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Multipass cells (MPCs) recently emerged as a new femtosecond pulse compression technique for lasers with
high pulse energy. While most of the work focused on the compression of near-infrared laser systems so far, we
address the case of holmium-based gain materials, which offer an enormous potential in terms of pulse energy,
yet can only host a very narrow bandwidth in the 2-μm wavelength range. Compression into the few-cycle
regime, therefore, requires at least a hundredfold spectral broadening. Specifically, we investigate the utility
of four different solid-state materials in the MPC, namely, fused silica, sapphire, YAG, and diamond. Spectral
broadening dynamics is numerically investigated using the 2D + 1-unidirectional pulse propagation equation. To
this end, we put particular emphasis on the thermal properties of the nonlinear optical material, which turn out as
a critical issue above 2-μm wavelength. Solving the heat equation for each of the materials, we then estimate the
maximum temperature at beam center. These considerations show that outside the near infrared, thermodynamic
parameters of nonlinear optical materials become at least equally important as their optical properties. Among
the four materials under test, in particular, diamond stands out as it combines highly favorable thermal properties
with a large optical nonlinearity. Finally, a concomitant slow degradation of spatial coherence is monitored. Our
findings provide an effective guideline for the design of high pulse-energy compressors at wavelengths of 2 μm
and beyond.
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I. INTRODUCTION

With the rapid advance of ultrafast laser technology,
high-energy few-cycle pulses are becoming increasingly ac-
cessible. Traditionally, given their broadband laser gain,
Ti:sapphire lasers have an edge here [1]. Yet the feat of
a broadband emission inevitably comes with a limited en-
ergy storage capability, that is, a saturation fluence of only
about 1 J/cm2. To this end, rare-earth-doped materials are
often announced as a much more capable alternative, of-
fering less than ten times larger saturation fluence. For
example, with only a slightly increased center wavelength,
Yb-doped fiber lasers [2] and Yb:YAG thin-disk laser sys-
tems [3] therefore offer a substantial increase in terms of
saturation fluence, but at the expense of gain bandwidth and
pulse duration. Considering chirped-pulse amplification in
these media, therefore, Yb-doped laser gain materials of-
fer a substantial increase of pulse energies generated in a
medium with given dimensions, yet with the caveat of con-
comitantly increased pulse durations. Recently, the interest
of generating high-energy few-cycle pulses has increasingly
shifted towards even longer wavelengths in the 2-μm range,
using holmium- or thulium-doped materials. In this range,
Ho:YLF sticks out, with demonstrated pulse energies of
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more than 50 mJ at kHz repetition rate [4]. However, given
the rather narrow band amplification range of this material,
gain-narrowing effects limit the pulse duration of these laser
systems to about 2 ps, requiring hundredfold compression
to reach the few-cycle range [5], therefore, even increasing
the intrinsic dilemma between pulse duration and energy in
amplified laser systems. Pertinent extreme compression ra-
tios require substantially more sophisticated approaches than
early Ti:sapphire-based few-cycle pulse generation [6–10].
All these active compression schemes rely on a combination
of a nonlinear medium and dispersion compensation, yet em-
ploy different geometries. Among the proven approaches for
pulse compression, hollow-fiber compressors can probably be
considered the most successful technique [5–7,10–13], with
dispersion compensation typically relying on chirped mirrors.
Notably, more recent successful schemes often involved mul-
tiplate schemes [14,15] or multipass cells (MPCs) [16–18],
which considerably increased the toolbox of few-cycle pulse
compression. Typically, the MPC method is implemented
by utilizing the nonlinearity of a noble gas, i.e., the non-
linearity is distributed over the entire cavity, similar to the
hollow-fiber approach. While this approach is certainly best
suited for elevated pulse energies, using a solid-state nonlinear
medium offers a much quicker accumulation of sufficient B
integrals at somewhat lower pulse energies. To this end, the
use of solid-state media rather than noble gases is appealing.
So far, technical implementations of this scheme typically
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FIG. 1. The structure of solid-state MPC used for high-energy
picosecond pulse compression in the 2-μm range. In the following,
we assume that ideal dispersion compensation can be accomplished
by a set of chirped mirrors, as indicated by the compression stage.

employed a single isolated dielectric slab within the focus
of the multipass cell rather than using a continuous gaseous
medium. In the following, we will refer to this particular ge-
ometry as solid-state MPC [16,18]. They exclusively operated
around 1 μm with one exception at 1.5 μm [19]. All of them
contained fused silica plates as a nonlinear medium and the
compressed pulse energy is below 100 μJ [18]. The choice of
a suitable nonlinear medium appears straightforward in the 1-
μm range, with the rather proven choices of either sapphire or
YAG [20–22]. Both of these materials excel with their thermal
conductivity properties rather than only displaying superior
nonlinear optical properties. To avoid multiphoton absorption
(MPA) and ionization processes to the extent possible, ma-
terials with the largest band gap like LiF, CaF2, or MgF2

should be strongly preferred [23–25], which are nevertheless
often found disappointing in terms of spectral broadening.
Therefore, the key issue of the fluorides appears to be their low
thermal conductivity and the rather low nonlinear refractive
index that is intimately coupled to their large band gap. In the
following, we revisit the scenario of a solid-state nonlinear
medium inside a MPC, including the MPA processes, thermal
conductivity, and linear absorption at 2-μm wavelength.

In the following we numerically study solid-state MPCs
for the compression of 2-μm high-energy picosecond pulses.
The energy, full width at half maximum (FWHM) duration,
and center wavelength of the input pulse are set as 45 mJ,
3 ps, and 2.05 μm, respectively. These values are chosen
according to our previous experimental data [4]. To explore
the best-suited solid nonlinear medium that can be used for
effective pulse compression in this wavelength range, four
solid-state materials are considered, i.e., fused silica, sapphire,
YAG, and diamond [26–29]. While sapphire and YAG were
frequently used in the 1-μm range, we include fused silica for
comparison as it exhibits relatively poor thermal properties in
comparison to the crystalline materials. Diamond, on the other
hand, shows the best thermal conductivity of all transparent
dielectrics. As part of the pulse energy is absorbed and con-
verted into heat during the compression process, we couple
the nonlinear optical model to a thermodynamic analysis. The
structure of solid-state MPCs to be studied in this work is
shown in Fig. 1. The four different media are illustrated by
different colors and assumed to be inserted into the center
of the MPC under near-normal incidence. For practical
purposes, the slab needs to be antireflection coated or

Brewster-angled. The latter would then require additional
compensation measures for astigmatism [30] and is not con-
sidered here. Parameters D and L describe the height and
length of the designed solid-state MPC, respectively, and R
is the radius of the curvature of the concave mirrors. The
MPC is designed as a Herriott cell by adjusting L to satisfy
the condition of R < L < 2L. The radius of the beam waist
w0 as well as the beam size on concave mirrors is calculated
by the ABCD matrix formalism once the MPC structure is
selected [17]. We assume that the concave mirrors are highly
reflective R = 99%. In the following sections, the theoretical
framework and simulation results are described in detail.

II. THEORETICAL FRAMEWORK

The space-time nonlinear dynamics of pulse propagation
in MPCs can be described by the unidirectional pulse propa-
gation equation (UPPE) [31]. To simplify the calculation, we
reduce the spatial coordinates from 3D + 1 to 2D + 1, using
cyclindrical coordinates to replace (x, y, z, t ) with (r, z, t ).
When space-time coupling [32] can be neglected, a 1D + 1
model may also suffice to describe the nonlinear propagation
in MPCs [33]. However, space-time coupling may play a role
in this work due to high pulse energies and the thermody-
namic analysis critically relies on the exact two-dimensional
(2D) intensity distributions for reliably computing the result-
ing temperature fields. Therefore, the 2D + 1 model is most
suitable for this work. Mathematically, the 2D + 1 UPPE is
written as

∂zẼk⊥ (ω, z) = ikzẼk⊥ (ω, z) + iω2

2ε0c2kz
P̃⊥(ω, z)

− ω

2ε0c2kz
J̃⊥(ω, z), (1)

where z is the propagation coordinate, kz =
√

k2(ω) − k2
⊥ is

the z component of the wave vector k, where k(ω) = n(ω)ω/c,
ω is the angular frequency, c is the light speed in a vacuum,
ε0 is the permittivity in free space, and n(ω) is the complex
linear refractive index, including both the refractive index n̄
and linear losses by n(ω) = n̄(ω) + ike(ω). Here ke is the
extinction ratio, which is proportional to the linear loss of
the medium. Different from previous work, the linear loss
must be considered here because all four solid materials under
consideration show intrinsic absorption. To solve the UPPE
efficiently, one needs to rewrite it in spectral representation.
Actually, only the spectral amplitude Ã, which is related
to Ẽ via Ẽk⊥ (ω, z) = Ãk⊥ (ω, z)(ikzz), enters into the nonlin-
ear part. In Eq. (1), P̃⊥(ω, z) is the nonlinear polarization
term including both the instantaneous nonlinear refraction and
the noninstantaneous Raman effect. In the time domain, the
P̃⊥(ω, z) can be written as

P⊥(t ) = 2ε0n0n2

[
(1− fR)I (t )+ fR

∫ ∞

0
R(τ )I (t − τ )dτ

]
,

(2)

where n0 = n̄(ω0) denotes the real part of n(ω) at pumping
frequency ω0, n2 is the nonlinear refractive index of the em-
ployed solid plate whose frequency dependence is neglected,
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TABLE I. Optical parameters for the four materials under test. n0, GVD, ke, and n2: linear refractive, group-velocity dispersion, extinction
ratio, and nonlinear refractive index at pump wavelength, respectively. fR: fractional contribution of the Raman response. tr : reciprocal of the
single vibrational angular frequency. td : vibration damping time. τc: average collision time of electrons. τr : recombination time of free carriers.
Ui: band gap. N : photon number. ρnt : density of neutral atoms.

�����Mat.
Para.

n0
GVD

(fs2/mm)
ke

×10−7
n2 (cm2/W)

×10−16 fR tr (fs) td (fs) τc (fs) τr (fs) Ui (eV) N
ρnt (cm−3)

×1022 Refs.

Silica 1.44 −113 2 1.94 0.18 12.5 32 20 150 7.8 13 2.1 [39–44]
Sapphire 1.74 25 13 2.44 0.25 200 182 1.7 96 9.9 17 2.4 [26,40,45–47]
YAG 1.8 −71 27 7 0.15 10 0.02 3 1000 6.5 11 7 [45,48–51]
Diamond 2.4 64 1.2 13 0.28 5700 4 3.6 ×108 − 5.5 10 18 [29,52–56]

I (t ) denotes the intensity of propagating pulse, fR stands for
the fractional contribution of the Raman response, and R(t )
represents a memory function that describes the Raman effect.
The R(t ) for four materials can be generally expressed in an
unified form as [34]

R(t ) = (
t−2
r + t−2

d

)
tr exp(−t/td ) sin(t/tr ), (3)

where tr is the reciprocal of the single vibrational angular
frequency and td is the vibration damping time. Values for tr
and td are listed in Table I.

The plasma-induced current J accounts for the average
dissipated power that is caused by optical ionization. The
time-dependent differential equation for J is given as [34]

∂J
∂t

+ J
τc

= q2
e

me
ρeE, (4)

in which ρe represents the electron density, τc is the average
collision time of electrons, qe is the elementary charge, and
me is the reduced electron-hole mass. While the real part of
J accounts for plasma absorption, its imaginary part allows
for the plasma defocusing. The charge density ρ(r, t ) itself is
governed by another rate equation with additional attenuation
term [34]

∂ρe

∂t
= WMP(I )(ρnt − ρ) + Wava(I )ρe − ρe/τr, (5)

where WMP = σN IN denotes the multiphoton ionization rate,
σN is the respective cross section, and N the photon number
defined by N =mod[Ui/(h̄ω0)] + 1. h̄ is the reduced Planck
constant and Ui is the band gap. It is obvious that N is
determined by both the band gap of the material and the
pump angular frequency. Finally, ρnt represents the density
of neutral atoms, Wava = σ (ω0)I/Ui is the rate of avalanche
ionization proportional to the light intensity, and τr is the
recombination time of free carriers. We emphasize that free-
carrier recombination must be taken into account in this work
because the picosecond input pulse duration can be an order
of magnitude larger than τr , cf. Table I. Shielding against
potential catastrophic damage issues, we apply the criterion
of [35], demanding that the resulting partial ionization stay
below 0.1%. The avalanche ionization coefficient σ (ω0) at ω0

is written as [34]

σ (ω0) = ω2
0τc

n0cρc

1 + iω0τc

1 + ω2
0τ

2
c

, (6)

where ρc = ε0meω
2
0/q2

e is the critical plasma density. For a
comprehensive presentation of the optical properties for the
four materials employed, we summarize their parameters in
Table I. It should be noted that, according to its collision time,
τc of diamond is estimated to be on the order of nanoseconds.
Therefore, the free-carrier recombination can be neglected in
this particular case. Moreover, the value for ke of YAG in
Table I is a fitted value.

The input pulse is assumed with Gaussian temporal and
spatial profile at z = 0 according to

E (r, t, z = 0) = √
Iin exp

[
− r2

w2
0

− t2

t2
0

− ik0
r2

2 f

]
, (7)

where Iin is the input intensity and w0 and t0 denote the
beam radius and the pulse width, respectively. Here w0 is
deliberately chosen as large as 500 μm to limit the buildup of
an overcritical plasma density >0.1% [35]. The wave number
is defined as k0 = 2π/λ0, where λ0 = 2.05 μm is chosen as
the center wavelength, according to the maximum gain wave-
length of Ho:YLF [4]. The FWHM definition of pulse width tF
is connected to t0 via tF = √

2ln2t0. We further set tF to 3 ps
throughout because the rather strong gain-narrowing effects
in Ho:YLF render it difficult to obtain significantly shorter
pulses from regenerative amplifiers [36,37].

Using Eq. (1), we now compute the cumulated energy loss
for the propagation inside the MPC. All dissipative effects
inside the nonlinear medium lead to a highly localized tem-
perature increase within the modal volume of the laser beam.
This thermodynamic process is modeled by the transient heat
equation [38]

ρmCp
∂T (t, r, z)

∂t
+ ∇ · [−K∇T (t, r, z)] = Q(r, z), (8)

where ρm is the mass density of the medium, Cp the spe-
cific heat capacity, K the thermal conductivity, T (t, r, z) the
2D + 1 temperature field, and Q(r, z) the heat source. The
heat source Q is given by the absorbed intensity Iab of prop-
agating pulses according to Q(r, z) = ∫ ∞

−∞ Iab(r, t, z)dt/
z,
where 
z is the step size along the axial dimension Here
we already neglect any time dependence of the heat source
as diffusive defects are slow compared to both the picosec-
ond timescales of the laser pulses and the typical few-kHz
repetition rates under consideration. Moreover, as we are
considering a solid medium, convective heat transfer is ne-
glected in Eq. (8). Nevertheless, convective and radiative
cooling have to be considered at the front and rear sur-
faces of the nonlinear medium. These cooling processes
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are included as Neumann boundary conditions, with con-
vective and radiative loss rates �conv = h
[T (r, z ∈ {0, d =
1 mm}) − Tamb] and �rad = εσ [T 4(r, z ∈ {0, d = 1 mm}) −
T 4

amb], respectively. Here σ = 5.67 × 10−8 W/(m2 K4) is the
Stefan-Boltzmann constant, ε the emissivity of the material,
which is estimated as ε = 0.7 throughout. The heat-transfer
coefficient h was assumed as 50, i.e., slightly below the
possible onset of a turbulent air flow. This assumption corre-
sponds to maximum convective cooling at the optical surfaces.
Then we consider the Dirichlet boundary condition T (r0 =
1.5 mm) = Tamb = 20 ◦C for the nonoptical cylindrical sur-
face, i.e., we assume that the optical medium is clamped to
a heat sink at constant ambient temperature at its perimeter. It
is worth noting that convective and radiative cooling only play
a minor role here, in particular in the simulation of crystalline
optical media with their rather high thermal conductivi-
ties. Equation (8) can now be integrated out over time to
yield the steady-state heat equation for determining the static
solution T (r, z)

∇ · [−K∇T (r, z)] = Q(r, z). (9)

Now the resulting temperature profile is only determined by
two parameters, namely the thermal conductivity K and the
source term Q(r, z). The source term will now only be derived
from the pulse propagation simulation runs, accounting for
both linear contributions and those resulting from multiphoton
processes. In the following, we will first analyze the properties
of the compressed optical pulses with the aim of obtaining
the shortest possible pulses and widest spectra in the MPC.
This will then be followed by a discussion of the resulting
temperature profiles using the above thermodynamic analysis.

III. SIMULATION RESULTS

We start our discussion of the simulation results with an
analysis of pulse compression in four cylindrical solid plates
of different materials. To simplify the comparison, we assume
identical thickness of d = 1 mm and radius of r0 = 1.5 mm,
i.e., we clip the beam at three times its waist radius of
w0 = 0.5 mm. This choice is probably the tightest practical
diameter of the nonlinear medium, maximizing the cooling
potential at the cylindrical surface used for heat sinking. We
further assume identical conditions for the input pulse, i.e.,
tF = 3 ps and 45 mJ pulse energy for all materials. At the
identical pump wavelength of 2.05 μm, the group-velocity
dispersion (GVD) of fused silica, sapphire, YAG, and dia-
mond are shown in Table I. Figure 2 shows the compression
factor F and the energy efficiency η versus number of passes
on the left and right vertical axes, respectively. F is defined
as the ratio between the output and input pulse width and
the corresponding efficiency η is defined as the ratio between
output and input energy, characterizing pulse compression
and energy loss, respectively. For the calculation of F, we
assume optimum dispersion compensation, i.e., we effectively
compute the Fourier transform of the broadened spectra here
to show the maximum compression potential obtainable from
the respective MPC. The efficiency calculation only accounts
for linear and nonlinear losses inside the material as well as
for dissipative effects due to clipping at r = r0, but not for
Fresnel losses due to imperfections of antireflection coatings.

FIG. 2. Variation of compression factor F and energy efficiency
η vs. number of passes np for MPCs using (a) fused silica, (b) sap-
phire, (c) YAG and (d) diamond plates inside the focal position of
the cavity. Insets show corresponding temporal waveforms for input
(red) and output (blue) pulses.

Depending on the material, optimum compression is reached
after two to nine passes, with a maximum value F > 50 for
diamond. This unexpectedly high compression factor enables
direct compression of 3 ps pulses down to sub-60-fs pulse
duration in a single compression stage and is accompanied by
an efficiency of 97%. The latter value is only exceeded using
fused silica as the nonlinear medium whereas the crystalline
materials sapphire and YAG perform substantially poorer in
terms of efficiency. Compression factors for fused silica, sap-
phire, and YAG are all in the range of 20, allowing direct
compression down to about 150 to 160-fs duration.

To better understand the dynamics of F evolution, we in-
troduce the B integral [57], which measures the accumulation
of the nonlinear phase caused by self-phase modulation

Bint = 2πn2

λ

∫ d

0

Ppeak (z)

Aeff (z)
dz, (10)

where Ppeak (z) is the localized peak power and Aeff (z) is the
localized effective mode area at propagation distance z. As
silica and YAG exhibit negative GVD in the 2-μm region,
soliton-like self-compression effects may appear and lead to
an increase of Ppeak (z). A much stronger contribution to in-
creasing the B integral is expected from self-focusing effects,
which may lead to a catastrophic optical collapse that has to
be absolutely avoided lest optical damage occur. Prior to the
onset of damage, one often observes plasma-induced defo-
cusing effects, which cause a pulse break-up in the temporal
domain and the formation of ring-like structures in the radial
domain. Figure 3 shows computed cross sections through the
r-λ domain for the situation of maximum compression in
Fig. 2. Calculating the B integral from Eq. (10), we arrive at
an estimate of B ≈ 8.7π , 8.2π , and 7.7π for the case of silica,
sapphire, and YAG, respectively. These numbers are consis-
tent with the observed maximum 20-fold spectral broadening
and possible compression in Fig. 2. In contrast, diamond leads
to much higher values of B ≈ 24.2π , and at least the onset of
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FIG. 3. Spatiospectral intensity distribution for (a) fused sil-
ica, (b) sapphire, (c) YAG, and (d) diamond when F reaches its
maximum. The corresponding B integrals are calculated for four
employed materials.

the formation of a radial ring structure can be seen near 2.01-
and 2.10-μm wavelength. Nevertheless, these effects can still
be considered as rather mild, leading to the reduction of beam
quality rather than any catastrophic consequences.

To scrutinize any possible concomitant degradation of spa-
tial coherence during nonlinear propagation, we introduce the
first-order coherence g12 [58,59], which is defined as

g12(r) =
∣∣∣∣∣∣

〈Êm(r)Ê∗
n (r)〉m �=n√

〈|Êm(r)|2〉〈|Ê∗
n (r)|2〉

∣∣∣∣∣∣, (11)

where the angular brackets represent an average over non-
identical pairs of optical fields, which are indexed by m and
n. Here Ên(r) = ∫ ∞

−∞ En(r, t )dt is the complex-valued spatial
amplitude after time-domain integration. Spatial pulse pairs
are obtained from an ensemble of 50 simulation runs with
independent noise fields seeded by one photon per mode [60].
At a given spatial position r, 0 � g12(r) � 1 where g12(r) ≈ 1
indicates excellent stability in amplitude and phase. Calcu-
lated g12 values versus radius are shown in Fig. 4 for the
situation of maximum F . In addition, we also illustrate the
resulting integrated radial beam profiles within the nonlin-
ear medium. Near r = 0, the spatial coherence g12 generally
degrades to a value near 0.97 for all materials but YAG.
The coherence degradation at beam center is accompanied by
deviations from the initial Gaussian profile. This transfer of
energy into higher-order spatial modes is most pronounced for
diamond, where coherence is additionally degraded off-center
and a pronounced shoulder appears near r = 0.2 mm. In some
sense, this pedestal structure can be understood as the spatial
analog of the infamous coherent artifact in temporal pulse
characterization [61,62].

At this point of the discussion, one would conclude that
both fused silica and sapphire appear to be valid choices,
showing good spectral broadening at relatively high effi-
ciencies. YAG appears to exhibit efficiency issues while
diamond shows some indications for an immediate spatial

FIG. 4. The distribution of spatial intensity I (r) (left) and spatial
coherence g12 (right) over r when F reaches its maximum for silica
(red solid curve), sapphire (dashed green curve), YAG (dashed dotted
blue curve), and diamond (dotted magenta curve).

beam breakup. Yet this premature conclusion does not take
into account thermal effects. While to some extent such effects
can be compensated by suitable adjustment of the MPC, a
limit is reached when the focal length associated with thermal
lensing effects reaches the dimension of the cavity.

To analyze the detrimental thermal lensing effects, we
compute the absorbed energy Ein − E (z) as a function of t .
Calculation results for E (z) are shown in Fig. 5. In these
simulations, we switched off individual dissipative mecha-
nisms to trace the origin of the observed losses in Fig. 2.
As one can see in Figs. 5(a) to 5(c), linear absorption nearly
exclusively contributes to the losses for silica, sapphire, and
YAG, i.e., switching off MPA or plasma avalanche effects

FIG. 5. The variation of pulse energy with np for (a) silica,
(b) sapphire, (c) YAG, and (d) diamond. The pulse energy under
full model (solid red curve), without plasma (dashed green curve),
with MPA (dashed dotted blue curve), and without linear loss (dotted
magenta curve) are calculated.
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FIG. 6. The spatial distribution of accumulated energy density
inside solid-state slab when F reaches its maximum for (a) silica,
(b) sapphire, (c) YAG and (d) diamond.

does not result in any significant change of pulse energy.
Therefore, linear losses are solely responsible for dissipative
effects in silica, sapphire, and YAG and amount to 0.69, 3.01,
and 2.65 mJ, respectively. Accounting for the np through the
nonlinear medium, this corresponds energy attenuation rates
of 0.08, 0.60, and 1.33 mJ/mm, respectively. This information
together with the corresponding ke are also included in Table I.
The dominant linear absorption is contrasted by the behavior
of diamond, where MPA clearly dominates. Specifically, MPA
causes a 0.78-mJ energy loss in diamond and linear losses
consume only 0.47 mJ. These dominant nonlinear losses are
explained by the rather small band gap of diamond of only
5.5 eV. It is nevertheless striking that the resulting total ab-
sorption remains smaller than for sapphire and YAG and that
avalanche processes do not appear to play any role yet.

As a final aspect of our study, we find it instructive to study
the spatial distribution of the absorbed energy inside a solid
plate. We therefore construct a parameter VAE that describes
the spatial distribution of energy density integrated over mul-
tiple passes until F reaches maximum value. We write this
parameter as

VAE(r, z) = 1


z

Np∑
np=1

I int
r (r, z, np)


Ei(z, n p)

Ei(z, np)
, (12)

where 
z = zi − zi−1 is again the longitudinal step size and
i is the step number, I int

r (r, z, np) = ∫ ∞
−∞ I (r, t, z, np)dt is

the integrated intensity over t , 
Ei(z, np) = Ei−1(z, np) −
Ei(z, np) is the energy difference that the pulse experiences
when it propagates one axial step from zi−1 to zi, i.e., the
absorbed energy during one 
z. It can be seen from Eq. (12)
that VAE(r, z) is a superimposed energy density over np. For
silica, sapphire, YAG, and diamond, the corresponding Np

are 9, 5, 2, and 6, respectively. The spatial distributions of
VAE(r, z) are shown in Fig. 6. From Fig. 6(a) we can see that
the superposed VAE(r, z) near the front facet (z = 0–0.5 mm)
is larger than that at the rear. At first glance, this scenario
appears contrary to our expectation that self-focusing effects

FIG. 7. Three-dimensional view of the temperature distribution
over entire plate when F reaches its maximum for (a) silica, (b) sap-
phire, (c) YAG, and (d) diamond.

should occur during the second half of propagation. However,
taking into account the round-trip propagation of the beam
inside the MPC, this picture seems reasonable because, for
an even np, the propagation direction is reverted and self-
focusing dominates near z = 0. A pronounced unbalanced
propagation phenomenon appears for silica. Figure 6 is also
instructive to understand the difference to thermal lensing ef-
fects in traditional lamp-pumped solid state lasers [63], where
it is usually assumed that dissipative effects are homogeneous.
In the MPC, in contrast, heating effects are highly localized
and confined to a diameter in the range from 20 μm (silica)
to 50 μm (diamond). It is therefore not immediately clear
whether we can use the theoretical treatment in Ref. [63]
to estimate the resulting focal length fθ of the thermal
lensing effect.

To address this problem, we numerically solve Eq. (9). We
assume a repetition rate frep = 1 kHz and an ambient temper-
ature of 20 ◦C. The simulation results are shown in Fig. 7.
While it can be seen that for all materials, temperatures on
axis are much higher than those at the perimeter, deviations
from the analytical solution of the heat equation remain rather
small. However, resulting on-axis temperatures can be as high
as 255 ◦C in silica [Fig. 7(a)] whereas diamond exhibits a
nearly vanishing heating effect of only 0.3 ◦C [Fig. 6(d)] due
to its extremely high heat conductivity. Peak temperatures for
all four materials are compiled in Table II. Maximum temper-
atures in Table II have to be considered absolute maximum
values, as dictated either by melting, disintegration, or oxi-
dization under atmospheric conditions [64,65]. In particular,
for materials with low thermal conductivity, thermal stress
may cause catastrophic optical damage at much lower temper-
atures. We therefore consider a local temperature maximum
of 300 ◦C as a more practical safe limit. While it appears
obvious that fused silica is unsuitable for an MPC operated
at 2-μm wavelength, we estimated the order of magnitude of
the thermal focal length fθ from the temperature dependence
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TABLE II. Thermodynamic parameters for four materi-
als [63,66,67]. Max. temp.: absolute maximum temperature when
either melting or disintegration occurs [68]; Peak temp.: calculated
temperature at beam center.

�������Para.
Mat.

Silica Sapphire YAG Diamond

K (W m−1 K−1) 1.42 40 14 3000
dn/dT (10−6K−1) 11.5 12 7.3 7.7
Max. temp. (◦C) 1000 1600 1700 750
Peak temp. (◦C) 255 58 110 20.3
fθ (m) 1.9 15 10 4000

of the refractive index

fθ = 2Kπr2
0

(1 − η)Ein frep

(
dn

dT

)−1

. (13)

Values for the temperature coefficient of the refractive index
are included in Table II for all four materials [63,66,67]. This
simplified treatment neglects stress-induced effects, which are
expected to further decrease fθ by ≈25% for YAG [63]. We
also neglect the end cap effect, even though it probably plays
a stronger role in our disk-shaped media than in elongated
laser rods. Accounting only for thermal refraction effects, we
compute fθ < 2 m for fused silica, which clearly confirms
our concerns on the poor suitability of this material for com-
pression of high-energy laser pulses at 2 μm. In YAG and
sapphire, thermal lensing effects are markedly weaker [cf. Ta-
ble II], but require energy-dependent adjustments of the cavity
design to adapt thermal lenses in the 10-m range. In contrast,
fθ remains in the kilometer range for diamond. Thermal focal
lengths fθ � 10 m are large compared to typical dimensions
of MPCs. With the noted exception of fused silica, detrimen-
tal thermal lensing effects can therefore be compensated by
suitable alignment.

IV. CONCLUSION

In conclusion, we find that the compression of multi-mJ
pulse energies at wavelengths of 2 μm and above does not
necessarily have to resort to gaseous nonlinear media. So
far, noble gases have been typically used for this purpose
either in MPCs or hollow fiber compressors because they do
not exhibit any absorption in the entire infrared range up to
arbitrarily large wavelengths. However, this feat comes with
two potential caveats. First, the Kerr nonlinearity of noble
gases is rather low [69], which either requires tight focusing
or a large number of passes in a MPC. Second, and different

from the solid media, highly localized heating due to MPA
in a MPC can lead to the onset of atmospheric turbulence
inside the gas [70]. Hollow-fiber compressors, on the other
hand, are limited in their capability to host pulse energies
much above 10 mJ [10], which require large inner capillary
diameters and, in turn, lengths of several meters to produce
sufficient B integrals. Using solid-state materials inside an
MPC is not an obvious alternative, as essentially all wide-
band-gap solid-state exhibit a certain amount of losses above
2-μm wavelength. In many materials these losses are due
to the presence of OH contaminations, but even in homonu-
clear materials like diamond, multiphonon absorption effects
induce nonnegligible losses above 2.5-μm wavelength. As
absorption is virtually unavoidable in solid-state dielectrics,
thermal conductivity plays the most important role in the
choice of the material, and this clearly favors diamond with
its excellent thermal properties. Another interesting candi-
date may be silicon carbide, which exhibits an even higher
nonlinearity, but significantly lower band gap and about
ten times lower heat conductivity and is birefringent. As
one could already see, the onset of detrimental effects on
the beam profile in diamond with its ≈1 eV larger band
gap, we therefore do not expect that SiC will outperform
diamond.

Summarizing this discussion, it appears of paramount
importance to choose nonlinear optical materials that com-
bine favorable nonlinear optical and thermal properties in
solid-state MPC compression schemes, in particular, when
dissipative effects are virtually unavoidable. Moreover, in the
infrared region above 2-μm wavelength, traditional criteria
as a wide band gap can be mitigated to some extent. Rather,
thermal conductivity takes the lead role for selecting a suitable
material. This surprising shift of focus may lead to more
efficient pulse compression schemes in the midinfrared, which
surpass traditional hollow-fiber compression both in terms of
pulse energy and compression factors. Given the high utility
of long wave-based high-harmonic generation due to their
large ponderomotive energy, our findings open an avenue for
previously unprecedented applications of immediate mid-IR
laser sources.
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