 = 710) 2.2062 × 10−9 1.8100 × 10−9 39.6 × 10−11 0.0264 0.02811(±0.00229)

15 × 10−9 N (ξ1 = 200) N (ξ2 = 720) 0.8214 × 10−9 0.4308 × 10−9 39.1 × 10−11 0.0261 0.02811(±0.00229)

15 × 10−9 N (ξ1 = 300) N (ξ2 = 730) 1.5151 × 10−9 1.1010 × 10−9 41.4 × 10−11 0.0276 0.02811(±0.00229)

15 × 10−9 N (ξ1 = 400) N (ξ2 = 740) 1.8597 × 10−9 1.4477 × 10−9 41.2 × 10−11 0.0274 0.02811(±0.00229)

15 × 10−9 N (ξ1 = 500) N (ξ2 = 750) 1.2757 × 10−9 0.8466 × 10−9 42.9 × 10−11 0.0286 0.02811(±0.00229)

15 × 10−9 N (ξ1 = 600) N (ξ2 = 760) 1.8199 × 10−9 1.3628 × 10−9 45.7 × 10−11 0.0304 0.02811(±0.00229)
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TABLE VI. Parameters and some characteristic numerical results for measuring the different τ under the strong noises N(t, σ 2, ξ1) and
N(t, σ 2, ξ2) at SNR∗ equal to −18.6 dB in the AWVA scheme. The sampling frequency is set at 1/T = 100 MHz.

τ (s) N(t, ξ1) N(t, ξ2 ) �0 �τ 	� KM
2 K2(±E2)

6 × 10−9 no noise no noise 1.2443 × 10−9 1.0837 × 10−9 16.1 × 10−11 0.0267

6 × 10−9 N (ξ1 = 000) N (ξ2 = 700) 1.2195 × 10−9 1.0651 × 10−9 15.4 × 10−11 0.0257 0.02654(±0.00084)

6 × 10−9 N (ξ1 = 100) N (ξ2 = 710) 1.5641 × 10−9 1.4010 × 10−9 16.3 × 10−11 0.0272 0.02654(±0.00084)

6 × 10−9 N (ξ1 = 200) N (ξ2 = 720) 0.9090 × 10−9 0.7495 × 10−9 15.9 × 10−11 0.0265 0.02654(±0.00084)

6 × 10−9 N (ξ1 = 300) N (ξ2 = 730) 1.2707 × 10−9 1.1104 × 10−9 16.0 × 10−11 0.0266 0.02654(±0.00084)

6 × 10−9 N (ξ1 = 400) N (ξ2 = 740) 1.2711 × 10−9 1.1095 × 10−9 16.1 × 10−11 0.0268 0.02654(±0.00084)

6 × 10−9 N (ξ1 = 500) N (ξ2 = 750) 1.2311 × 10−9 1.0754 × 10−9 15.6 × 10−11 0.0260 0.02654(±0.00084)

6 × 10−9 N (ξ1 = 600) N (ξ2 = 760) 1.4695 × 10−9 1.3071 × 10−9 16.2 × 10−11 0.0270 0.02654(±0.00084)

no noise no noise 1.2443 × 10−9 0.9973 × 10−9 24.7 × 10−11 0.0274

9 × 10−9 N (ξ1 = 000) N (ξ2 = 700) 1.2195 × 10−9 0.9818 × 10−9 23.8 × 10−11 0.0264 0.02727(±0.00087)

9 × 10−9 N (ξ1 = 100) N (ξ2 = 710) 1.5641 × 10−9 1.3132 × 10−9 25.1 × 10−11 0.0279 0.02727(±0.00087)

9 × 10−9 N (ξ1 = 200) N (ξ2 = 720) 0.9090 × 10−9 0.6636 × 10−9 24.5 × 10−11 0.0272 0.02727(±0.00087)

9 × 10−9 N (ξ1 = 300) N (ξ2 = 730) 1.2707 × 10−9 1.0246 × 10−9 24.6 × 10−11 0.0273 0.02727(±0.00087)

9 × 10−9 N (ξ1 = 400) N (ξ2 = 740) 1.2711 × 10−9 1.0223 × 10−9 24.8 × 10−11 0.0276 0.02727(±0.00087)

9 × 10−9 N (ξ1 = 500) N (ξ2 = 750) 1.2311 × 10−9 0.9914 × 10−9 24.0 × 10−11 0.0267 0.02727(±0.00087)

9 × 10−9 N (ξ1 = 600) N (ξ2 = 760) 1.4695 × 10−9 1.2196 × 10−9 25.0 × 10−11 0.0278 0.02727(±0.00087)

no noise no noise 1.2443 × 10−9 0.9091 × 10−9 33.5 × 10−11 0.0279

12 × 10−9 N (ξ1 = 000) N (ξ2 = 700) 1.2195 × 10−9 0.8967 × 10−9 32.3 × 10−11 0.0269 0.02774(±0.00084)

12 × 10−9 N (ξ1 = 100) N (ξ2 = 710) 1.5641 × 10−9 1.2236 × 10−9 34.1 × 10−11 0.0284 0.02774(±0.00084)

12 × 10−9 N (ξ1 = 200) N (ξ2 = 720) 0.9090 × 10−9 0.5760 × 10−9 33.3 × 10−11 0.0277 0.02774(±0.00084)

12 × 10−9 N (ξ1 = 300) N (ξ2 = 730) 1.2707 × 10−9 0.9375 × 10−9 33.3 × 10−11 0.0277 0.02774(±0.00084)

12 × 10−9 N (ξ1 = 400) N (ξ2 = 740) 1.2711 × 10−9 0.9332 × 10−9 33.8 × 10−11 0.0282 0.02774(±0.00084)

12 × 10−9 N (ξ1 = 500) N (ξ2 = 750) 1.2311 × 10−9 0.9056 × 10−9 32.5 × 10−11 0.0271 0.02774(±0.00084)

12 × 10−9 N (ξ1 = 600) N (ξ2 = 760) 1.4695 × 10−9 1.1301 × 10−9 33.9 × 10−11 0.0282 0.02774(±0.00084)

no noise no noise 1.2443 × 10−9 0.8208 × 10−9 43.4 × 10−11 0.0282

15 × 10−9 N (ξ1 = 000) N (ξ2 = 700) 1.2195 × 10−9 0.8115 × 10−9 40.8 × 10−11 0.0272 0.02808(±0.00088)

15 × 10−9 N (ξ1 = 100) N (ξ2 = 710) 1.5641 × 10−9 1.1339 × 10−9 43.0 × 10−11 0.0287 0.02808(±0.00088)

15 × 10−9 N (ξ1 = 200) N (ξ2 = 720) 0.9090 × 10−9 0.4883 × 10−9 42.1 × 10−11 0.0281 0.02808(±0.00088)

15 × 10−9 N (ξ1 = 300) N (ξ2 = 730) 1.2707 × 10−9 0.8505 × 10−9 42.0 × 10−11 0.0280 0.02808(±0.00088)

15 × 10−9 N (ξ1 = 400) N (ξ2 = 740) 1.2711 × 10−9 0.8438 × 10−9 42.7 × 10−11 0.0285 0.02808(±0.00088)

15 × 10−9 N (ξ1 = 500) N (ξ2 = 750) 1.2311 × 10−9 0.8195 × 10−9 41.2 × 10−11 0.0275 0.02808(±0.00088)

15 × 10−9 N (ξ1 = 600) N (ξ2 = 760) 1.4695 × 10−9 1.0405 × 10−9 42.9 × 10−11 0.0286 0.02808(±0.00088)
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