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Interplay between disorder and collective coherent response:
Superradiance and spectral motional narrowing in the time domain
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The interplay between static and dynamic disorder and collective optical response in molecular ensembles
is an important characteristic of nanoplasmonic and nanophotonic molecular systems. Here we investigate
the cooperative superradiant response of a molecular ensemble of quantum emitters under the influence of
environmental disorder, including inhomogeneous broadening (as induced by a static random distribution of
the molecular transition frequencies) and motional narrowing (as induced by stochastic modulation of these
excitation energies). The effect of inhomogeneous broadening is to destroy the coherence of the collective
molecular excitation and suppress superradiant emission. However, fast stochastic modulation of the molecular
excitation energy can effectively restore the coherence of the quantum emitters and lead to a recovery of
superradiant emission, which is an unexpected manifestation of motional narrowing. For a light-scattering
process as induced by an off-resonant incident pulse, stochastic modulation leads to inelastic fluorescence
emission at the average excitation energy at long times and suggests that dynamic disorder effects can actually
lead to collective excitation of the molecular ensemble.
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I. INTRODUCTION

Cooperative light-matter interactions have been observed
in a variety of physical systems and utilized for many applica-
tions in quantum information processing and cavity polariton
chemistry [1–4]. The essence of such interactions is that many
molecules and materials interact together with a common
optical field, such as a cavity photon mode or a continuum
of radiation fields, leading to a collective optical response that
is different from the response of a set of independent molec-
ular emitters. In particular, the superradiance phenomenon
[5] describes how many quantum emitters can radiate collec-
tively at an enhanced rate that is faster than their individual
spontaneous emission rate. The collective nature of super-
radiant emission is manifested by the enhanced emission
rate that increases with the number of emitters involved in
the cooperative light-matter interactions, as observed exper-
imentally in cold atoms in an optical cavity or waveguides
[6–11], molecular aggregates [12–16], nitrogen vacancies in
nanocrystals [17], and lead halide perovskite [18,19]. More
recently, coupling between the superradiant and subradiant
states has been controlled by modulating the emitter’s transi-
tion frequencies, which should have applications in quantum
optics and quantum information processing using supercon-
ducting qubits [20–22].

*Present address: Department of Chemistry and Biochemistry, Uni-
versity of Notre Dame, 251 Nieuwland Science Hall, Notre Dame,
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From a theoretical perspective, the simplest model for de-
scribing superradiant emission is to propagate open quantum
dynamics where the molecular Hamiltonian ĤM is augmented
by a non-Hermitian coupling term Ĥeff = ĤM − i �

2 Q̂ [23–25].
Here, ĤM describes N (ideally noninteracting) subsystems,
and the simplest choice for the non-Hermitian operator −i �

2 Q̂
is 〈xi|Q̂|x j〉 = 1 for all xi, x j molecular excited states. In
this expression, � is the single molecule spontaneous emis-
sion rate. The non-Hermitian operator above accounts for the
overall effects of cooperative light-matter interactions (as-
suming that every molecule equally couples to the radiation
fields). The effective Hamiltonian has one complex-valued
eigenvalue and N − 1 real-valued eigenvalues. The eigenstate
corresponding to the complex-valued eigenvalue, referred to
as the superradiant state, is a coherent superposition of all
the molecular excitations. This superradiant state is bright in
the sense that the coherent molecular excitation decays and
emits radiation at the superradiance rate N�. In contrast, other
eigenstates corresponding to the real eigenvalues, so-called
dark states, do not decay as a function of time.

It should be noted that the simple model above has a few
limitations. First, the model does not use an explicit descrip-
tion of photonic states, which will be important for the present
paper. To overcome this limitation, below we will explicitly
model a bath of photon modes all coupled to the set of emitters
(rather than use �Q̂). This present approach will allow us to
address the distribution of emitted photons while still being
computationally affordable. A second limitation of the model
above is the assumption that all molecules see the same photon
manifold (embedded in the form postulated for the matrix Q̂);
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this assumption should hold if the molecular system is small
relative to the relevant wavelength and if one can disregard
orientational disorder, which may occur in realistic systems,
such as fluorescent dyes [15], ordered superlattices of
perovskite [18,26], and closely packing quantum dots [27].
Now, in principle, for emitters placed within a lattice or an
atomic array [2,19], the corresponding molecule-photon cou-
plings should be a function of the relative position of the
emitters. For a large enough system, this spatial dependence
can modify the eigenstates and eigenvalues of the effective
Hamiltonian, so that the dark states acquire weak decay rates
and become the so-called subradiant states [25,28–30]. In
turn, the interplay between the superradiant and subradiant
states is responsible for the biexponential decay profiles that
are observed in molecular aggregates and quantum dot arrays
[31,32], whereupon the collective emission changes from a
fast decay at short times to a much slower decay for the
long-time dynamics. Nevertheless, even though below we will
discuss the transition from superradiance to subradiance, we
will not concern ourselves with how spatial placing affects the
relaxation operator. As a third limitation of the model, we con-
sider molecular interactions mediated only by optical photon
exchange and disregard electrostatic interactions, which usu-
ally cannot be ignored in realistic systems. However, Ref. [15]
shows that some collective interference phenomena in exci-
tation energy transfer between molecular aggregates can be
captured by simple semiclassical electrodynamic simulations
without accounting for intermolecular coupling. Thus, this as-
sumption may have the potential to hold in some systems. Fu-
ture work can certainly address this shortcoming of our model.

In what follows below, we will demonstrate that subra-
diant features emerge naturally in very simple simulations
due to disorder effects as induced by interaction with the
environment. Historically, most published studies on disor-
der in molecular ensembles have considered static disorder
[33–36], where environmental processes are assumed to be
much slower than the timescale of radiative relaxation. As
such, each molecule experiences a slightly different local
environment leading to a random dipolar orientation and a
fluctuating electronic transition frequency in the model. Fewer
studies in the literature have considered dynamic disorder,
where disorder has a timescale comparable to or faster than
molecular emission as induced by the thermal motion of
the environment (which is sometimes just treated as a phe-
nomenological molecular dephasing rate [37]). Formally, the
dynamic disorder (for an array of emitters) can arise from
either the stochastic modulation of the dipolar orientation or
the excitation energy of each molecule, which altogether can
lead to many interesting phenomena. For instance, a slow,
subradiant fluorescence signal at long times can be observed
in a cold atom cloud excited by an off-resonance laser pulse
[6,38,39]. Moreover, recent experiments show that motional
narrowing [40] as induced by dynamic disorder [41–43] can
be used to entangle quantum states and restore coherence
for quantum emitters [44–46]. At this point, one may won-
der the following: when the temperature increases, can the
effect of fast modulation be observed even in the presence
of other temperature-dependent effects? In fact, absorption
spectrum narrowing has been observed in some molecu-
lar systems when structural transitions (which arise with

increasing temperature) activate fast local motion of cation or
anion molecules; such systems include plastic crystals [47]
and hybrid organic-inorganic perovskites [48]. Interestingly,
however, to our knowledge, the effects of such dynamic dis-
order on collective emission have not been explored beyond a
phenomenological dephasing approximation.

With this background, in the present paper, we investigate
the cooperative emission of a molecular ensemble under the
influence of environmental dynamic disorder with stochastic
modulation of the disorder timescales ranging from fast (rel-
ative to all molecular timescales) to slow modulation down
to the static limit. We focus first on the case in which the
molecules are prepared initially in the coherent excited state,
and we analyze the crossover between superradiance and sub-
radiance under static and dynamic disorder. The second focus
of the paper is the off-resonant light-scattering process of a
disordered molecular ensemble. Such scattering is necessarily
elastic when the molecular target is static, however in the
presence of fast dynamic disorder (pure dephasing) inelastic
fluorescence emission accompanies the elastic scattering sig-
nal. Here we discuss the onset of this phenomena and how it
reflects the collective nature of the many-molecule response.
The outline of the paper is as follows: In Sec. II, we formulate
a model for collective emission that treats the radiation fields
explicitly and introduce static and dynamic disorder within
the model. In Sec. III, we investigate the superradiant emis-
sion from the coherent state under the influence of dynamic
disorder and discuss how the effect of motional narrowing
can be manifested in the time domain. In Sec. IV, we focus
on the optical response of a disordered molecular ensemble
interacting with an off-resonant light pulse and elucidate the
collective features of the inelastic fluorescence signals. We
conclude in Sec. V.

II. MODEL

A. Model Hamiltonian

Processes involving collective light-matter interactions can
be modeled by an ensemble of N quantum emitters coupled
to a shared continuum of photon states using the machin-
ery of quantum electrodynamics. The total Hamiltonian takes
the form of Ĥ = ĤM + ĤR + V̂MR where ĤM is the Hamilto-
nian of the molecular subsystem, ĤR is the quantized photon
Hamiltonian, and V̂MR describes the molecule-radiation cou-
pling. The molecular subsystem is composed of N two-level
systems where the jth molecule has the ground state |gj〉,
the excited state |x j〉, and the electronic transition frequency
ω j . In the span of the total ground state |G〉 = ∏N

k=1 |g j〉 and
the single excitation Fock states |Xj〉 = |x j〉

∏N
k �= j |gk〉 (only

the jth molecule is excited), the total Hamiltonian of the
molecular subsystem takes the form

ĤM = EG|G〉〈G| +
N∑

j=1

Ej |Xj〉〈Xj |. (1)

Here the single molecular excitation energy is given by
Ej − EG = h̄ω j where EG denotes the ground-state energy
and the intermolecular coupling is disregarded. Within the
single excitation subspace, we model the radiation fields as
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a set of single-photon states {|α〉} with frequencies {ωα} and
the single-photon Hamiltonian is

ĤR =
∑

α

h̄ωα|α〉〈α|. (2)

The molecule-radiation coupling takes the form of

V̂MR =
∑
j,α

Vj,α (|Xj〉〈Gα| + |Gα〉〈Xj |) (3)

where Vj,α denotes the single-molecule coupling of the jth
molecule to the photon mode ωα . Here |Gα〉 = |G〉|α〉 denotes
the dressed state where all of the molecules are in the ground
state with a single photon of frequency ωα and |Xj〉 denotes
|Xj〉|0〉 where there is no photon excitation. As a final note,
we emphasize that this model for collective emission involves
single excitation states as coupled to a shared continuum of
photon states [49], rather than the original Dicke superradi-
ance problem where all molecules are initially excited (which
would require a set of quantum states with N excitations rather
than single excitations).

In the absence of disorder, we assume that the emitters
are identical, i.e., ω j = ωx is the same for all molecules,
and make several further assumptions as follows. First, we
assume the system is small relative to the radiation wave-
length (the long-wavelength approximation) and disregard
orientational disorder so that Vj,α = vα for all j. Second,
we employ the wide-band approximation (i.e., vα is a con-
stant for all α), so that each single emitter decays and emits
photons to the radiation continuum at the spontaneous emis-
sion rate � = 2π

∑
α |vα|2δ(ωx − ωα ), as one can derive by

the Wigner-Weisskopf theory. Under these assumptions, the
superradiant state of the molecular subsystem is the fully
symmetric superposition of all the single excitation states,
|S〉 = 1√

N

∑N
j=1 |Xj〉. When the molecular ensemble is ini-

tially prepared in the superradiant state, the total excitation
population should decay and emit photons at an enhanced rate
N�. Note that the enhancement of the emission rate by the
number of emitters N is a signature of the collectivity of the
superradiant emission.

The dynamics of the total system are governed by the time-
dependent Schrodinger equation d

dt |ψ (t )〉 = −iĤ (t )|ψ (t )〉
where the total wave function is written in the sin-
gle excitation subspace |ψ (t )〉 = C0(t )|G〉 + ∑

j Cj (t )|Xj〉 +∑
α Cα (t )|Gα〉. (Throughout this paper, we set h̄ = 1.) The

dynamics in the excited molecules subspace is thus given by

dCj

dt
= −iω jCj − i

∑
α

Vj,αCα. (4)

In order to avoid the photonic back-action towards the molec-
ular subsystem, we introduce a damping parameter η in the
photon modes, i.e.,

dCα

dt
= −iωαCα − i

∑
j

V ∗
j,αCj − η

2
Cα. (5)

The results reported below do not depend on the choice of η

provided that η exceeds the spacing between the energies h̄ωα .
The molecular excitation population (the total probability of
finding the excitation in the molecular subsystem) can be

calculated by

P(t ) =
〈

N∑
j=1

|Cj (t )|2
〉
, (6)

while the cumulative emission at frequency ωα is given by

I (ωα, t ) =
〈
|Cα (t )|2 + η

∫ t

0
dt ′|Cα (t ′)|2

〉
. (7)

Here I (ωα, t ) includes the instantaneous population of the
photon mode |Cα (t )|2 as well as the damped popula-
tion. In general, for the parameters chosen in this paper,
propagating the molecular subsystem wave function with
the protocol above leads to results that are equivalent to
those obtained from an effective non-Hermitian Hamiltonian
Ĥeff = ĤM − i �

2 Q̂.

B. Dynamic and static disorder

We now consider disorder effects as induced by the in-
teraction of the molecular ensemble with the environment.
Depending on the timescale of the environmental process
relative to the molecular emission, the molecular ensemble
can experience two types of disorder.

1. Static disorder

For a process that is much slower than molecular emission,
the local environment can be considered time independent and
the inhomogeneity of the environment leads to a statistical
distribution of the electronic transition frequency. In practice,
static disorder is usually modeled by including a random
component in the electronic transition frequency:

ω̃ j = ωx + δω j . (8)

Here δω j is a random variable satisfying 〈δω jδωk〉 = σ 2δ jk

where δ jk is a Kronecker delta function. We take {δω j} to be a
Gaussian random variable chosen according to the probability
distribution Prob(δω j ) = 1√

2πσ 2
e−δω j

2/2σ 2
and the width of

the distribution σ characterizes the disorder amplitude. The
random variable satisfies 〈δω j〉 = 0 where 〈· · · 〉 denotes av-
eraging over realizations, so the average electronic transition
frequency is 〈ω̃ j〉 = ωx. Similarly, observables are ensemble
averages over different realizations of Eq. (8).

2. Dynamic disorder

When an environmental process is faster than or compa-
rable with molecular emission, each molecule experiences a
time-dependent, randomly fluctuating environmental config-
uration as induced by the thermal motion. Such a dynamic
disorder can be modeled by including a time-dependent mod-
ulation to the electronic transition frequency:

ω j (t ) = ωx + 
 j (t ) (9)

where 
 j (t ) is a stochastic variable as in Kubo’s stochastic
modulation model [43]. Here we choose 
 j (t ) to be a Gaus-
sian stochastic variable satisfying 〈
 j (t )〉 = 0 for all j and the
correlation function is

〈
 j (t1)
k (t2)〉 = δ jkσ
2e−|t1−t2|/τc (10)
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Note that Eq. (8) is the static limit (τc → ∞) of a general
stochastic process in which δω j varies in time as a stochastic
variable.

The Gaussian stochastic frequency defined by Eqs. (9)
and (10) is characterized by two parameters: (i) the disorder
amplitude σ indicates the strength of the stochastic modula-
tion, and (ii) the correlation time τc estimates the timescale
for how rapidly 
 j (t ) changes. Namely, the smaller τc is,
the faster 
 j (t ) modulates the electronic transition frequency.
In numerical practice, the Gaussian stochastic variable for a
discrete time series t0, t1, . . . , tn with ti = idt can be generated
from a Markovian process such that the probability distribu-
tion of 
 j (ti ) depends only on the immediately previous value

 j (ti−1) (see Appendix A).

According to Kubo’s lineshape theory [43], one defines
1/(στc) as the modulation rate. In the slow modulation limit
(1/(στc) 
 1), the Gaussian stochastic variable 
 j (t ) be-
comes effectively time independent and one recovers the
static disorder case corresponding to a Gaussian probabil-
ity distribution with disorder amplitude σ as in Eq. (8). In
the fast modulation limit (1/(στc) � 1), the time correlation
function becomes 〈
 j (t1)
k (t2)〉 → δ jkσ

2 × 2τcδ(|t1 − t2|)
where δ(|t1 − t2|) is a Dirac delta function. Such a fast ran-
dom energy modulation implies that, within the timescale
of molecular emission, each molecule can experience almost
all accessible configurations of its local environment. In this
limit, the overall effect of modulating the transition frequency
stochastically is equivalent to including an effective molecular
dephasing at the dephasing rate γ = σ 2τc (which ends up be-
ing the width of the lineshape function in Kubo’s theory) [43].

C. Perturbative analysis of disorder effects

Having introduced the different types of disorder, we
are now ready to analyze disorder effects on the excitation
population dynamics based on the effective non-Hermitian
Hamiltonian (Ĥeff = ĤM − i �

2 Q̂) where Q̂ = ∑
jk |Xj〉〈Xk|.

We assume that the molecular ensemble is initially prepared
in the fully symmetric single excitation state:

|ψ (0)〉 = |S〉 = 1

N

N∑
j=1

|Xj〉. (11)

Within our model, such a state can be formed by excitation
from the ground state using a short broadband excitation
(approximately a δ-function pulse). Note that, without dis-
order, the excitation population decays at the superradiance
rate P(t ) = e−N�t [see the black dashed line in Fig. 1(a)]. For
the case of static disorder, one can average the behavior of the
eigenstates of Ĥeff with complex-valued eigenvalues (where
the imaginary part of the eigenvalue corresponds to the decay
rate of the eigenstate) and explain the biexponential decay
of the excitation population—a superradiant decay for short
times that then evolves to a subradiant decay for long times
[34,50]. However, such eigenvalue analysis cannot be easily
done for the case of dynamic disorder, which is discussed
below.

To analyze the population relaxation under dynamic
disorder, we employ time-dependent perturbation theory
[51,52] and divide the effective non-Hermitian Hamiltonian

FIG. 1. Molecular excitation survival probability (a) and the cor-
responding cumulative emission spectrum (ωα in units of ωx) at
�t = 2 (b) are plotted for τc = 20, 2, 0.2. The initial state of the
molecular ensemble is the superradiant state |S〉, Eq. (11), and the
disorder amplitude is σ = 0.1. Without disorder, the excitation pop-
ulation decays at the superradiance rate N� (black dashed lines).
For a molecular ensemble with static disorder [black dotted lines in
(a)], the excitation population shows a biexponential decay (e−N�t for
the superradiance at short times and e−�′t for the subradiance in the
long time), and the corresponding emission spectrum is a Gaussian
distribution [black dashed lines in (b)]. For the dynamic disorder
cases (solid lines), as τc decreases, we find that the shape of the
emission spectrum becomes narrower and turns into a Lorentzian
distribution [as observed in (b)]. Coincidentally, the superradiant
component in the time-resolved relaxation seen in (a) becomes more
dominant, signifying recovery of coherent superradiant emission.

into Ĥeff = Ĥ0 + V̂ (t ), where the fluctuations of the elec-
tronic transition frequency are treated as a time-dependent
perturbation V̂ (t ) = ∑

j 
 j (t )|Xj〉〈Xj | and the unperturbed

Hamiltonian is Ĥ0 = ∑
j ωx|Xj〉〈Xj | − i �

2

∑
jk |Xj〉〈Xk|. With

this perturbation, the propagator of the electronic wave
function can be expanded in terms of multitime integrals of
V̂ (t ) [see Eq. (B1)]. Next we gather the zeroth- and first-order
terms of the propagator and approximate the excitation popu-
lation dynamics as (see Appendix B for more details)

P(t ) = P(0)
s (t ) + P(1)

s (t ) + P(1)
d (t ). (12)

Here,

P(0)
s (t ) = e−N�t (13)

is from the zeroth-order term and is responsible for the collec-
tive superradiant emission at short times;

P(1)
s (t ) = 2

N
e−N�tγ (t + τce−t/τc − τc) (14)

is relatively small and contributes to only the transient dynam-
ics [i.e., P(1)

s (0) = 0 and P(1)
s (t → ∞) = 0];

P(1)
d (t ) = 2(N − 1)σ 2

N2�

(
1

q
e−N�t + 1

r
− N�

rq
e−rt

)
(15)

where r = N�
2 + 1

τc
and q = N�

2 − 1
τc

. We find that P(1)
d (t )

emerges from zero at t = 0 and dominates the dynamics at
long times. Therefore, we can now estimate the critical t∗ at
which the dynamics turns from P(0)

s (t ) to P(1)
d (t ) by letting
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FIG. 2. The critical population P∗ is plotted as a function of
the dephasing rate γ = σ 2τc (in units of �). The colored lines are
obtained by implementing Gaussian stochastic modulation and, for
each line, we fix σ and plot P∗ with varying τc. In the fast modulation
limit (small τc, left), P∗ converges to the black dotted line as pre-
dicted by Eq. (17) and linearly depends on γ . In the slow modulation
limit (large τc, right), P∗ ∝ σ 2 does not depend on τc and approaches
the corresponding static disorder results.

P(0)
s (t∗) = P(1)

d (t∗), i.e.,

e−N�t∗ = 2(N − 1)σ 2

N2�

(
1

q
e−N�t∗ + 1

r
− N�

rq
e−rt∗

)
. (16)

The estimated critical population at this time is
P∗ = 2P(0)

s (t∗). In the fast modulation limit (τc → 0 or
τc 
 2

N�
), since r → 1/τc, q → −1/τc, Eq. (16) leads to

(assuming N is large)

P∗|τc→0 = N − 1

N2

4γ

�
≈ 4γ

N�
, (17)

t∗|τc→0 ≈ 1

N�
ln

(
N�

2γ

)
. (18)

Thus, for a fixed disorder amplitude σ , the estimated time
span for the collective emission becomes longer (i.e., t∗ in-
creases) when the stochastic modulation becomes faster (i.e.,
γ or τc decreases).

However, we notice that P(1)
d (t ) does not decay to zero

at long times [see Eq. (B15)] and cannot capture the subra-
diant decay qualitatively. Effectively, P(1)

d (t ) arises from the
first-order terms in which the unperturbed Hamiltonian H0 is
perturbed by the time-dependent fluctuation V (t1) just once at
t1 and the fully symmetric state |S〉 is not completely bright
for the perturbed Hamiltonian H0 + V (t1). As a result, after
t1, the dark part of the electronic state does not decay as we
consider only up to the first-order terms. That being said,
Fig. 7 in Appendix B shows that, in the small dephasing rate
limit (γ 
 �), this perturbative approximation can almost
accurately capture the population relaxation within the time
span when the transition occurs, leading to a quantitative
prediction of P∗. The actual behavior of P∗ is analyzed in
Fig. 2 numerically.

III. THE EFFECT OF DISORDER
ON SUPERRADIANT EMISSION

With this analytical intuition in mind, we will now numer-
ically investigate the dynamical interplay of the cooperative
emission with static and dynamic fluctuations. In the cal-
culation reported below, we use a molecular ensemble of
N = 20 emitters and choose the average excitation energy
ωx = 1 as the unit of energy. The continuum of photon
states is explicitly described by a set of single-photon states
with frequency ωα = dω(α − M/2) for α = 0, . . . , M, with
interlevel spacing dω = 2×10−3, a bandwidth determined by
M = 600, and a damping parameter [see Eq. (5)] that is chosen
to be η = 0.01. The molecule-radiation coupling is uniform
Vj,α = 10−3 and consequently the single-molecule sponta-
neous emission rate is � = π×10−3. For the ensemble
average 〈· · · 〉 in the following results, we average 256
realizations [which, we found, is sufficient to achieve√

〈(P − 〈P〉)2〉/〈P〉 < 0.1]. The results reported below do not
depend on the choice of bandwidth Mdω or η, provided that
η > dω and Mdω > N�.

A. Motional narrowing manifested in the frequency
domain and in the time domain

Figure 1 shows the excitation population dynamics
P(t ) and the corresponding cumulative emission spectrum
I (ωα, t = 2/�) for different disorder profiles. In general, in
the presence of disorder (either static or dynamic), the ex-
citation population shows a biexponential decay, rather than
a single superradiant decay. Specifically, P(t ) decays at the
superradiant rate N� (along the black dashed line) for short
times and then evolves to follow a subradiant decay rate
�′ < � at long times. In the presence of dynamic disorder, we
find that, as expected, if the correlation time is long (τc = 20),
the dynamics of the excitation population almost recovers the
dynamics of the static disorder case (the black dotted line).
More importantly, for a fixed disorder amplitude σ , as the
correlation time τc becomes shorter [i.e., ω j (t ) modulates
more rapidly], more excitation population decay occurs at
the superradiant rate before the decay becomes subradiant.
The increasing fraction of the superradiant decay in the fast
modulation limit (versus the subradiant decay in the long-time
limit) implies that the coherence of the superradiant state,
which is quickly destroyed by static disorder, is preserved or
recovered when the disorder modulation becomes faster even
as the disorder amplitude remains constant. We thus observe
that increasing the stochastic modulation, a process that is
known to transform a Gaussian lineshape associated with
static disorder (seen for τc = 20) into a motional narrowed
Lorentzian lineshape (τc = 0.2), is also expressed in the time
domain as preservation of the coherent superradiant decay.
It appears that fast stochastic modulation results in recovery
of the collective behavior, that is effective elimination of the
decoherence caused by static disorder.

B. Convergence in the fast modulation limit

The correlation between the dynamic disorder correlation
time τc and the persistence of the superradiant emission,
together with the analysis made above, suggests that this
behavior is a manifestation of the motional narrowing phe-
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nomenon. To further quantify this observation, we have fitted
the population dynamics P(t ) (from Fig. 1) to a biexponential
functional form:

P(t ) ≈ P(0) f (t − t∗)e−N�t + [1 − f (t − t∗)]ae−�′t . (19)

Here �′ is the subradiant rate as obtained by fitting the long-
time decay to ae−�′t and f (t ) = 1

2 − 1
π

tan−1(t/b) is a smooth
step function. This biexponential fitting yields the critical
time t∗ at which the population dynamics changes from a
superradiant decay (e−N�t ) to a subradiance decay (e−�′t ), as
well as the population at this time P∗ = P(t∗). The fraction
Psr = P(0)−P∗

P(0) quantifies how much of the initially excited
population decays at the superradiant rate.

In Fig. 2, we plot P∗ as a function of the dephasing rate γ =
σ 2τc for different disorder amplitudes (since we set P(0) = 1,
Psr = 1 − P∗). The following observations are noteworthy.

(i) For a fixed σ , as τc decreases (faster stochastic modula-
tion), P∗ becomes small and Psr → 1, implying that more of
the decay is of the superradiant character.

(ii) In the fast modulation limit (γ → 0), P∗ for different
σ ’s converges and depends linearly on the dephasing rate
P∗ ∝ γ .

(iii) In the slow modulation limit (γ → ∞, i.e., static
disorder), P∗ becomes independent of τc and asymptotically
approaches different values depending on σ , i.e., P∗ ∝ σ 2 as
τc → ∞.

Note that the asymptotic relation (P∗ ∝ σ 2) does not hold
in the strong disorder limit (when σ gets large)—after all,
when σ � N�, the molecular ensemble should behave like a
set of independent emitters and the excitation population de-
cays at the spontaneous single molecule emission rate, rather
than a biexponential decay. In fact, for this reason, P∗ is
not really well defined in the limit σ → ∞. As a final note,
we find that, qualitatively, these observations agree with the
analytical results as estimated by Eq. (16)). Particularly, for a
fixed σ in the fast modulation limit (small τc), the numerical
results approach P∗ = 4γ /N� as one expects in Eq. (17).

IV. OFF-RESONANT LIGHT SCATTERING
FOR A MOLECULAR ENSEMBLE

The previous section has analyzed the effect of disorder
on molecule-radiation interactions under the assumption that
all dynamics are initialized in a bright state. More generally,
one would like to model the decay that arises for a system
that is pumped with external light. For a single molecule
in the absence of dephasing, light-scattering processes can
be described by a model that couples the molecule to an
external incoming field; the molecule emits photons into the
radiation continuum that can be observed as a scattering signal
[53]. For incoming light that is resonant with the molecular
excitation, the pulse can raise the population of a molecular
excited state and, following the pulse, the molecule emits
fluorescence at the spontaneous emission rate. In contrast, an
off-resonant pulse cannot populate the molecular excited state
so the molecular response appears only during the pulse. In
either case, in the absence of environmental interactions (here
expressed by dynamic disorder), light scattering is elastic.

Let us now turn our attention to such a light-scattering
process from a disordered ensemble of molecules. Recent ex-

periments report that illumination of a disordered ensemble of
molecules with an off-resonance light source can lead to slow,
subradiant fluorescence emission [6,38]. For our purposes, the
relevant Hamiltonian is Ĥ + V̂ext (t ), where V̂ext (t ) captures
how the incoming external field couples the electronic ground
state to the excited state:

V̂ext (t ) =
N∑

j=1

Fj (t )(|G〉〈Xj | + |Xj〉〈G|). (20)

Here we invoke the electric dipolar approximation
Fj (t ) = �μ j · �E (t ) where �μ j is the transition dipole moment
and �E (t ) is the electric field of the incoming field. With the
long-wavelength approximation, we assume Fj (t ) = f (t ) for
all j and choose f (t ) = A sin(ωdt ) exp[−(t − td )2/B2] as a
Gaussian light pulse. Here A is the pulse amplitude, B is the
duration of the pulse, and td indicates the peak of the pulse.
In the frequency domain, the Fourier transform of f (t ) is a
Gaussian distribution where ωd is the central frequency and
1/πB is the spectral width.

In what follows, we report results of calculation based on
the model above using the same parameters as in Sec. III.
Before pumping, all molecules are initialized to be in the
ground state |G〉 [i.e., P(0) = 0]. The incoming pulse is weak
(A = 5×10−3) and the pulse frequency is off resonant with a
detuning ωd − ωx = 0.25. Moreover, we choose td = 100 and
the duration of the Gaussian pulse B = 25 so that the spectral
width in the frequency domain is smaller than the detuning
(1/πB < ωd − ωx). As such, in the absence of disorder, this
off-resonant light pulse leads to a transient excitation popu-
lation of the molecular ensemble, that disappears (together
with the accompanying scattering signal) with the pulse at
�(td + B) ≈ 0.4 [see the black dashed line in Fig. 3(a)].

A. Including disorder enhances the maximal
excitation population

Figure 3(a) shows that, in the presence of disorder (both
static and dynamic), the maximal value of the excitation pop-
ulation as induced by the off-resonant light pulse is enhanced
(see Pmax as labeled by the arrows) relative to no disorder
(black dashed lines). For a fixed disorder amplitude σ = 0.1,
such an enhancement is the strongest for the case of static
disorder (black dotted line), for which the maximal excitation
population (black arrow) can be three times larger than that in
for the ordered system (black dashed line). This observation
can be rationalized by the fact that, in the presence of disorder,
some molecules are closer to resonance with the incident
radiation. For dynamic disorder (solid lines), as τc decreases,
the maximal value of the population becomes ever smaller and
eventually approaches the no disorder result in the limit of
very fast modulations (red line).

If we turn off the pulse fast enough at t = td , we can
observe the superradiant decay followed by a subradiant decay
at long times for dynamic disorder (see Fig. 8 in Appendix B)
and recover the same behavior as in Fig. 1 where the dynamics
is started from a superradiant state. This observation suggests
that the molecular ensemble at Pmax is in the collective super-
radiant state. Note that below we will focus on the off-resonant
scattering of a Gaussian light pulse and, in this case, the
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FIG. 3. Off-resonant pulsed excitation of a molecular ensemble
experiencing disorder. The initial state is the ground molecular state
|G〉, the disorder amplitude is σ = 0.1, and the driving frequency
of the light pulse has a detuning ωd − ωx = 0.25. (a) Molecular
excitation population as a function of time. The maximal population
Pmax is denoted by arrows for different disorder cases. After the
pulsed excitation, the population dynamics show a biexponential
decay. For the long-time dynamics, the static disorder case decays
at the spontaneous emission rate e−�t (black dotted line), whereas
the dynamic disorder cases lead to a subradiant decay rate (�′ < �).
The black dashed line is the case without disorder. (b) Heat map of
|Cα (t )|2 as a function of ωα − ωx (in units of ωx) and t for τc = 2, 20
and the static disorder case. Elastic scattering is observed at the
pulse frequency ωα − ωx = 0.25 and fluorescence is observed at the
average molecule energy ωα − ωx = 0. Note that the fluorescence
emission corresponds to the long-time, subradiant population decay
and that the fluorescence signal is narrower for τc = 2 vs τc = 20
(i.e., motional narrowing). For the static disorder case, we observe
only the elastic-scattering emission.

superradiant decay is difficult to observe during the short time
span that the pulse disappears.

B. Elastic scattering in the presence of static disorder

The black dotted line in Fig. 3(a) shows the time evolution
of the excitation population following the pulse excitation
of the molecular ensemble in the presence of static disorder.
We notice that, following the incoming light pulse, the exci-
tation population dynamics for static disorder decays at the
single-molecule spontaneous emission rate � at long times
(�t > 0.5). This observation implies that, for static disor-
der, the light-scattering process is dominated by a few (even
one) molecules which are on resonance with the incoming
light (ω̃ j ≈ ωd ). In other words, for static disorder, each of
these molecules scatters the incoming pulse independently
and there is no observation of collective coherence.

In Fig. 3(b), we plot the energy distribution of the emitted
light (i.e., the emission spectrum) as represented in our model
by the population of the emitted photon states |Cα (t )|2. The

right panel in Fig. 3(b) shows this spectrum in the static dis-
order limit and the elastic-scattering signal is observed in the
frequency range centered at ωα ≈ ωd (the driving frequency)
at long times. Note that the spectral lineshape is averaged over
256 realizations and, if we were to analyze one single realiza-
tion, we would find a collection of much narrower streaks in
the spectrum (each representing one elastic-scattering event).
In other words, the observed signal at ω̃ j ≈ ωd represents an
inhomogeneous average of many dynamic signals.

C. Dynamic disorder: Fluorescence emission
at a subradiant rate

Next, let us analyze the results for dynamic disorder (solid
lines in Fig. 3). Following the off-resonant incident pulse,
the population dynamics exhibits a biexponential relaxation.
In the limit τc → ∞, the population dynamics can almost
recover the elastic scattering in the presence of static disorder.
In the limit τc → 0, the stochastic modulation becomes too
fast for the molecules to interact with the incident pulse, so
that the molecules cannot be efficiently excited leading to
smaller maximal population (red line) as in the case without
disorder. For the correlation time in the intermediate range
τc ≈ O(2π/ωd ), the molecules can be excited, but cannot
construct the molecular coherence, leading to a subradiant
state. As such, the long-time dynamics decays at a subradiant
rate (which is slower than the spontaneous emission seen in
the static disorder case). This subradiant decay implies that,
under dynamic disorder, the excitation energy is held for a
longer time within the molecular subsystem and emission is
slower.

The corresponding emission spectrum is displayed in the
left and middle panels of Fig. 3(b). Under dynamic disor-
der, the emission spectrum |Cα (t )|2 shows two components:
the scattering component (S) centered at the external driving
frequency (ωα − ωx = 0.25), and the fluorescence emission
component (F) centered at the average molecular excitation
energy (ωα − ωx = 0). On the one hand, the scattering com-
ponent decays quickly after the pulse excitation subsides,
and its duration is independent of τc and remains almost
the same as the case without disorder. On the other hand,
the fluorescence emission signal emerges mostly after the
pulse and is clearly induced by dynamic disorder. The fluo-
rescence emission component has a long lifetime (�t > 5),
which corresponds to the slow, subradiant decay of the excita-
tion population. Note that the linewidth of the fluorescence
emission in the frequency domain becomes narrower as τc

decreases, showing motional narrowing of the fluorescence
emission component (as opposed to the elastic scattering at
short times).

D. Fluorescence-scattering ratio turnover
in the intermediate modulation regime

The results discussed above suggest that the fluorescence,
unlike the scattering component, is affected by the dynamics
of the disorder. To better quantify the relative importance of
these molecular response components, we show in Fig. 4(a)
the cumulative emission spectra [Eq. (7)] at the end of the
simulation time, i.e., �t = 5. Here we normalize the cu-
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FIG. 4. (a) The normalized cumulative emission spectrum
I (ωα, t )/Pmax at �t = 2.5 is plotted as a function of ωα − ωx (in
units of ωx) for disordered molecular ensembles with the disorder
amplitude σ = 0.1. The initial state is |G〉 and the pulse frequency is
off resonant, ωd − ωx = 0.25. For the dynamic disorder cases with
the correlation times τc = 20, 2, 1, 0.2 (solid lines), the emission
spectrum shows the scattering peak (S) at the pulse frequency ωα =
ωd and the fluorescence peak (F ) at the average molecular transition
frequency ωα = ωx . The fluorescence peak becomes narrower when
τc deceases, indicating motional narrowing. In contrast, for static
disorder (black dotted line), the emission spectrum shows only the
scattering peak. (b) The F/S ratio as a function of the dephasing
rate γ = σ 2τc (in units of �) is plotted for σ = 0.1, 0.06, 0.04, 0.02.
Note that dynamic disorder leads to an enhancement of the fluores-
cence emission in the range of intermediate modulation. As expected,
for long correlation times, when τc increases with a fixed σ , the F/S
ratio decreases. Interestingly, for short correlation times (γ /� < 1),
the F/S ratio decreases again when γ decreases. Note that for mean-
ingful fluorescence signals, if the pulse is off resonant, one requires
some dynamic disorder (τc < ∞) to allow the molecular frequency
to align with the pulse frequency; however, at the same time, emitting
a photon requires a finite amount of time and the fluorescence signal
decreases when τc becomes very small.

mulative emission by the maximal value of the molecular
population (Pmax) and denote the yield at ωα − ωx = 0.25 as
the scattering peak (S) and the yield at ωα − ωx = 0 as the
fluorescence peak (F ). We find that the scattering compo-
nents of the normalized cumulative emission remain almost
the same for different values of τc, confirming that the yield
of the elastic scattering is not sensitive to disorder in the
molecular system. In contrast, the fluorescence component
emerges in the presence of dynamic disorder: a wide Gaus-
sian distribution for slow modulation (τc = 20) and a narrow
Lorentzian distribution for fast modulation (τc = 0.2) due to

motional narrowing. Interestingly, in both the fast modulation
limit (τc → 0) and the static disorder limit (τc → ∞), the
fluorescence peak disappears.

In order to quantitatively compare the contribution of the
scattering and fluorescence components, we fit the cumulative
emission spectrum I (ωα ) to a bimodal distribution. In prac-
tice, we first fit the scattering peak to a Gaussian distribution
[i.e., Isct(ωα ) ≈ a′e−(ωα−ωd )2/b′2

], and then second the rest of
the emission is considered fluorescence [Iflu(ωα ) = I (ωα ) −
Isct(ωα )]. With these fitted components, we calculate the total
contribution of the scattering and fluorescence components by
F ≡ ∫

dωαIflu(ωα ) and S ≡ ∫
dωαIsct(ωα ), respectively.

Figure 4(b) shows the ratio F/S as a function of the dephas-
ing rate γ = σ 2τc for different disorder amplitudes σ . Let us
first consider the case σ = 0.1. We find a maximum (or really
a plateau) in the F/S ratio over the range γ /� ∈ [101, 103].
Otherwise, F/S decays as γ → ∞ (τc → ∞) and γ → 0
(τc → 0). These same conclusions are qualitatively found for
different σ values as well. Such a turnover behavior sug-
gests that observing the fluorescence signal as induced by an
off-resonant incoming pulse requires the dynamic disorder pa-
rameters (σ and τc) to be in an intermediate regime. Namely,
the stochastic process must be fast enough to modulate the
molecular excitation before emitting an photon; however, at
the same time, the stochastic process cannot be too fast for
the molecules to absorb the incoming photon. From the per-
spective of energy conservation, the fluorescence response
is essentially an inelastic-scattering process with the excess
energy dissipated to the environmental fluctuations. This re-
laxation channel is maximized when these fluctuations are
dominated by timescales that match the frequency difference
ωd − ωx.

E. Fast modulation leads to large participation ratio

Next consider the collective aspect of the observed molec-
ular response and the dependence of the emitted radiation on
the molecular number N . In order to estimate how many
quantum emitters are excited in a molecular ensemble, we
can calculate the normalized participation ratio of the wave
function of the molecular subsystem:

R =
〈[∑

j |〈Xj |ψ (t )〉|2]2∑
j |〈Xj |ψ (t )〉|4

〉
=

〈
P(t )2∑
j |Cj (t )|4

〉
. (21)

Note that, since the wave function of the molecular subsystem
is not necessarily normalized [i.e., P(t ) = ∑

j |Cj (t )|2 �= 1
for the pulsed excitation dynamics], Eq. (21) is defined
as if we first normalize the subsystem wave function
C̃j (t ) = Cj (t )/

√
P(t ) and then calculate the participation ratio

using the standard definition [36] R = 〈 1∑
j |C̃ j (t )|4 〉. For com-

pletely delocalized states C̃j = 1√
N

for all j, we have R = N ,
which indicates that the wave function is delocalized through-
out N molecules. For a completely localized state, R = 1.

Figure 5 shows the normalized participation ratio of the
molecular subsystem wave function as a function of N . Here
we focus the long-time wave function (�t = 5) when the
elastic-scattering signal vanishes and the fluorescence emis-
sion remains. For static disorder, as expected, R → 1 and the
molecular excitation is formed by only one (or few) single
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FIG. 5. The participation ratio at �t = 2.5 as a function of the
number of emitters N for τc = 0.2, 2, 20. We choose the disorder am-
plitude to be σ = 0.1. Here R increases as τc decreases and reaches
the maximum R = N/2 in the fast modulation limit (τc = 0.2). Note
that R = N/2 implies that the wave function involves half of the
single excitation states.

excitation state. For short correlation times (τc = 2, 0.2), we
find R ≈ N/2 and scales linearly with N , implying that nearly
half of the molecules are involved, i.e., the wave function is
a combination of N/2 single excitation states |Xj〉. We note
that, as τc becomes larger (τc = 20), R decreases and the wave
function is composed of fewer single excitation states. This re-
sult clearly implies that including dynamic disorder enhances
the collectivity of the molecular excitation as induced by an
off-resonant incoming pulse. This observation is consistent
with the result of Fig. 1, where we found that faster dynamic
disorder more efficiently preserves superradiance response.

F. N dependence of the emission spectrum

Finally, we consider the N dependence of the S and F
contributions in the emission spectrum. The data are plotted
in Fig. 6. Here we choose dynamic disorder with σ = 0.1
and τc = 0.2, 1, 2 to be in the parameter range where the
fluorescence signal can be clearly observed. We find that the
elastic-scattering signal S has a quadratic dependence on N
[S ∝ N2 in Fig. 6(a)] and the fluorescence emission signal F
scales linearly with N [F ∝ N in Fig. 6(b)].

To understand N dependence of the signal, we follow the
Kramers-Heisenberg-Dirac (KHD) formalism [53] and ex-
press the ratio between the incoming and emission intensities
[Id and I (ωα ), respectively] in terms of the scattering cross
section:

I (ωα )/ωα

Id/ωd
= σ f ←i(ωd , ωα )

Here the incident light has the frequency ωd and the intensity
Id , and the indices i and f indicate the initial and final elec-
tronic states, respectively. Next, we evoke the second-order
perturbation approach as in Ref. [53] and the scattering cross
section can be written in the sum-over-states expression [54]:

σ f ←i(ωd , ωα )∝
∣∣∣∣∣
∑

k

〈φ f |V̂ |φk〉〈φk|V̂ |φi〉
Ei + h̄ωd − Ek + ih̄γk

∣∣∣∣∣
2

. (22)

FIG. 6. The total contribution of the elastic scattering (a) and
fluorescence emission (b) as a function of the number of molecules
(N) in a log-log scale. The initial state is |G〉 and the frequency of the
light pulse is off resonant, ωd − ωx = 0.25. The disorder amplitude is
σ = 0.1 and we vary the correlation time τc = 20, 2, 1. For dynamic
disorder, the scattering intensity scales quadratically with N , which
is a signature of the collective superradiant emission, and the fluores-
cence intensity scales linearly with N . In contrast, for static disorder
(black dashed line), the scattering intensity scales as N1.4, implying
that the scattering signal has contributions both from single-molecule
and collective emission.

Here |φi〉 and |φ f 〉 are the initial and final electronic states, re-
spectively, and, for our purposes, we choose |φi〉 = |φ f 〉 = |G〉
and Ei = EG is the total ground-state energy. Equation (22)
sums over all the intermediate states |φk〉 (with the energy Ek

and the lifetime γk) that are involved in the light-scattering
process from i to f . Note that Eq. (22) is valid in the weak
excitation regime where the scattering amplitude is usually
dominated by the lowest (i.e., second) order perturbation the-
ory in the field strength (V̂ ). In the following, we consider
the elastic-scattering and fluorescence emission signals in this
formalism that result from different intermediate states.

1. Elastic scattering and fast modulation limit

We first consider the fast modulation limit in which the
molecular excitation energy can fluctuate rapidly and cover
almost the entire disorder spectrum. Thus, at any instant,
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each single molecule should have a fraction of the probability
distribution (0 < ξ < 1) to be resonant with the incoming
light [h̄ω j (t ) − EG ≈ h̄ωd )]. Note that the parameter ξ should
depend on the disorder of the molecular ensemble and the
detuning of the incoming pulse—but not N . For N identi-
cal molecules under the same pulse excitation, such a rapid
fluctuation builds up molecular coherence and leads to the
collective superradiant state, i.e., |φk〉 =

√
ξ

N

∑N
j |Xj〉 (with

the total excitation probability ξ ). With this intermediate state,
the scattering signal intensity can be estimated by

I (ωα = ωd ) ∝
∣∣∣∣∣

N∑
j′

N∑
j′′

ξ

N

〈G|V̂ |Xj′ 〉〈Xj′′ |V̂ |G〉
i�

∣∣∣∣∣
2

∝ ξ 2N2.

(23)

This finding explains the quadratic N dependence of the scat-
tering signals [see Fig. 6(a)]. Note that we assume that the
� relaxation term is not zero so that the KHD expression
[Eq. (23)] is valid on resonance. In practice, for a chemical
system, the relaxation term � has contributions from both
the radiative and nonradiative relaxation processes, such as
thermal relaxation, and the assumption of a single, effective
timescale for the overall relaxation is usually meaningful for
chemical dynamics.

2. Elastic scattering and static disorder limit

Next, we focus on the scattering intensity in the static
disorder limit and notice that all the observed emission signals
are centered at ωd (as shown in Fig. 4). As we discussed
in Sec. IV B, one can imagine a fraction of molecules (ξN
for 0 < ξ < 1) are on resonance with the incoming light
(ω̃ j ≈ ωd ). On the one hand, the excitation pulse can build
coherence among these molecules and form the superradiant
state, implying that the signal intensity scales as N2. On the
other hand, there is still some static disorder among the molec-
ular excitation energies, which will inevitably lead to a loss of
coherence such that the molecules will emit individually, and
therefore the signal will be proportional to N . The competi-
tion between these mechanisms explains the intermediate N
dependence between linear and quadratic scaling of the scat-
tering signal in the case of static disorder [∝ N1.4 as shown in
Fig. 6(a)].

3. Fluorescence emission

As we discussed in Sec. IV D, the fluorescence emission
is essentially inelastic scattering through a subradiant inter-
mediate state. At the same time, Fig. 5 suggests that the
participation ratio is N/2 in the fast modulation limit, i.e.,
half of the molecules are involved in the scattering pro-
cess and have the average excitation population 2

N . In this
fast modulation limit, we assume the subradiant wave func-

tion takes the form |ψ̃〉 = ∑N/2
j′=1

√
2
N eiϕ j′ |Xj′ 〉 where ϕ j′ is

an arbitrary phase. The subradiant state has energy around
ωx and inverse lifetime �′ < �. Therefore, the scattering
intensity through the subradiant intermediate state can be

estimated by

I (ωx ) ∝
〈∣∣∣∣∣

N/2∑
j′, j′′

2

N

〈G|V̂ |Xj′ 〉〈Xj′′ |V̂ |G〉
EG + h̄ωd − h̄ωx + ih̄�′ e

i(ϕ j′ −ϕ j′′ )

∣∣∣∣∣
2〉

(24)

∝
N/2∑
j′=1

∣∣∣∣ 〈G|V̂ |Xj′ 〉〈Xj′ |V̂ |G〉
EG + h̄ωd − h̄ωx + ih̄�′

∣∣∣∣
2

∝ N. (25)

Note that we expand the squared norm in Eq. (24) and, on
average, the cross terms with an arbitrary phase difference
ei(ϕ j′ −ϕk′ ) should cancel out, which is the key for the fluores-
cence emission to have the linear scaling with N , rather than
N2 dependence.

V. CONCLUSION

In this paper, we have investigated the collective re-
sponse of a molecular ensemble of quantum emitters exposed
to environmental dynamic disorder with various correlation
timescales. Our results show that, in the short correlation time
limit, dynamic disorder can effectively recover the coherent
response of the molecular ensemble leading to fast relaxation
at the superradiant rate; this coherence is suppressed in the
static disorder limit. More interestingly, recovery of the su-
perradiant decay in the excitation population dynamics is con-
comitant with motional narrowing of the emission spectrum.

Following an off-resonant incident pulse, if dynamic disor-
der has an appropriate correlation timescale that allows for
energy exchange between the incident pulse and the envi-
ronmental fluctuations, the molecular ensemble can relax at
a slow, subradiant rate, leading eventually to the inelastic
fluorescence emission component at long times. As a result,
the subradiant state of the molecular ensemble is a collective
excitation state (i.e., involving many single excitations) that
can live for a long time due to dynamic disorder. We also
show that the fluorescence component scales linearly with the
number of the quantum emitters, suggesting a distinct (inco-
herent) collective feature of the subradiant state (compared to
the quadratic scaling of the elastic-scattering component).

These results suggest that accounting for environmental
disorder effects in terms of stochastic modulation of the
electronic transition frequency is important for collective
excitation and emission. That being said, there are many
assumptions in our collective excitation model that can be
scrutinized. First, we assume a symmetric Gaussian stochas-
tic modulation that has an equal probability for increasing
and decreasing the excitation energy (effectively an infinite-
temperature environment). At low temperature kT < σ , the
stochastic random variable should show the consequence of
detailed balance and recover the correct thermal equilibrium
[55]. Second, the coupling to the radiation field continuum is
assumed to be identical for all the molecules, which ignores
spatial dependence and orientation disorder. Third, we con-
veniently neglect the influence of molecular vibrations and
strong coupling between the vibrational modes and photon
states, which can be taken into account (at least heuristically)
in the framework of macroscopic quantum electrodynamics
[56–58]. Finally, we make the wide band approximation for
the radiative relaxation channels, which is valid only when the
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edges of the continuum are far from the molecular excitation
energy. More generally, one should be able to employ a semi-
classical model (for example the Maxwell-Bloch equation)
for a more realistic model system. Future research into these
generalizations is currently underway.

Looking forward, restoring the molecular coherence and
constructing a collective behavior using dynamic disorder
would be useful for many applications in the field of nanopho-
tonics. For example, concerning recent interests in cavity
polaritons in the physical chemistry community [59–62], one
often probes the responses of the molecules within an optical
cavity through the upper and lower polariton states under the
influence of the environmental disorder. Can we manipulate
the lifetime of the polariton states by changing the timescale
of the environmental fluctuations? Can we use dynamic
disorder as a tuning knob for controlling chemical reactions
within an optical cavity? These directions of investigation will
be taken up in a future work.
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APPENDIX A: GENERATING GAUSSIAN
STOCHASTIC VARIABLES

In this paper we have implemented a Gaussian random
process x(t ) with zero mean (〈x(t )〉 = 0) and the exponential
correlation function 〈x(t1)x(t2)〉 = σ 2e−|t1−t2|/τc . Such a pro-
cess was simulated following Refs. [63,64]. For an ordered set
of discrete times {ti} (t1 < t2 < · · · < tn), we let xi = x(ti ) be
the values of the Gaussian random process. The joint probabil-
ity distribution of {x1, . . . , xn} can be expressed as a product
of conditional probability:

Prob(x1, . . . , xn) = Prob(x1)
n∏

i=2

Prob(xi|xi−1). (A1)

Here the initial probability distribution of x1 is

Prob(x1) = 1√
2πσ 2

exp

[
− x2

1

2σ 2

]
(A2)

and the conditional probability distribution of xi given the
value xi−1 is

Prob(xi|xi−1) = 1√
2πσ 2

(
1 − r2

i−1

) exp

[
− (xi − ri−1xi−1)2

2σ 2
(
1 − r2

i−1

) ]

(A3)

where ri = e−(ti+1−ti )/τc for 1 < i < n − 1. If we let ti = idt ,
ri = e−dt/τc does not depend on i. Therefore, the condi-
tional probability distribution of xi is a Gaussian distribution
with mean x̄i = xi−1e−dt/τc and variance σ 2(1 − e−2dt/τc ).
We notice that, in the slow modulation limit (large τc), the
mean xi−1e−dt/τc → xi−1 and the variance σ 2(1 − e−2dt/τc ) ≈
σ 22dt/τc → 0, so that x(t ) becomes time independent
(static).

With this Markov property, we can generate Gaussian
stochastic variables 
 j (t ) for each molecule as follows.

(1) Choose the initial value 
 j (t = 0) (i.e., i = 0) from the
Gaussian distribution in Eq. (A2).

(2) Calculate the mean 
̄ j = 
 j (ti−1)e−dt/τc for the next i.
(3) Choose 
 j (ti ) from a Gaussian distribution with the

mean 
̄ j and the variance σ 2(1 − e−2dt/τc ).
(4) Go back to step 2 for the next i.

APPENDIX B: TIME-DEPENDENT PERTURBATION
THEORY WITH DYNAMIC DISORDER

In this section, we derive the first-order approximation
of the excitation population using time-dependent
perturbation theory [51,52]. We let Ĥeff = Ĥ0 + V̂ (t )
where V (t ) = ∑

j 
 j (t )|Xj〉〈Xj | and Ĥ0 = ∑
j ωx|Xj〉〈Xj | −

i �
2

∑
jk |Xj〉〈Xk|. The electronic state wave function |φ(t )〉 =∑

j Cj (t )|Xj〉 can be propagated by |φ(t )〉 = Û (t )|φ(0)〉
where |φ(0)〉 is the initial state at t = 0. Here, the propagator
in the Schrödinger picture can be expanded in terms of
V̂I (t ) = eiĤ0tV̂ (t )e−iĤ0t :

Û (t ) = e−iĤ0t − ie−iĤ0t
∫ t

0
dt1V̂I (t1)

− e−iĤ0t
∫ t

0
dt1

∫ t1

0
dt2V̂I (t1)V̂I (t2) + · · · (B1)

and we can write Û (t ) = ∑∞
n=0 Û (n)(t ) where n indicates the

number of V̂I operators.
The unperturbed propagator (n = 0) can be expressed as

Û (0)(t ) = e−iĤ0t = e−iωxt

(
N−1∑
k=1

D̂k + e− N�
2 t B̂

)
(B2)

where B̂ = |S〉〈S| and D̂k = |dk〉〈dk|. Here |S〉 and |dk〉 are the
eigenstates of Ĥ0: |S〉 = 1√

N

∑N
j=1 |Xj〉 is the fully symmet-

ric state which corresponds to a complex-valued eigenvalue
ωx − i N�

2 ; {|dk〉|k = 1, . . . , N − 1} are N − 1 degenerate
eigenstates that have a real-value eigenvalue ωx, i.e., the
dark states of Ĥ0. Within the degenerate dark state sub-
space, we choose all dark states to be orthonormal to
each other 〈dk|dk′ 〉 = δkk′ and orthogonal to the superradiant
state 〈dk|S〉 = 0. Next, we plug the unperturbed propagator
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Eq. (B2) into the first-order propagator in Eq. (B1):

Û (1)(t ) = −ie−iωxt
∫ t

0
dt1

×
(

N−1∑
k=1

N−1∑
k′=1

D̂kV̂ (t1)D̂k′ + e− N�
2 (t−t1 )

N−1∑
k′=1

B̂V̂ (t1)D̂k′

+ e− N�
2 t1

N−1∑
k=1

D̂kV̂ (t1)B̂ + e− N�
2 t B̂V̂ (t1)B̂

)
. (B3)

With this approximate propagator, the time evolution of
the electronic state can be calculated by |φ(t )〉 ≈ [Û (0)(t ) +
Û (1)(t )]|φ(0)〉. As we assume the initial state to be |φ(0)〉 =
|S〉, the first two terms in Eq. (B3) are zero (D̂k|S〉 = 0) and
the electronic state can be written as

|φ(t )〉 ≈ C(0)
s (t )|S〉 + C(1)

s (t )|S〉 +
N−1∑
k=1

C(1)
k (t )|dk〉. (B4)

Here the zeroth-order coefficient is

C(0)
s (t ) = e−iωxt e− N�

2 t (B5)

and the first-order coefficients are given by

C(1)
s (t ) = −ie−iωxt e− N�

2 t 1

N

∫ t

0
dt1

∑
j


 j (t1), (B6)

C(1)
k (t ) = −ie−iωxt 1√

N

∫ t

0
dt1e− N�

2 t1
∑

j

d j
k 
 j (t1). (B7)

where we define d j
k = 〈Xj |dk〉. Finally, we can take the

ensemble average of the molecular excitation population
P(t ) = 〈|φ(t )|2〉 and find

P(t ) = 〈∣∣C(0)
s (t )

∣∣2〉 + 2
〈
Re

[
C(0)

s (t )†C(1)
s (t )

]〉
+ 〈∣∣C(1)

s (t )
∣∣2〉 + N−1∑

k=1

〈∣∣C(1)
k (t )

∣∣2〉
. (B8)

All the contributions are evaluated explicitly as follows.
(1) 〈|C(0)

s (t )|2〉 yields the superradiant decay of the molec-
ular ensemble without disorder. We define the zeroth-order
term as

P(0)
s (t ) ≡ 〈∣∣C(0)

s (t )
∣∣2〉 = e−N�t . (B9)

(2) The cross term C(0)
s (t )†C(1)

s (t ) is purely imaginary, i.e.,
Re[C(0)

s (t )†C(1)
s (t )] = 0.

(3) 〈|C(1)
s (t )|2〉 leads to an integral of the two-time correla-

tion function of the Gaussian stochastic random variable:〈∣∣C(1)
s (t )

∣∣2〉 = e−N�t

N2

∑
j

∫ t

0
dt ′

1

∫ t

0
dt1〈
 j (t

′
1)
 j (t1)〉.

(B10)

Here we can carry out the integration analytically and define
the contribution as (let γ = σ 2τc)

P(1)
s (t ) ≡ 2

N
e−N�tγ (t + τce−t/τc − τc). (B11)

We note that P(1)
s (0) = 0 and P(1)

s (t → ∞) = 0, implying that
this term contributes only to the transient dynamics and does
not affect the short-time and long-time behaviors. We also find
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0.0 2.5
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γ/Γ = 1.0/π

approx.
numerical

FIG. 7. Molecular excitation population as calculated analyt-
ically [using the approximate expression Eq. (B16), red dashed
line] and as calculated numerically (by brute force, black solid
line); the populations are plotted as a function of time for γ /� =
10/π, 2/π, 1/π . We choose � = π×10−3 and N = 20 as in Fig. 1
and set the initial state to be the superradiant state. The disor-
der amplitude is fixed at σ = 0.1 and the correlation time is τc =
1.0, 0.2, 0.1, respectively. Note that P(0)

s predicts a short-time super-
radiant decay and P(1)

d emerges and dominates for long times. While
P(1)

d cannot capture the subradiant decay, the approximate population
agrees with the numerical result for quite a long time if γ < �.

that the maximal value of P(1)
s (t ) is around t ≈ 1

N�
so that

the contribution of this term P(1)
s (t = 1

N�
) = 2

N2�e is relatively
small when N is large.

(4) To evaluate
∑N−1

k=1 〈|C(1)
k (t )|2〉, we first notice that, since

we choose the dark states to be orthonormal (i.e.,
∑

j d j∗
k d j

k =
1 for all k = 1, . . . , N − 1), 〈|C(1)

k (t )|2〉 does not depend on k:

〈∣∣C(1)
k (t )

∣∣2〉 = σ 2

N

∫ t

0
dt ′

1

∫ t

0
dt1e− N�

2 (t1+t ′
1 )e−|t1−t ′

1|/τc . (B12)

This integration can be carried out using integration by parts:

〈∣∣C(1)
k (t )

∣∣2〉 = 2σ 2

N2�

[
1

q
e−N�t + 1

r
− N�

rq
e−rt

]
(B13)

FIG. 8. Molecular excitation population as a function of time
under an off-resonant light pulse with a sharp cutoff. After the pulsed
excitation, the population dynamics show a superradiant decay at
short times followed by a subradiant decay at long times for dynamic
disorder. For static disorder, the population dynamics decays at the
spontaneous emission rate (black dotted line). Note that dynamic
disorder leads to the collective superradiant state.
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where r = N�
2 + 1

τc
and q = N�

2 − 1
τc

, and the contribution to
the excitation population is defined as

P(1)
d (t ) ≡ 2(N − 1)σ 2

N2�

[
1

q
e−N�t + 1

r
− N�

rq
e−rt

]
. (B14)

Note that P(1)
d (0) = 0 and

P(1)
d (t → ∞) → 2(N − 1)σ 2

N2�

1

r
�= 0 (B15)

which yields nonzero population at long times.
At this point, we can put together Eqs. (B9), (B11), and

(B14) and approximate the excitation population [Eq. (B8)]
by

P(t ) = P(0)
s (t ) + P(1)

s (t ) + P(1)
d (t ). (B16)

In Fig. 7, we compare Eq. (B16) and the numerical results
as obtained by Eqs. (4) and (5). We find that, in general,
P(0)

s (t ) captures the correct superradiant decay at short times,
but P(1)

d (t ) does not predict the correct subradiant decay at
long times. That being said, particularly in the parameter
region γ < �, the time at which P(0)

s = P(1)
d can still pro-

vide a good estimation for the critical time t∗ at which the

population dynamics make a transition from superradiance to
subradiance.

APPENDIX C: A SHORT LIGHT PULSE EXCITES
THE SUPERRADIANT STATE

For completeness, in order to address the timescale at
which the superradiant state forms, we have simulated a Gaus-
sian light pulse with a sharp cutoff at the peak of the pulse td :

f (t ) = A sin(ωdt ) exp(−(t − td )2/B2)

×
(

1

2
− 1

π
arctan[D(t − td )]

)
.

Here we choose A = 5×10−3, B = 25, and D = 104 for a
sharp cutoff. The characteristic frequency is off resonant,
ωd − ωx = 0.25 and td = 100. In Fig. 8, we observe that
the short pulse excites the collective superradiant state at the
peak of the light pulse, and then, for dynamic disorder, the
excitation population decays at the superradiant rate followed
by a subradiant decay. In contrast, for static disorder, the
superradiant state loses coherence quickly after t = td and
single-particle emission ensues.
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