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Magnetic-field-engineered coherent perfect absorption and transmission
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An experimental work [W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao,
Science 331, 889 (2011)] showed that a resonator that contains a loss medium instead of a gain medium enables
coherent perfect absorption (CPA) by interference. Here, we propose an alternative approach to realize such
a CPA and coherent perfect transmission (CPT) as well as the switching between CPA and CPT in a cavity
quantum electrodynamics (CQED) system by applying an external magnetic field. The proposed CPA and CPT
scheme is based on the magnetically induced transparency (MIT) configuration, instead of the conventional
electromagnetically induced transparency configuration, which offers a sensitive method to tune CPA and CPT
and also is conducive to the flexible control of the CPA and CPT scheme. Under the linear and nonlinear
excitation regimes, we derive the approximate analytical solutions of the cavity-output power and the CPA
criteria of the CQED system, and find that the CPA can occur at different frequencies in both regimes. In
the nonlinear excitation regime, the relationship between the cavity-output power and the cavity-input power
can show a bistable characteristic by the control of the static magnetic field, and the CPA point is near the
turning point of the cavity-input power on the bistable return hysteresis curve. Furthermore, the line shape
and the threshold value for optical bistability can be flexibly controlled by varying the magnetic field under
experimentally accessible conditions, thus the magnetic field can well tune the CPA. Also, we compare the
analytical and numerical results of the cavity-output power in the nonlinear excitation regime, and they are in
good agreement. Our results show that the CQED system based on the MIT configuration can be used as a
perfect absorber or nearly perfect transmitter, which may have practical applications in optical logic and optical
communication devices.
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I. INTRODUCTION

Besides reflection and refraction, absorption is a general
phenomenon of the coherent interaction between light and
matter, which is significant for a variety of fundamental stud-
ies and practical applications [1–8]. In recent years, coherent
perfect absorption (CPA) that arises from the interference of
two coherent counterpropagating light fields in a confined
cavity structure has attracted tremendous research interests
[9–12]. So far, the CPA has been proposed theoretically in
several systems, including metasurfaces [5,13–15], gratings
[16–18], graphenes [19,20], photonic crystals [21,22], opti-
cal cavities [23,24], and so on. In particular, the CPA has
been studied in optical Fabry-Pérot cavities containing meta-
materials [15,25–27], loss media [2], planar slabs [28,29],
thin films [5,30–33], and optical waveguides [34,35]. Such
a cavity-absorber system can be used as a coherent perfect
absorber and may have potential applications in informa-
tion communication [36,37], all-optical switching [38], signal
modulation [39,40], acoustic absorption [41], optical logical
devices [42,43], etc.

In 2011, Wan et al. observed experimentally that, in the
time-reversed counterpart to laser emission, the CPA can be
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achieved in a dissipative silicon cavity [3]. Also similar CPA
with two coherent input light fields is manipulated by electro-
magnetically induced transparency (EIT) in a cavity quantum
electrodynamics (CQED) system, which has received a lot of
attention [10,44–48]. For the conventional EIT in atomic sys-
tems, the atom is generally modeled as a three-level system,
in which the light at one frequency from a strong control laser
renders a medium transparent to the light from a weak probe
laser at a second frequency. In particular, in the CPA scheme
based on the EIT configuration, one can use the additional
control laser to modify the interaction between the cavity and
the atoms, and then realize the CPA. With the EIT-type quan-
tum interference induced by the control laser, the light fields
coupled to the optical cavity can be completely absorbed, and
no light can escape through the cavity, i.e., the so-called CPA
is achieved.

In analogy to EIT, a phenomenon called magnetically
induced transparency (MIT) gives access to the essential fea-
tures of EIT, but it only needs a static magnetic field instead
of an additional control laser to change the properties of the
medium [49–60]. Here we put forward an alternative route
to realize the CPA and coherent perfect transmission (CPT)
as well as the switching between CPA and CPT by simply
employing the Faraday magnetic field in a CQED system,
instead of the strong control field in the conventional EIT
system. Specifically, the proposed CQED system consists of
an optical Fabry-Pérot cavity containing N three-level V -type
atoms [with two closely lying upper states |1〉 and |2〉, and one
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FIG. 1. (a) Schematic of the CQED system. The CQED system
consists of N three-level V -type atoms (the small golden filled cir-
cles) confined in the cavity mode, which are subject to a Faraday
magnetic field B. Two horizontally polarized input light fields (al

in

and ar
in) are coupled into the cavity from opposite ends. The magnetic

field is applied along the vertical direction, which interacts with the
atoms from the open side of the cavity. The two top insets illustrate
the relative orientation of the input-light polarization (El

p and Er
p),

the input-light propagation (kl
p and kr

p), and the Faraday magnetic
field (B). (b) Energy-level structure of the atoms in the presence
of an external magnetic field applied in the Faraday geometry. The
ground state is denoted by |0〉 and the two bright excited states are
represented by |1〉 and |2〉. The quantization axis q̂ of the atomic
energy level is parallel to the applied magnetic field B and the applied
magnetic field creates a Zeeman splitting �B between the excited
states |1〉 and |2〉. Four small golden filled circles represent schemat-
ically that the atomic population is concentrated in the ground state
|0〉. The left (right) horizontally polarized input light field (which is
considered as a superposition of the σ− and σ+ components) with
the angular frequency ωp and the amplitude El

p (Er
p) which polarizes

along the x (x′) axis and propagates along the y (y′) axis is applied
to coherently drive the cavity mode with the resonance frequency ωc

and to couple both the |1〉 ↔ |0〉 excited transition with the excited
resonance frequency ω10 and the |2〉 ↔ |0〉 excited transition with
the excited resonance frequency ω20. Other symbols are defined in
the text.

ground state |0〉; see Fig. 1(b)], which are subject to a Faraday
magnetic field and are excited by two horizontally polarized
input light fields from two opposite ends of the cavity. We
find that the applied magnetic field plays an important role
in modifying the photon output properties of the system. By
simply turning the magnetic field on or off, the CQED system
can act as a perfect absorber or perfect transmitter at multiple
input light frequencies instead of only one single frequency
[48]. This means that the CPA criterion is easier to be satisfied
under the control of magnetic field. Alternatively, the CPA can
be tuned from the linear excitation regime into the nonlinear
excitation regime by varying the cavity-input power. By ana-
lyzing the steady state of the photon-atom interactions in the

CQED system, we can derive the cavity-output power from
the two partially transmitting cavity mirrors in the linear and
nonlinear excitation regimes. Our results show that the CPA
can occur in both linear and nonlinear excitation regimes of
the CQED system. We also derive the analytical expressions
of the CPA based on the MIT configuration and the analytical
results are in good agreement with the numerical simulations.
In the linear excitation regime, the control of the magnetic
field can realize the conversion of the CQED system from a
perfect photon absorber to a perfect photon transmitter, i.e.,
the cavity output is capable of switching from CPA to CPT or
vice versa. In the nonlinear excitation regime, the relationship
between the cavity-output power and the cavity-input power
can show a bistable characteristic by the control of the static
magnetic field, and the CPA point is near the turning point
of the cavity-input power on the bistable return hysteresis
curve. We also illustrate the phase dependence of the CPA, and
especially show the effect of interference on optical bistability
of the CQED system. The bistability can be well controlled
by simply varying the magnetic field and the relative phase of
the two input fields, which has potential applications based
on optical bistability such as optical switching and optical
multiplexing [61–63]. Also, we demonstrate that this scheme
of CPA and CPT can be implemented based on a real physical
platform.

Compared with the schemes proposed in
Refs. [12,47,48,64], the present paper contains three major
advantages.

(i) Unlike the scheme based on the EIT configuration that
responds to only a specific input light frequency [48], the
scheme based on the MIT configuration can realize the con-
version between the CPA and CPT at multiple input light
frequencies at the same time, which relaxes the frequency
requirements in the previous scheme based on the EIT con-
figuration.

(ii) The introduction of an external, static magnetic field
provides an additional degree of freedom (a tuning parameter)
by which the CPA can be controlled. Under the control of the
magnetic field, the CQED system can realize the conversion
between the CPA and CPT without the need for changing
the optical characteristics (i.e., the phase and frequency)
of the absorbed lights [12]. That is to say, it is not necessary
to change the phase and frequency of the absorbed lights
to realize the conversion between complete absorption and
complete transmission, just replaced by simply turning the
external magnetic field on or off, which relax the requirement
for the absorbed lights. Moreover, our scheme shows that
tuning the magnetic field is beneficial for the absorption of
stronger input lights than tuning the collective cavity-atom
coupling strength. This possibility of active control of the CPA
opens up an alternative idea for potential applications [26,38].

(iii) The CPA is robust to the variation of the magnetic field
when the magnetic-field strength is near zero in our scheme
based on MIT configuration, which may make it reliable to
use the magnetic field as a switching parameter from the CPA
to the CPT.

On the other hand, it is worth pointing out that our
magnetic-field-engineered CPA and CPT scheme is funda-
mentally different from the previous methods utilizing an EIT
[10,47,48], where the control-light-based EIT architecture (in-
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volving detuning, polarization, wave-vector matching, etc.)
is needed. To some extent our scheme proposed here makes
the experimental realization more friendly. The CPA is an
interference phenomenon in which the light fields incident
on a lossy medium are completely absorbed by the medium
through the process of destructive interference among all
scattering amplitudes [65–72]. The captured light is then
converted to other forms of energy inside the medium such
as electrical energy or heat. The CPA is a material inde-
pendent phenomenon and typically hinges on maintaining
correct phases and amplitudes of the incident light beams.
In principle, CPA has been generalized to diverse types of
materials and has been reported to be attained in the generic
type of complex scattering structures with and without hid-
den symmetries [73]. These motivate us to further explore
CPA in the CQED setup by engineering the static magnetic
field. In the previous works on MIT, Gevorgyan investigated
the application of MIT in an ideal optical diode [54], and
Winchester et al. demonstrated a technique to realize a narrow
spectroscopic feature based on MIT [74]. Differently from
Refs. [54,74], the present paper mainly focuses on the con-
version between the CPA and CPT in the linear and nonlinear
regimes, which is useful for designing all-optical switchings
[38] and logic elements [26].

The subsequent sections are organized as follows. In
Sec. II, we describe the theoretical model and the Hamiltonian
of the CQED system, then derive the process of cavity-output
and cavity-inside powers. In Sec. III, we demonstrate the ex-
perimental feasibility of our proposed CPA and CPT scheme
and the choice of typical CQED system parameters. All pa-
rameters discussed here are readily achievable experimentally.
In Sec. IV, we devote ourselves to identifying the CPA in the
linear excitation regime and describe in detail the switching of
the CQED system from a perfect photon absorber to a nearly
perfect photon transmitter based on the MIT configuration.
The analytical results and criteria of the CPA are given and
discussed. In Sec. V, we analyze the CPA in the nonlinear
excitation regime. The relationship between the cavity-output
power and the cavity-input power can show an optical bistabil-
ity, where optical bistability can be turned on or off under the
control of the applied magnetic field, and can be manipulated
by varying the relative phase of the two input fields. Finally,
the paper is summarized in Sec. VI.

II. PHYSICAL SYSTEM
AND THEORETICAL FRAMEWORK

Figure 1 shows the schematic diagram for a coupled CQED
system that consists of N three-level V -type atoms inside in a
single-mode cavity, which are subject to a Faraday magnetic
field B. The CQED system is excited by two horizontally
polarized input light fields (al

in and ar
in) from two opposite

ends of the cavity. The relative orientations of the input-light
polarization (El

p and Er
p), the input-light propagation (kl

p and
kr

p), and the Faraday magnetic field (B) are depicted in the two
top insets in Fig. 1(a). The left (right) input light field polarizes
along the x (x′) axis and propagates along the y (y′) axis. The
magnetic field is applied along the z axis (the z axis and
the z′ axis are in the same direction), which interacts with the
atoms from the open side of the cavity and induces a Zeeman

splitting between the upper energy levels |1〉 and |2〉. Here, the
atoms are regarded as a three-level V -type system [74] with a
ground state |0〉 and two upper bright excited states |1〉 and
|2〉 in the presence of an external magnetic field applied in
the Faraday geometry in which the magnetic field is parallel
to the y-z plane [see Fig. 1(b) and Sec. III below for details].
The coherent interaction in such a coupled CQED system is
described, in the presence of both the two input light fields and
the Faraday magnetic field, by the total Hamiltonian Ĥtot =
Ĥa+c + Ĥi, where Ĥa+c is the free Hamiltonian for the atoms
and the cavity field and Ĥi is the interaction Hamiltonian for
the coupled CQED system. Again, the free Hamiltonian Ĥa+c

within the electric-dipole and rotating-wave approximations
as well as in the Schrödinger picture reads (assuming the
Hamiltonian will be taken to have units of frequency here and
hereafter)

Ĥa+c = ωcâ†â +
N∑

i=1

(ω0 − �B/2)σ̂ (i)
11

+
N∑

i=1

(ω0 + �B/2)σ̂ (i)
22 , (1)

and the interaction Hamiltonian Ĥi reads

Ĥi =
N∑

i=1

g1âσ̂
(i)
10 +

N∑
i=1

g2âσ̂
(i)
20

+ iâ†e−iωpt
(√

κl/τal
in +

√
κr/τar

in

) + H.c. (2)

Here, â† and â are the creation and annihilation operators
for photons inside the cavity obeying the bosonic commuta-
tion relations [â, â†] = 1, [â†, â†] = 0 and [â, â] = 0. �B is
the Zeeman splitting between the two excited states |1〉 and |2〉
under the Faraday magnetic field [see Fig. 1(b)]. ωc is the res-
onance frequency of the cavity mode. ω0 = (ω10 + ω20)/2 =
ω10 + �B/2 = ω20 − �B/2 denotes the atomic transition fre-
quency (in the limit of zero applied magnetic field, each atom
can be regarded as a two-level system according to Ref. [74]),
where ω10 (ω20) is the excited resonance frequency for the
|0〉 ↔ |1〉 (|0〉 ↔ |2〉) transition of the three-level atoms.
σ̂

(i)
lm = |l〉〈m| (l, m = 0, 1, 2) represents the raising (l > m),

lowering (l < m), or population (l = m) operator for the ith
atom. N is the number of the atoms inside the cavity. g1 =
μ01

√
ωc/(2h̄ε0V ) and g2 = μ02

√
ωc/(2h̄ε0V ) are the cavity-

atom coupling strengths for the transitions |0〉 ↔ |1〉 and
|0〉 ↔ |2〉, respectively, where μ01 and μ02 are the electric-
dipole moments of the corresponding transitions |0〉 ↔ |1〉
and |0〉 ↔ |2〉, h̄ is the reduced Planck constant, ε0 is the per-
mittivity of vacuum, and V is the mode volume of the cavity.
In accordance with the previous reports in Refs. [12,47,48,64],
the coupling strengths g1 and g2 can be assumed to be uni-
form for the N identical atoms (i.e., σ̂

(i)
lm = σ̂lm) inside the

cavity. al
in and ar

in are two input light fields to the cavity [see
Fig. 1(a)]. The left (right) input light field is described by �E l

p =
�exEl

pe−iωpt ( �E r
p = �ex′Er

pe−iωpt ) with its unit polarization vector

�ex (�ex′), amplitude El
p (Er

p), and frequency ωp (the two input
light fields have the same frequency). κl = Tl/τ (κr = Tr/τ )
is the decay rate from the left (right) cavity mirror, with Tl
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(Tr) being the left (right) cavity mirror transmission and τ the
photon round-trip time inside the cavity [12,47,48,64,75]. We
reasonably ignore the inner cavity damping rate because it is
much smaller than that of the cavity mirror. H.c. denotes the
Hermitian conjugate. Since the zero-point energy for the free
Hamiltonian Ĥa+c only gives a relative shift without affecting
the dynamics of the system, we can ignore the zero-point
energy for the free Hamiltonian Ĥa+c and choose the ground-
state energy as zero in Eq. (1).

For the sake of eliminating the explicit temporal depen-
dence in the above Hamiltonian Ĥtot, we would like to change
Ĥtot into a rotating reference frame with respect to the input-
light frequency ωp by applying the unitary operator Û (t ) =
exp(−iĤ0t ), where Ĥ0 = ωp(â†â + ∑N

i=1 σ̂
(i)
11 + ∑N

i=1 σ̂
(i)
22 ).

Finally, in terms of the formula Ĥeff = Û †(t )ĤtotÛ (t ) −
iÛ †(t )∂Û (t )/∂t [76], we can derive a time-independent ef-
fective Hamiltonian of the CQED system after some algebra,
with the form

Ĥeff =
N∑

i=1

(−δp − �B/2)σ̂ (i)
11 +

N∑
i=1

(−δp + �B/2)σ̂ (i)
22

+ (δc − δp)â†â +
{

N∑
i=1

g1âσ̂
(i)
10 +

N∑
i=1

g2âσ̂
(i)
20

+ iâ†
(√

κr/τar
in +

√
κl/τal

in

) + H.c.

}
, (3)

where the notation δp = ωp − ω0 is the detuning of the input-
light frequency ωp from the atomic transition frequency ω0.
δc = ωc − ω0 is the detuning of the resonance frequency ωc

of the cavity mode from the atomic transition frequency ω0.
In order to describe the complete dynamics of the CQED

system with the joint atom-cavity density matrix operator ρ̂,
we use the Lindblad master equation in the Born-Markov
approximation [76–79]

d ρ̂

dt
= −i[Ĥeff , ρ̂] + (κl + κr )D(â)ρ̂

+ γ1D(σ̂01)ρ̂ + γ2D(σ̂02)ρ̂, (4)

with Ĥeff being the effective Hamiltonian directly yielded by
Eq. (3) under the ωp-rotating frame of the CQED system
and the brackets [·, ·] denoting the commutator. D(Ô)ρ̂ =
Ôρ̂Ô† − 1/2Ô†Ôρ̂ − 1/2ρ̂Ô†Ô is the general Lindblad op-
erator form for the collapse operator Ô, which is used to
account for the dissipation to the environment. κl and κr are
the decay rates of the left cavity mirror and right cavity mirror,
respectively. γ1 and γ2 are the decay rates of the atoms for the
|1〉 ↔ |0〉 transition and |2〉 ↔ |0〉 transition. We can ignore
the quantum fluctuation terms and treat σ̂lm (l, m = 0, 1, 2)
and â as c numbers (i.e., the mean-field approximation) in
accordance with the previous reports in Refs. [12,47,48,64].
This approximation is valid for a large number of atoms in the
cavity mode. Then, we can derive the resulting equations of
motion of the CQED system for the expectation values of σlm

(l, m = 0, 1, 2) and a, which read

σ̇00 = γ1σ11 + γ2σ22 + ig1aσ10 + ig2aσ20 − ig∗
1a†σ01

− ig∗
2a†σ02, (5)

σ̇11 = −γ1σ11 − ig1aσ10 + ig∗
1a†σ01, (6)

σ̇22 = −γ2σ22 − ig2aσ20 + ig∗
2a†σ02, (7)

σ̇01 = [i(δp + �B/2) − γ1/2]σ01 + ig1a(σ11 − σ00)

+ ig2aσ21, (8)

σ̇02 = [i(δp − �B/2) − γ2/2]σ02 + ig2a(σ22 − σ00)

+ ig1aσ12, (9)

σ̇21 = (i�B − γ1/2 − γ2/2)σ21 − ig1aσ20

+ ig∗
2a†σ01, (10)

ȧ = −[(κl + κr )/2 − i(δp − δc)]a − ig∗
1Nσ01

− ig∗
2Nσ02 +

√
κl/τal

in +
√

κr/τar
in, (11)

where we replace all the operators with their average values
but use the same notations for brevity.

Following the approach of Refs. [12,74], we consider the
situations γ1 = γ2 = γ and g1 = g2 = g (g takes a real num-
ber). g1

√
N = g2

√
N = g

√
N is the collective cavity-atom

coupling strength for N atoms [i.e., the collective cavity-atom
coupling strengths to two transition paths are identical; see
Fig. 1(b)] [47,48,74,80]. The cavity can be treated as symmet-
ric (i.e., Tl = Tr = T ) so that κl = κr = κ [12,47,48]. Also,
we assume that the atomic system is closed, i.e., σ00 + σ11 +
σ22 = 1 [12]. Under the steady-state condition, the left sides
of Eqs. (5)–(11) [i.e., σ̇lm (l, m = 0, 1, 2) and ȧ] are set to
zero. Then, by solving the corresponding algebraic equations,
we can derive the steady-state solution of the intracavity light
field a, yielding

a =
√

κ/τ (al
in + ar

in )

κ − i(δp − δc) + igN (σ ′
01 + σ ′

02)
, (12)

with σ ′
01 = σ01/a and σ ′

02 = σ02/a. Under the steady-state
condition, σ01 = σ ′

01a and σ02 = σ ′
02a can be obtained by

solving Eqs. (5)–(11), where σ ′
01 and σ ′

02 are the formal co-
efficients composed of the system parameters and can be
determined as in the following discussions.

The output light fields from the left and right mirrors of
the cavity can be derived from the following input-output
relations [10,12,46–48,64]:

al
out =

√
T a − al

in, (13)

ar
out =

√
T a − ar

in. (14)

Combining Eqs. (12)–(14), the steady-state solutions of the
output light fields from the left and right mirrors of the CQED
system are

al
out = κ (al

in + ar
in )

κ − i(δp − δc) + igN (σ ′
01 + σ ′

02)
− al

in (15)

and

ar
out = κ (al

in + ar
in )

κ − i(δp − δc) + igN (σ ′
01 + σ ′

02)
− ar

in, (16)
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respectively. We can assume the right input light field ar
in =

|ar
in|, the left input light field al

in = α|ar
in|eiϕ (α is a real num-

ber and ϕ is the relative phase between the two input light
fields al

in and ar
in), and the input-light intensity |ain|2 = |ar

in|2
[47]. The strength of the left (right) input light field in units of
Hz is given by ηl

p = √
κ/τal

in (ηr
p = √

κ/τar
in). The amplitude

of the left (right) input light field in units of
√

Hz is de-
scribed by El

p = ηl
p/

√
κ = al

in/
√

τ (Er
p = ηr

p/
√

κ = ar
in/

√
τ ).

Also, we can define the left (right) cavity-input power Pl
in

(Pr
in) related to the amplitude by Pl

in = h̄ωcE l
p

2
(Pr

in = h̄ωcEr
p

2)
[81–85]. Here, the expectation value of the number of photons
is equal to the light intensity, that is to say, |a|2 = n, |ain|2 =
nin, |al

out|2 = nl
out, and |ar

out|2 = nr
out [47]. Then, we can derive

the left (right) cavity-input power Pl
in = h̄ωcκα2nin/T (Pr

in =
h̄ωcκnin/T ) [82,83]. Similarly, the left (right) cavity-output
power is given by Pl

out = h̄ωcκnl
out/T (Pr

out = h̄ωcκnr
out/T )

and the cavity-inside (intracavity) power is described by Pc =
h̄ωcκn/T . For the sake of simplicity, we can define the cavity-
input power Pin = Pr

in (i.e., Pl
in = α2Pin). Finally, combining

Eqs. (12), (15), and (16), the left and right cavity-output
powers and the cavity-inside power related to the cavity-input
power can be further expressed as

Pl
out =

∣∣∣∣ κ (1 + αeiϕ )

κ − i(δp − δc) + igN (σ ′
01 + σ ′

02)
− αeiϕ

∣∣∣∣
2

Pin, (17)

Pr
out =

∣∣∣∣ κ (1 + αeiϕ )

κ − i(δp − δc) + igN (σ ′
01 + σ ′

02)
− 1

∣∣∣∣
2

Pin, (18)

Pc =
∣∣∣∣ κ (1 + αeiϕ )

κ − i(δp − δc) + igN (σ ′
01 + σ ′

02)

∣∣∣∣
2

Pin. (19)

III. EXPERIMENTAL FEASIBILITY AND TYPICAL
PARAMETERS FOR THE MODEL

Before proceeding, we briefly address the experimental
feasibility of our scheme. In accordance with Ref. [74], we
can employ the dipole-forbidden singlet to triplet optical tran-
sition (5s2)1S0 to (5s5p)3P1 in an ensemble of 88Sr (nuclear
spin I = 0, no hyperfine structure, and wavelength 689 nm;
see Refs. [86–90] for details) as a possible candidate for the
CQED system. The excited state (5s5p)3P1 couples to the
environment via spontaneous emission at the relatively slow
decay rate of γ = 2π × 7.5 kHz. In 88Sr, the nuclear spin
I = 0 [74,87] means that the (5s2)1S0 ground state is unique
[the electronic angular momentum of the (5s2)1S0 ground
state is J = 0, and the hyperfine state F = I + J = 0 [87], i.e.,
the (5s2)1S0 ground state does not split], while the (5s5p)3P1

excited state has two bright excited Zeeman sublevels. There-
fore, the designated three-level V -type atomic states can be
chosen as follows: |0〉 = |1S0〉, |1〉 = |3P1, mF = −1〉, and
|2〉 = |3P1, mF = 1〉, where mF denotes the Zeeman substate
[see Fig. 1(b); the |3P1, mF = 0〉 is the dark state and does not
interact with the horizontally polarized cavity mode].

By applying a Faraday magnetic field B directed along
the z axis, a Zeeman splitting �B can be generated between
the bright excited states |1〉 and |2〉; see Fig. 1(b). Accord-
ing to Ref. [74], �B is described by �B/2π = geμBB =
B(2.1 MHz/G), where ge = 1.5 is the Landé g factor of the
(5s5p)3P1 excited state [86,91], μB = 57.9 μeV/T is the Bohr
magneton [92], and G is Gauss with 1 G = 10−4 T. In order
to fit the magnitude of the magnetic field (∼μT) used in
this paper and the simplicity of the following formula, the
Zeeman splitting �B can also be expressed as �B = gBB =
B(2π × 21 kHz/μT). gB = 2π × 21 kHz/μT is just a notation
related to the Landé g factor and the Bohr magneton. As in
experimental report [74], the strengths of the Faraday mag-
netic field used in this paper can be reached. The magnetic
field introduced in our scheme can be continuously varied
(or scanned) in situ by applying a voltage scan generator
connected to the current source, like in Ref. [93].

A strongly coupled CQED system can be created by
loading N ≈ 105 88Sr atoms (the peak trap depth can reach
≈100 μK and the atoms can be cooled by laser to ≈10 μK)
into a high-finesse two-sided optical Fabry-Pérot cavity
[74,88–90]. The ensemble is dilute like in Refs. [74,80], so
direct or (dipole-dipole) interaction between the atoms can
be ignored. The resonance frequency ωc of the cavity mode
can be modulated to be near resonance with the transition
frequency ω0 of the dipole-forbidden singlet to triplet optical
transition 1S0 to 3P1, that is, ωc = ω0 = 2πc/λ (c is the speed
of light and λ is 689 nm). The linewidth κ of the Fabry-Pérot
cavity (the decay rate of the cavity mode) used in this paper is
comparable to the decay rate γ of the atoms, which is realized
in Refs. [94–98]. For example, the cavity with the linewidth
is κ = 2π × 7.5 kHz, the length is L = 58.1 mm [99], and
the finesse (roughly the number of intracavity photon round
trips during the cavity decay time) is F = πc/(κL) = 3.44 ×
105 [100]. Also, the cavity with smaller length and higher
fineness is realized in Refs. [101,102]. The collective cavity-
atom coupling strength g

√
N selected in this paper is also

easy to implement in experiment [74]. Specifically, the typ-
ical collective cavity-atom coupling strength g

√
N = 10γ =

2π × 75 kHz (and g
√

N = 15γ = 2π × 112.5 kHz) is within
a reasonable range of experimental parameters [88,90]. The
parameter conditions for the implementation of our scheme
are available.

IV. TUNABLE CPA AND CPT IN THE LINEAR
EXCITATION REGIME

Assuming that the cavity-input power Pin is weak, the
atomic populations are predominantly concentrated in the
ground state |0〉 [σ00 ≈ 1, σ11 ≈ 0, and σ22 ≈ 0, i.e., Holstein-
Primakoff-approximation [103]; see Fig. 1(b)]. The CQED
system is in the linear excitation regime [12,46,48]. By solv-
ing Eqs. (5)–(11), the steady-state solution of the intracavity
light field a can be simplified as

a =
√

κ/τ (al
in + ar

in )

κ − i(δp − δc) + g2N (γ−2iδp)
[γ /2−i(δp+gBB/2)][γ /2−i(δp−gBB/2)]

, (20)

where σ ′
01 = −ig

γ /2−i(δp+gBB/2) and σ ′
02 = −ig

γ /2−i(δp−gBB/2) [see Eq. (12)].
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From Eqs. (17)–(19), the left and right cavity-output powers and the cavity-inside power related to the cavity-input power in
the linear excitation regime of the CQED system can be, respectively, written as

Pl
out =

∣∣∣∣∣∣
κ (1 + αeiϕ )

κ − i(δp − δc) + g2N (γ−2iδp)
[γ /2−i(δp+gBB/2)][γ /2−i(δp−gBB/2)]

− αeiϕ

∣∣∣∣∣∣
2

Pin, (21)

Pr
out =

∣∣∣∣∣∣
κ (1 + αeiϕ )

κ − i(δp − δc) + g2N (γ−2iδp)
[γ /2−i(δp+gBB/2)][γ /2−i(δp−gBB/2)]

− 1

∣∣∣∣∣∣
2

Pin, (22)

Pc =
∣∣∣∣∣∣

κ (1 + αeiϕ )

κ − i(δp − δc) + g2N (γ−2iδp)
[γ /2−i(δp+gBB/2)][γ /2−i(δp−gBB/2)]

∣∣∣∣∣∣
2

Pin. (23)

If the two input light fields are identical, al
in = ar

in (α = 1
and ϕ = 0), i.e., Pl

in = Pr
in = Pin, and it is easy to find that the

left and right cavity-output powers are equal, Pl
out = Pr

out =
Pout. First the CPA can occur in the CQED system when
the magnetic field is present, in which the two cavity-output
powers are zero (Pl

out = Pr
out = Pout = 0). Combining Eq. (21)

with Eq. (22), we can derive the two specific parameter match-
ing conditions for the CPA in the CQED system as follows:

κγ δp = (δp − δc)

{[
γ 2 + (gBB)2

]
4

− δ2
p

}
+ 2g2Nδp (24)

and

γ δp(δp − δc) = −κ

{[
γ 2 + (gBB)2

]
4

− δ2
p

}
+ g2Nγ . (25)

When Eqs. (24) and (25) are satisfied, there is no output light
transmitted from the CQED system (i.e., the cavity-output
power Pout is null), but the cavity-inside power Pc is not zero.
That is to say, the two input light fields can be absorbed and
then dissipated in the CQED system, which means that the
CQED system can act as a perfect photon absorber.

In particular, the CPA can occur in the CQED system
when the magnetic field is off (B = 0), in which the two
cavity-output powers are zero (Pl

out = Pr
out = Pout = 0). Sim-

ilarly, combining Eq. (21) with Eq. (22), we can derive the
two specific parameter matching conditions for the CPA in
the CQED system as follows:

δp − δc

δp
= 2κ

γ
(26)

and

δp(δp − δc) = 2g2N − κγ

2
. (27)

Figure 2 provides a physical picture of the cavity MIT
control of both CPA and CPT in the CQED system. Since
the two orthogonal components of the input light fields can
couple the two distinct Zeeman sublevels [the excited states
|1〉 and |2〉; see Fig. 2(a)], the coupled CQED system has three
polarization states [see Fig. 2(b)], with the form

|�+〉 = 1√
N+

[
|c〉|0c〉 + x1 − x2

g2N
|b〉|0c〉 − y1 − y2

g
√

N
|a〉|1c〉

]
,

(28)

|�d〉 = 1√
Nd

[
|c〉|0c〉 − |b〉|0c〉 − y1

g
√

N
|a〉|1c〉

]
, (29)

|�−〉 = 1√
N−

[
|c〉|0c〉 + x1 + x2

g2N
|b〉|0c〉 − y1 + y2

g
√

N
|a〉|1c〉

]
,

(30)

where x1 = g2N + (gBB)2/4, x2 =
√

(gBB)2/4 + 2g2N ×
(gBB)/2, y1 = (gBB)/2, and y2 =

√
(gBB)2/4 + 2g2N ,

respectively. N+ = 1 + (x1 − x2)2/g4N2 + (y1 − y2)2/g2N ,
Nd = 2 + y1

2/g2N , and N− = 1 + (x1 + x2)2/g4N2 + (y1 +
y2)2/g2N are the normalized coefficients. Here |a〉, |b〉, and
|c〉 are the Dicke states [48] for the N atoms in the cavity

| 0 

δp

ωpωp ω0
ΔB / 2 B

B / 2
| 1 

| 2 

| 0 

(a)

ΔB / 2 
B
B / 2

δp

| 

| 

(b)

(
B
B) / 4 2 | 

| 0 

FIG. 2. (a) Energy-level structure of the three-level V -type atoms
in the presence of an external magnetic field applied in the Faraday
geometry. The Zeeman splitting �B can be expressed as �B = gBB
(see Sec. III above for details) and other symbols are consistent with
the definitions in Fig. 1(b). (b) The corresponding polariton picture
of the coupled CQED system with δc = 0. Three polariton states
are created: two bright polariton states |�+〉 and |�−〉, and a dark
polariton state |�d 〉. The frequency difference between the two bright
polarization states is 2

√
(gBB)2/4 + 2g2N . At δp = 0, it excites the

dark polariton state (cavity MIT) and leads to the CPA in the CQED
system.
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FIG. 3. (a) The normalized cavity-output power Pout/Pin (Pl
out =

Pr
out = Pout) and (b) the corresponding normalized cavity-inside

power Pc/Pin vs the input-light frequency detuning δp/γ with two
identical input light fields Pl

in = Pr
in = Pin when the magnetic field

is off (B = 0). (c) The normalized cavity-output power Pout/Pin

and (d) the corresponding normalized cavity-inside power Pc/Pin vs
the input-light frequency detuning δp/γ when the magnetic field
is present (B = 15 μT). κ = γ is denoted by the red-dotted line,
κ = 0.5γ is denoted by the blue-solid line, and κ = 0.2γ is denoted
by the black-dashed line. In panel (c), the inset shows the zoom-in
region indicated by the arrow, which shares the same axis with
panel (c). The other parameters are g

√
N = 0.5γ (weak collective-

coupling regime) and δc = 0. The frequency parameters used in this
paper are taken to have units of the atomic decay rate γ for simplicity
and the specific parameters of the atoms are used according to the
experimental data [74].

mode [|a〉 = |0, . . . 0, . . . 0〉 (all N atoms are in the state |0〉),
|b〉 = 1√

N

∑N
i=1 |0, . . . 1i, . . . 0〉 (only one atom in the state

|1〉), and |c〉 = 1√
N

∑N
i=1 |0, . . . 2i, . . . 0〉 (only one atom in the

state |2〉)]. |0c〉 and |1c〉 are zero-photon and one-photon states
of the cavity mode. The frequency difference between the two
bright polariton states |�+〉 and |�−〉 is 2

√
(gBB)2/4 + 2g2N

as shown in Fig. 2(b). At δp = 0, the dark polariton state |�d〉
leads to the CPA in the CQED system and is often referred to
as cavity MIT [74].

In Fig. 3, we plot the normalized cavity-output power
Pout/Pin and cavity-inside power Pc/Pin versus δp/γ when
the magnetic field is absent [B = 0; see Figs. 3(a) and 3(b)]
or present [B = 15 μT; see Figs. 3(c) and 3(d)] under the
weak collective-coupling regime of g2N � κγ . The cavity
mode and the atoms are on resonance, that is, ωc = ω0 (i.e.,
δc = 0). Without the magnetic field, the input light fields can
be completely absorbed at δp = 0 for κ = γ (the red-dotted
line) and absorbed at δp = ±

√
2g2N − κγ /2 = ±0.5γ for

κ = 0.5γ (the blue-solid line) with g
√

N = 0.5γ , as shown
in Fig. 3(a). It is obvious from Fig. 3(a) that the occurrence of
the CPA needs to satisfy the parameter matching conditions,

i.e., Eqs. (26) and (27). The CPA is sensitive to the system
parameters κ , γ , δp, and g

√
N . We can insert the Hamiltonian

of Eq. (3) and the system wave function into the Schrödinger
equation like in Ref. [12] and derive that the two peaks in
Fig. 3(b) are located at δp = ±

√
2g2N . The corresponding

normalized cavity-inside power Pc/Pin is not zero and has
two peaks, which means that the photon energy of the input
light fields is converted into internal excitation energy at two
bright polariton excitations of the system [12,48]. When the
magnetic field is present (B = 15 μT), the points of the CPA
in Fig. 3(a) become nearly CPT, which is caused by the large
detuning between the state |1〉 and the state |2〉 from the cavity
induced by the Zeeman splitting, as shown in Fig. 3(c). The
existence of the magnetic field can result in an even greater
intracavity light field [see Fig. 3(d)].

Under the strong collective-coupling regime of g2N � κγ

and the parameter matching conditions of the CPA [12,46,48],
Figs. 4(a) and 4(b) show the normalized cavity-output power
Pout/Pin and the corresponding normalized cavity-inside
power Pc/Pin versus the input-light frequency detuning
δp/γ when the magnetic field is off (B = 0). At the two
polariton resonances δp = ±

√
2g2N [points Z and X with

δp = ±21.21γ and points F and E with δp = ±14.14γ ]
[12,48], Pl

out = Pr
out = Pout = 0, but Pc/Pin is located at the

peaks [see Fig. 4(b)], indicating that the CQED system
can act as a perfect photon absorber. Figures 4(c) and 4(d)
show the normalized cavity-output power Pout/Pin and the
corresponding normalized cavity-inside power Pc/Pin versus
the input-light frequency detuning δp/γ when the magnetic
field is present (B = 15 μT). In Fig. 4(c), the CPA can
occur at δp = 0 (point Y ′) with g

√
N = 15γ (the blue-solid

line), which satisfies the parameter matching conditions [i.e.,
Eqs. (24) and (25)]. Compared with the case without applying
the magnetic field in Fig. 4(a) (point Y for the blue-solid
line; the normalized cavity-output power is Pout/Pin = 1, the
input light fields can be completely transmitted, and the CPT
occurs), the existence of the magnetic field can realize the con-
version of the CQED system from a perfect photon absorber
to a perfect photon transmitter. The points at δp = ±21.21γ

(points X and Z) for the blue-solid line and at δp = ±14.14γ

(points E and F ) for the red-dotted line of the CPA in Fig. 4(a)
without the magnetic field become completely transmitted
(points X ′, Z ′, E ′, and F ′) after the magnetic field is applied
as shown in Fig. 4(c). By simply turning the magnetic field
on or off, the CQED system can act as a perfect absorber or
perfect transmitter at multiple input light frequencies instead
of only one single frequency, which relaxes the frequency
requirements in the scheme based on the EIT configuration
[48]. The two sideband dips in Fig. 4(c) and two sideband
peaks in Fig. 4(d) are located at δp = ±

√
(gBB)2/4 + 2g2N

[12] (δp = ±29.85γ for the blue-solid line and δp = ±25.32γ

for the red-dotted line; see Sec. III for the specific parameters).
For the blue-solid line at δp = 0 (point Y ′), the normalized
cavity-output power is Pout/Pin = 0 [see Fig. 4(c)] and the
corresponding normalized cavity-inside power is Pc/Pin = 1
[see Fig. 4(d)], indicating that no light can be transmitted from
the cavity and the input light fields are almost completely
absorbed by the cavity mirrors.

The underlying physical mechanism of the CPA can be
better understood and described by presenting the results for
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FIG. 4. (a) The normalized cavity-output power Pout/Pin and
(b) the corresponding normalized cavity-inside power Pc/Pin vs
the input-light frequency detuning δp/γ when the magnetic field
is off (B = 0). (c) The normalized cavity-output power Pout/Pin

and (d) the corresponding normalized cavity-inside power Pc/Pin

vs the input-light frequency detuning δp/γ when the magnetic
field is present (B = 15 μT). g

√
N = 15γ (strong collective-

coupling regime) is denoted by the blue-solid line and g
√

N = 10γ

(strong collective-coupling regime) is denoted by the red-dotted
line. The three points of X (Pout/Pin = 0), Y (Pout/Pin = 1), and
Z (Pout/Pin = 0) in panel (a), respectively, represent the normalized
cavity-output power Pout/Pin of δp = −21.21γ , 0, and +21.21γ for
g
√

N = 15γ (the blue-solid line) when the magnetic field is off
(B = 0), and the three points of X ′ (Pout/Pin = 1), Y ′ (Pout/Pin = 0),
and Z ′ (Pout/Pin = 1) in panel (c) correspond to the case when the
magnetic field is present (B = 15 μT), respectively. The two points of
E (Pout/Pin = 0) and F (Pout/Pin = 0) in panel (a), respectively, rep-
resent the normalized cavity-output power Pout/Pin of δp = −14.14γ

and +14.14γ for g
√

N = 10γ (the red-dotted line) when the mag-
netic field is off (B = 0), and the two points of E ′ (Pout/Pin = 1) and
F ′ (Pout/Pin = 1) in panel (c) correspond to the case when the mag-
netic field is present (B = 15 μT), respectively. The other parameters
are Pl

in = Pr
in = Pin, Pl

out = Pr
out = Pout, κ = 0.5γ , and δc = 0.

intermediate values of the magnetic field in Fig. 4(c). When
the magnetic field approaches zero [the orange-dotted line;
see Fig. 5], the two bright polariton states |�+〉 and |�−〉
at ±

√
2g2N (±21.21γ ) lead to the transmission dips. There

is also a third dark polariton state |�d〉, the frequency of
which is equal to that of the atomic transition [see Fig. 2(b)].
According to Eq. (29), as the magnetic field approaches
zero, y1 = (gBB)/2 approaches zero, and the dark polariton
state can be composed of an equal superposition of the two
Zeeman sublevels [i.e., |�d〉 = 1√

Nd
(|c〉|0c〉 − |b〉|0c〉)]. The

dark polariton state |�d〉 is entirely atomlike and the pho-
tonlike component (|a〉|1c〉) vanishes as the magnetic field
approaches zero [74], so the orange-dotted line in Fig. 5 has no
transmission dip at δp = 0. When a magnetic field is applied
perpendicular to the polarizations of the input light fields, the
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FIG. 5. The normalized cavity-output power Pout/Pin vs the
input-light frequency detuning δp/γ with g

√
N = 15γ . Each kind of

line is obtained under different applied magnetic fields. B = 0 μT is
denoted by the orange-dotted line, B = 5 μT is denoted by the green-
dash-dotted line, B = 10 μT is denoted by the red-dashed line, and
B = 15 μT is denoted by the blue-solid line. The other parameters
are Pl

in = Pr
in = Pin, Pl

out = Pr
out = Pout, κ = 0.5γ , and δc = 0.

photonic character |a〉|1c〉 can be mixed into the dark polari-
ton state [i.e., Eq. (29)], inducing a new transmission feature
between the two original resonances of the vacuum Rabi split-
ting. As shown in Fig. 5, a new transmission dip appears (the
green-dash-dotted line, the red-dashed line, and the blue-solid
line) at δp = 0, and the CPA occurs (the blue-solid line) when
the parameter matching conditions [i.e., Eqs. (24) and (25)]
are satisfied. In order to study how the CPA performance
of the CQED system varies versus the collective cavity-atom
coupling strength g

√
N , we plot the normalized cavity-output

power Pout/Pin in Fig. 6(a) and the corresponding normalized
cavity-inside power Pc/Pin in Fig. 6(b) versus g

√
N/γ when

the magnetic field is off (B = 0). It can be seen from Figs. 6(a)
and 6(b), under the strong collective-coupling regime of
g2N � κγ , that the input light fields can be completely cou-
pled into the cavity mode (Pc/Pin = 1) and there is no output
light field (Pout/Pin = 0), indicating that the CQED system can
act as a perfect photon absorber. Compared with the previous
work [48] in which the CPA is induced by an external con-
trol light field, under g

√
N < 5γ , we show that the proposed

CPA scheme has better absorption (i.e., the normalized cavity-
output power Pout/Pin tends to zero) than the reported result in
the previous work [48]. Figures 6(c) and 6(d) show the nor-
malized cavity-output power Pout/Pin and the corresponding
normalized cavity-inside power Pc/Pin versus g

√
N/γ when

the magnetic field is present (B = 15 μT is denoted by the
black-dashed line, B = 10 μT is denoted by the blue-solid
line, and B = 5 μT is denoted by the red-dotted line). As can
be seen from Figs. 6(a) and 6(c), the magnetic field can be
used as a switch between photon absorption [Pout/Pin = 0; see
Fig. 6(a)] and photon transmission [Pout/Pin = 1 is denoted
by the black-dashed line; see Fig. 6(c)]. With the increase of
the magnetic field B, the robustness of the normalized cavity-
output power to the collective cavity-atom coupling strength
g
√

N increases and the value of the normalized cavity-
output power tends to unity, but the corresponding normalized
cavity-inside power is maintained to be near zero, which
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FIG. 6. (a) The normalized cavity-output power Pout/Pin and
(b) the corresponding normalized cavity-inside power Pc/Pin vs the
collective cavity-atom coupling strength g

√
N/γ when the magnetic

field is off (B = 0). (c) The normalized cavity-output power Pout/Pin

and (d) the corresponding normalized cavity-inside power Pc/Pin vs
the collective cavity-atom coupling strength g

√
N/γ when the mag-

netic field is present (B = 15 μT is denoted by the black-dashed line,
B = 10 μT is denoted by the blue-solid line, and B = 5 μT is denoted
by the red-dotted line). The other parameters are Pl

in = Pr
in = Pin,

Pl
out = Pr

out = Pout, κ = 0.5γ , δp = √
2g2N , and δc = 0.

means that the transmission characteristics of the CQED sys-
tem depend on the magnetic field B.

Figures 7(a) and 7(b) plot the normalized cavity-output
power Pout/Pin and the corresponding normalized cavity-
inside power Pc/Pin versus the magnetic field B. As can be
seen from the inset in Fig. 7(a), the CPA is robust to the varia-
tion of the magnetic field when the magnetic-field strength is
near zero (the range of the variation is −0.6 < B < 0.6 μT),
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FIG. 7. (a) The normalized cavity-output power Pout/Pin and
(b) the corresponding normalized cavity-inside power Pc/Pin vs the
magnetic field B. g

√
N = 15γ is denoted by the blue-solid line and

g
√

N = 10γ is denoted by the red-dotted line. In panel (a), the inset
shows the zoom-in region indicated by the arrow, which shares the
same axis with panel (a). The other parameters are Pl

in = Pr
in = Pin,

Pl
out = Pr

out = Pout, κ = 0.5γ , δp = √
2g2N , and δc = 0.
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FIG. 8. (a) The normalized cavity-output power Pout/Pin and
(b) the corresponding normalized cavity-inside power Pc/Pin vs
the relative phase ϕ between the two input light fields ar

in = |ar
in|

and al
in = α|ar

in|eiϕ when the magnetic field is off (B = 0). (c) The
normalized cavity-output power Pout/Pin and (d) the corresponding
normalized cavity-inside power Pc/Pin vs the relative phase ϕ be-
tween the two input light fields when the magnetic field is present
(B = 15 μT). In panels (a) and (c), the normalized right cavity-output
power Pr

out/Pin is denoted by the red-dotted line and the normalized
left cavity-output power Pl

out/Pin is denoted by the blue-dashed line.
The other parameters are Pl

in = Pr
in = Pin, g

√
N = 10γ , κ = 0.5γ ,

δp = √
2g2N , and δc = 0.

while the input light fields can be almost completely coupled
into the cavity mode [see Fig. 7(b)]. With the increase of the
collective cavity-atom coupling strength g

√
N , the range can

be broadened slightly. With the increase of the magnetic field,
the input light fields are basically transmitted from the CQED
system, and no light can be coupled into the cavity mode. By
adjusting the magnetic field properly, the CQED system can
be converted from a perfect photon absorber (no cavity-output
power but with a large cavity-inside power) into a nearly
perfect photon transmitter (nearly perfect transmission for the
input light fields and no cavity-inside power).

According to Eqs. (21) and (22), the CPA in the CQED
system can also be controlled by varying the relative phase
ϕ between the two input light fields ar

in = |ar
in| and al

in =
α|ar

in|eiϕ . Figures 8(a) and 8(b) show the normalized cavity-
output power Pout/Pin and the corresponding normalized
cavity-inside power Pc/Pin versus the relative phase ϕ when
the magnetic field is off (B = 0). When ϕ = 2nπ (n takes
an integer), the normalized right cavity-output power Pr

out/Pin

(the red-dotted line) and the normalized left cavity-output
power Pl

out/Pin (the blue-dashed line) are equal to zero. Cor-
respondingly, the normalized cavity-inside power Pc/Pin is
equal to a value of 1. When ϕ = (2n + 1)π , the CQED
system displays an opposite behavior, that is to say, the
normalized right cavity-output power Pr

out/Pin (the red-dotted

053525-9
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FIG. 9. (a) Contour plot of the normalized cavity-output power
Pout/Pin as a function of the magnetic field B as well as the collective
cavity-atom coupling strength g

√
N/γ with κ = 0.5γ . (b) Contour

plot of the normalized cavity-output power Pout/Pin as a function
of the magnetic field B as well as the cavity decay rate κ/γ with
g
√

N = 10γ . The other parameters are Pl
in = Pr

in = Pin, Pl
out = Pr

out =
Pout, δp = √

2g2N , and δc = 0.

line) and the normalized left cavity-output power Pl
out/Pin

(the blue-dashed line) are equal to unity, while the corre-
sponding normalized cavity-inside power Pc/Pin is equal to
a zero value. Figures 8(c) and 8(d) show the normalized
cavity-output power Pout/Pin and the corresponding normal-
ized cavity-inside power Pc/Pin versus the relative phase
ϕ when the magnetic field is present (B = 15 μT). When
ϕ = nπ , the normalized right cavity-output power Pr

out/Pin

(the red-dotted line) and the normalized left cavity-output
power Pl

out/Pin (the blue-dashed line) are equal to unity and
no light can be coupled into the cavity. When ϕ = 2nπ (i.e.,
the two input light fields are the same), the CQED system can
realize the conversion between the CPA and CPT by simply
turning the magnetic field on or off. Different from Ref. [12],
the scheme based on the MIT configuration can realize the
conversion between the CPA and CPT without the need for
changing the optical characteristics (i.e., the phase) of the
absorbed lights. The introduction of the magnetic field can
relax the requirement for the absorbed lights.

On the basis of analysis so far, in order to more
clearly show the influence of the system parameters on the
transmission characteristics of the CQED system, we plot

the two-dimensional map of the normalized cavity-output
power Pout/Pin as a function of the magnetic field B as well
as the collective cavity-atom coupling strength g

√
N/γ with

κ = 0.5γ in Fig. 9(a). It can be clearly seen from Fig. 9(a) that
the CPA window can occur in a small range where the mag-
netic field B = 0, and the CPT can appear with the increase
of the magnetic field in the system. The CPA window can
be broadened with the increase of the collective cavity-atom
coupling strength g

√
N , which is consistent with that shown

in Fig. 7(a). Figure 9(b) shows the normalized cavity-output
power Pout/Pin as a function of the magnetic field B as well as
the cavity decay rate κ/γ with g

√
N = 10γ . Under the strong

collective-coupling regime and without the magnetic field, the
CPA can occur at κ = 0.5γ , which satisfies the parameter
matching conditions [i.e., Eqs. (26) and (27)].

Also, we plot the contour diagram showing the normalized
right cavity-output power Pr

out/Pin in Fig. 10(a) and the nor-
malized left cavity-output power Pl

out/Pin in Fig. 10(b) with
respect to the magnetic field B as well as the relative phase
ϕ between the two input light fields ar

in = |ar
in| and al

in =
α|ar

in|eiϕ . It is shown that the joint regulation of the magnetic
field and the relative phase can better realize the conversion
from the CPA to the CPT in the CQED system. Figure 10(c)
shows the two-dimensional color-scale map of the normal-
ized total cavity-output power Pt

out/Pin (Pt
out = Pr

out + Pl
out) as

a function of the magnetic field B as well as the relative
phase ϕ. It can be noted from Figs. 10(a) and 10(b) that the
normalized cavity-output power (Pr

out/Pin or Pl
out/Pin) can be

greater than 1, which is caused by the interference between
the two input light fields under the applied magnetic field.
Although the cavity-output power on one side of the cavity
mirror can be greater than the cavity-input power (Pr

out > Pin

or Pl
out > Pin), the total cavity-output power is not greater

than the total cavity-input power (the total cavity-output
power is 2Pin, i.e., the normalized total cavity-output power
Pt

out/Pin � 2) as shown in Fig. 10(c). We can also see that
under the appropriate relative phase ϕ the CPA can occur,
and a nearly perfect photon absorption working window can
appear near the magnetic field B = 0. The asymmetric input-
output behavior [104,105] (i.e., the right and left cavity-output
powers at both ends of the system are different from each

(a)

-15 -10 -5 0 5 10 15
( )

( r
ad
)

12

10

8

6

4

2

0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

ou t/ in (b)

-15 -10 -5 0 5 10 15
( )

(r
ad
)

12

10

8

6

4

2

0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

ou t/ in (c)

-15 -10 -5 0 5 10 15
( )

( r
ad
)

12

10

8

6

4

2

0

2.0

1.5

1.0

0.0

ou t/ in

0.5

FIG. 10. (a) Contour plot of the normalized right cavity-output power Pr
out/Pin as a function of the magnetic field B as well as the relative

phase ϕ between the two input light fields ar
in = |ar

in| and al
in = α|ar

in|eiϕ . (b) Contour plot of the normalized left cavity-output power Pl
out/Pin

as a function of the magnetic field B as well as the relative phase ϕ. (c) Contour plot of the normalized total cavity-output power Pt
out/Pin

(Pt
out = Pr

out + Pl
out) as a function of the magnetic field B as well as the relative phase ϕ. The other parameters are Pl

in = Pr
in = Pin, g

√
N = 10γ ,

κ = 0.5γ , δp = √
2g2N , and δc = 0.

053525-10



MAGNETIC-FIELD-ENGINEERED COHERENT PERFECT … PHYSICAL REVIEW A 106, 053525 (2022)

other) can be used for optical logic and optical communication
devices [63,106].

V. TUNABLE CPA AND CPT IN THE NONLINEAR
EXCITATION REGIME

When the cavity-input power Pin is strong enough, the
atomic populations in the two excited states |1〉 and |2〉 are

not equal to zero (i.e., σ11 = 0 and σ22 = 0) and Holstein-
Primakoff-approximation therefore breaks down. In this case,
the CQED system is in the nonlinear excitation regime
[10,12,47,75]. By solving Eqs. (5)–(11), after lengthy algebra
the steady-state solution of the intracavity light field a can be
written as

a =
√

κ/τ (al
in + ar

in )

κ − i(δp − δc) + 4g2N{[(gBB)2+(γ+2iδp)2](γ−2iδp)+8g2|a|2(γ+2iδp)+O(|a|4 )}
{(gBB)4+2(gBB)2(γ 2−4δ2

p)+(γ 2+4δ2
p)

2+8g2|a|2[(gBB)2+3(γ 2+4δ2
p)]+O(|a|4 )}

. (31)

Combining Eq. (17) with Eq. (18), we can derive the closed-form expressions of the left and right cavity-output powers
nonlinearly related to the cavity-input power, with the forms

Pl
out =

∣∣∣∣∣∣∣
κ (1 + αeiϕ )

κ − i(δp − δc) + 4g2N{[(gBB)2+(γ+2iδp)2](γ−2iδp)+8g2|a|2(γ+2iδp)+O(|a|4 )}
{(gBB)4+2(gBB)2(γ 2−4δ2

p)+(γ 2+4δ2
p)

2+8g2|a|2[(gBB)2+3(γ 2+4δ2
p)]+O(|a|4 )}

− αeiϕ

∣∣∣∣∣∣∣
2

Pin, (32)

Pr
out =

∣∣∣∣∣∣∣
κ (1 + αeiϕ )

κ − i(δp − δc) + 4g2N{[(gBB)2+(γ+2iδp)2](γ−2iδp)+8g2|a|2(γ+2iδp)+O(|a|4 )}
{(gBB)4+2(gBB)2(γ 2−4δ2

p)+(γ 2+4δ2
p)

2+8g2|a|2[(gBB)2+3(γ 2+4δ2
p)]+O(|a|4 )}

− 1

∣∣∣∣∣∣∣
2

Pin. (33)

Although the higher-order items of a are neglected [i.e., O(|a|4); the results of ignoring O(|a|4) and those of not ignoring O(|a|4)
will be compared later on], it is obvious that Eqs. (32) and (33) are the quadratic equations of a. Therefore, the closed-form
formulas (32) and (33) show a nonlinear dependent relation between the cavity-output power and the cavity-input power. As
expected, when the above |a|2-dependent nonlinear terms are dropped, Eqs. (31)–(33) recover the linear results [see Eqs. (20)–
(22)] in Sec. IV.

With two identical input light fields Pl
in = Pr

in = Pin (α = 1 and ϕ = 0), the cavity-input power and cavity frequency detuning
under the condition of the CPA (Pl

out = Pr
out = Pout = 0) in the CQED system can be derived as

Pin = h̄ωcκ
{
4g2N

[
γ 3 + γ (gBB)2 + 4γ δ2

p

] − κ
[
(gBB)4 + 2(gBB)2

(
γ 2 − 4δ2

p

) + (
γ 2 + 4δ2

p

)2]}
8g2

{
κ
[
(gBB)2 + 3

(
γ 2 + 4δ2

p

)] − 4g2Nγ
} (34)

and

δc = δp − 4g2N
{
16g2δpPin + h̄ωcκ

[
2γ 2δp − 2δp(gBB)2 + 8δ3

p

]}
8g2Pin

[
(gBB)2 + 3

(
γ 2 + 4δ2

p

)] + h̄ωcκ
[
(gBB)4 + 2(gBB)2

(
γ 2 − 4δ2

p

) + (
γ 2 + 4δ2

p

)2] . (35)

It should be pointed out that with the increase of the
cavity-input power, the nonlinear interaction between the cav-
ity mode and the atoms becomes dominant in the CQED
system [47]. In Fig. 11, we show the analytical results of the
cavity-output power versus the cavity-input power for a series
of different system parameters. The CPA is manifested by the
destructive interference of the two input light fields of the
scattered photons from the two excited states with opposite
circular polarization under the Zeeman effect of the applied
Faraday magnetic field and occurs at a given cavity-input
power satisfying Eq. (34) with ϕ = 2nπ (the two input light
fields are in phase and the two output light fields are equal;
see the blue-dashed line in Fig. 11). When ϕ = (2n + 1)π ,
there is no light which can be coupled into the cavity mode
and the two cavity-output powers Pr

out and Pl
out are equal to the

cavity-input power Pin (see the black-solid line in Fig. 11).
At other ϕ values, the two cavity-output powers Pr

out and
Pl

out become generally different due to the interference of the
two input light fields, and the CPA does not occur (see the

red-dotted line and the purple-dash-dotted line for ϕ = π/2
in Fig. 11).

In the case of weak cavity-input power, for a given cavity-
input power, there is only one real-value solution for Pr

out and
Pl

out in Eqs. (32) and (33), and we can see that the nearly
perfect photon absorption working window occurs [see the
blue-dashed line in Figs. 11(a) and 11(b)]. However, with the
increase of the cavity-input power, the nonlinear interaction
between the cavity mode and the atoms dominates, and we
can see that optical bistability occurs [see the blue-dashed line
in Figs. 11(c) and 11(d)]. In the bistable domain, the closed-
form formulas (32) and (33) have three real-value solutions
for Pr

out and Pl
out corresponding to a given cavity-input power

and the CPA point is near the turning point of the cavity-
input power on the bistable return hysteresis curve. Under
the condition of satisfying Eq. (34) and the control of the
magnetic field, with the increase of the cavity-input power,
the threshold (the lower one) of the bistability continues to
increase as shown in Figs. 11(c) and 11(d). The CPA can occur
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FIG. 11. The analytical results of the cavity-output power Pout (Pr
out or Pl

out) vs the cavity-input power Pin with two identical input light fields
Pl

in = Pr
in = Pin, and varying the relative phase ϕ (ϕ = π is denoted by the black-solid line for which the two cavity-output powers are equal,

Pl
out = Pr

out; ϕ = π/2 is denoted by the red-dotted line and the purple-dash-dotted line for which the two cavity-output powers are different with
the red-dotted line for the right cavity-output power Pr

out and the purple-dash-dotted line for the left cavity-output power Pl
out; ϕ = 0 is denoted

by the blue-dashed line for which the two cavity-output powers are equal, Pl
out = Pr

out). These analytical results are calculated analytically using
the closed-form formulas (32) and (33). The CPA can occur at ϕ = 2nπ (n = 0, 1, 2, . . . , takes an integer). The top orange horizontal axis
and the right green vertical axis show the input-light intensity |ain|2 and the output-light intensity |aout|2 in the CQED system, respectively.
The shaded area in panels (a) and (b) indicates the nearly perfect photon absorption working window. In the case of ϕ = 0, the comparisons
between the numerical results (the yellow-solid line, calculated numerically by the equations of motion of the CQED system) and the analytical
results (the blue-dashed line, calculated analytically by the closed-form expressions) are shown in the insets, where the insets and the panels
share the same axes. (a) g

√
N = 10γ , δc = 0, and B = 0; (b) g

√
N = 10γ , δc = 0.59γ , and B = 1.5 μT; (c) g

√
N = 12γ , δc = 1.31γ , and

B = 2.5 μT; (d) g
√

N = 15γ , δc = 3.09γ , and B = 4.5 μT. The other parameters are κ = 0.5γ , g = 0.02γ , T = 0.01, and δp = √
2g2N .

at Pin = 149.2 pW with B = 2.5 μT [see Fig. 11(c)] and at
Pin = 468.2 pW with B = 4.5 μT [see Fig. 11(d)]. Moreover,
except for the bistable domain, the relationship between the
cavity-input power and the cavity-output power in the CQED
system is an approximate linear style (see the blue-dashed
line). By the control of the magnetic field, our scheme can
flexibly adjust the threshold of the CPA, which provides an
optional scheme for adjustable bistability and a linear and
magnetic-field controllable all-optical switching.

What is more, in the case of ϕ = 0, the numerical results
(the yellow-solid line, calculated numerically; the higher-
order items of a are not neglected) given by the equations of
motion [i.e., Eqs. (5)–(11)] of the CQED system are compared
with the analytical results (the blue-dashed line, calculated
analytically; the higher-order items of a are neglected) given
by the closed-form formulas (32) and (33) as displayed in the
insets. It is revealed from the insets that the numerical results
are in good agreement with those for the analytical calcula-
tions. In other words, the full numerical solutions achieved
by the equations of motion of the CQED system can be per-
fectly reproduced by the closed-form formulas (32) and (33)
obtained by ignoring the higher-order items of a.

In addition, Fig. 11 reveals the phase dependence of the
optical bistability in the CQED system with the control of
the magnetic field, and demonstrates that using magnetic
field to manipulate light interference provides the possi-
bility for active control of optical bistability. When the
relative phase ϕ = 0 (the blue-dashed line), optical bistabil-
ity can occur in the CQED system under the control of the
magnetic field as shown in Figs. 11(c) and 11(d). When ϕ =
π/2 (the red-dotted line and the purple-dash-dotted line), the
CQED system operates in the monostable domain with the
two different cavity-output powers. Furthermore, Fig. 11(d)
shows that in the deep optical bistable domain the compli-
cated bistable patterns can be obtained by tuning the phase
ϕ to a different value. The CPA and optical bistability can
be flexibly manipulated by controlling the magnetic field

and the relative phase between the two input light fields,
which have practical applications in optical logic and opti-
cal communication devices. The nonlinear dependent relation
between the cavity-output power and the cavity-input power
is caused by the |a|2-dependent nonlinear terms [Eqs. (32)
and (33) are the quadratic equations of a]. The |a|2-dependent
nonlinear terms and phase modulation can lead to compli-
cated bistable patterns in the deep optical bistable domain.
For example, complicated bistable patterns can occur in the
region of 1295<Pin<3130 pW when ϕ = π/2 (the red-dotted
line and the purple-dash-dotted line) in Fig. 11(d). In this
region, it can be observed that the right cavity-output power
Pr

out (the red-dotted line) and the left cavity-output power Pl
out

(the purple-dash-dotted line) can be greater than the cavity-
input power Pin. To illustrate that Pr

out and Pl
out cannot be

greater than Pin at the same time, based on the parameters
in Fig. 11(d), we plot Pr

out/Pin, Pl
out/Pin, and Pt

out/Pin as a
function of |a|2 with ϕ = π/2 in Fig. 12. It is obvious from
Fig. 12 that when Pr

out is greater than Pin (Pr
out/Pin > 1), Pl

out
is less than Pin (Pl

out/Pin < 1), and vice versa. In the region of
1295<Pin<3130 pW of Fig. 11(d), the number of intracavity
photons |a|2 corresponding to Pr

out>Pin is different from |a|2
corresponding to Pl

out>Pin. Figure 12 shows that Pr
out and Pl

out
cannot be greater than Pin at the same time, and Pt

out/Pin < 2
also indicates that the total cavity-output power is not greater
than the total cavity-input power.

The CPA and bistability of the CQED system sensitively
depend on the cavity frequency detuning δc [see Eq. (35)].
We plot the two-dimensional map of Pout/Pin as a function
of Pin and δc/γ in Figs. 13(a) and 13(b) [corresponding
to the three-dimensional plots of Figs. 13(c) and 13(d)],
respectively. It can be clearly seen from Fig. 13 that the bista-
bility of the CQED system depends on the cavity frequency
detuning. By increasing the magnetic field, the absorption
cavity-input power threshold (dark blue area) can be sig-
nificantly increased in this CPA scheme based on the MIT
configuration. The points marked in Figs. 13(a) and 13(c)
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FIG. 12. The normalized cavity-output power Pout/Pin as a func-
tion of the number of intracavity photons |a|2 with the relative phase
ϕ = π/2. The normalized right cavity-output power Pr

out/Pin is de-
noted by the red-dotted line, the normalized left cavity-output power
Pl

out/Pin is denoted by the purple-dash-dotted line, and the normalized
total cavity-output power Pt

out/Pin (Pt
out = Pr

out + Pl
out) is denoted by

the pink-solid line. The other parameters are Pl
in = Pr

in = Pin, g
√

N =
15γ , δc = 3.09γ , B = 4.5 μT, κ = 0.5γ , g = 0.02γ , T = 0.01, and
δp = √

2g2N .

correspond well with the CPA point of the blue-dashed line in
Fig. 11(d).
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FIG. 13. (a) Contour plot of the normalized cavity-output power
Pout/Pin as a function of the cavity-input power Pin as well as the
cavity frequency detuning δc/γ with B = 4.5 μT. (b) Contour plot
of the normalized cavity-output power Pout/Pin as a function of the
cavity-input power Pin as well as the cavity frequency detuning δc/γ

with B = 7.5 μT. The bottom panels (c) and (d) display the three-
dimensional plots of the normalized cavity-output power Pout/Pin

corresponding to the top panels (a) and (b), respectively. In order to
better present the CPA characteristics of the CQED system, the coor-
dinate axes of panels (a) and (b) are shown above. The points marked
in panels (a) and (c) correspond to the CPA point in Fig. 11(d).
The other parameters are Pl

in = Pr
in = Pin, Pl

out = Pr
out = Pout, g

√
N =

15γ , κ = 0.5γ , g = 0.02γ , T = 0.01, and δp = √
2g2N .
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FIG. 14. With the cavity-input power below the threshold of the
bistable domain, the right cavity-output power Pr

out (the red-dotted
line) and the left cavity-output power Pl

out (the blue-dashed line) vs
the relative phase ϕ between the two input light fields ar

in = |ar
in| and

al
in = α|ar

in|eiϕ . The right green vertical axis shows the output-light
intensity |aout|2 in the CQED system. (a) Pin = 7.3 pW, g

√
N = 10γ ,

and B = 1 μT; (b) Pin = 75.1 pW, g
√

N = 15γ , and B = 3 μT.
The other parameters are Pl

in = Pr
in = Pin, κ = 0.5γ , g = 0.02γ ,

T = 0.01, δp = √
2g2N , and δc = 0.

The closed-form formulas (32) and (33) show that the CPA
can be manipulated by varying the relative phase ϕ between
the two input light fields ar

in = |ar
in| and al

in = α|ar
in|eiϕ . Fig-

ure14 shows the two cavity-output powers Pr
out and Pl

out versus
the relative phase ϕ with the CPA condition (34) satisfied,
which demonstrates a detailed phase dependence of the CPA
in the CQED system. The cavity-input power Pin in Fig. 14(a)
(Pin = 7.3 pW) and Fig. 14(b) (Pin = 75.1 pW) is below the
threshold for the onset of optical bistability. When the rel-
ative phase ϕ = 0 varies to ϕ = π , the system undergoes a
transition from the CPA to high transmission (the two-side
cavity-output power varies from zero to near the maximum
value). When the CQED system is not in the strong nonlinear
excitation regime at the lower cavity-input power, the phase
dependence presents a nearly sinusoidal profile in Fig. 14(a).
With the increase of cavity-input power, the CQED system
is driven into the strong nonlinear excitation regime [still in
the monostable domain; there is only one real solution from
Eqs. (32) and (33)]. The phase dependence is distorted obvi-
ously from the sinusoidal behavior due to the nonlinearity, as
shown in Fig. 14(b). The calculated phase dependence of the
cavity-output power in the bistable domain behaves similarly
to that in the monostable domain.

In order to more clearly show the influence of the sys-
tem parameters on the transmission characteristics of the
CQED system, we plot the two-dimensional color-scale map
of the normalized cavity-output power Pout/Pin as a function
of the cavity-input power Pin as well as the magnetic field
B in Figs. 15(a) and 15(b). It can be clearly seen from
Figs. 15(a) and 15(b) that the CPA and the nearly perfect
photon absorption working window can appear in the case of
weak cavity-input power, and the CPT can appear with the
increase of the magnetic field in the system. The nearly perfect
photon absorption working window can be broadened with
the increase of the collective cavity-atom coupling strength
g
√

N , which is consistent with Fig. 9(a). Figures 15(c) and
15(d) show the normalized cavity-output power Pout/Pin as
a function of the cavity-input power Pin and the collective
cavity-atom coupling strength g

√
N/γ . When the magnetic
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FIG. 15. (a) Contour plot of the normalized cavity-output power
Pout/Pin as a function of the cavity-input power Pin as well as the mag-
netic field B with g

√
N = 10γ . (b) Contour plot of the normalized

cavity-output power Pout/Pin as a function of the cavity-input power
Pin as well as the magnetic field B with g

√
N = 15γ . (c) Contour

plot of the normalized cavity-output power Pout/Pin as a function
of the cavity-input power Pin as well as the collective cavity-atom
coupling strength g

√
N/γ with B = 0. (d) Contour plot of the nor-

malized cavity-output power Pout/Pin as a function of the cavity-input
power Pin as well as the collective cavity-atom coupling strength
g
√

N/γ with B = 5 μT. The other parameters are Pl
in = Pr

in = Pin,
Pl

out = Pr
out = Pout, κ = 0.5γ , g = 0.02γ , T = 0.01, δp = √

2g2N ,
and δc = 0.

field B = 0 [see Fig. 15(c)], the CPA can occur at the weak
cavity-input power. When the magnetic field B = 5 μT [see
Fig. 15(d)], the CPA can appear at the strong cavity-input
power. The dark blue area (i.e., the nearly perfect photon
absorption) can increase slightly with the increase of g

√
N

in Fig. 15(c). However, the magnitude of this increase is
much smaller than the change caused by the magnetic field
in Fig. 15(d). The introduction of the magnetic field is bene-
ficial for the absorption of stronger input lights in the CQED
system.

Also, we plot the contour diagram showing Pr
out/Pin in

Figs. 16(a) and 16(d), Pl
out/Pin in Figs. 16(b) and 16(e), and

Pt
out/Pin in Figs. 16(c) and 16(f) with respect to the cavity-

input power Pin and the relative phase ϕ. It is obvious that the
pattern of the normalized right and left cavity-output power
are symmetrically distributed. Through the pattern between
the case without magnetic field [B = 0; see Figs. 16(a)–16(c)]
and the case with applied magnetic field [B = 3.5 μT; see
Figs. 16(d)–16(f)], it can be seen that under the control of
the magnetic field [see Figs. 16(d) and 16(e)] the CPA can
also appear in the case of the strong cavity-input power (the
magnetic field makes the point of the CPA shift), which is a
nonlinear effect. It can be noted from Figs. 16(a) and 16(b)
and Figs. 16(d) and 16(e) that the normalized cavity-output
power (Pr

out/Pin or Pl
out/Pin) can be greater than 1, which is

caused by the interference between the two input light fields
under the applied magnetic field. Although the cavity-output
power on one side of the cavity mirror can be greater than the
cavity-input power (Pr

out > Pin or Pl
out > Pin), the total cavity-

output power is not greater than the total cavity-input power
(the total cavity-output power is 2Pin, i.e., the normalized total
cavity-output power Pt

out/Pin � 2) [see Figs. 16(c) and 16(f)].

VI. CONCLUSIONS

In summary, we have investigated in detail a tunable CPA
and CPT scheme in a cavity-atom structure with a single-
mode cavity coupled to N three-level atoms under the static
Faraday magnetic field. We find that the applied magnetic
field plays an important role in modifying the photon output
properties of the system. The input light fields coupled into the
cavity can be completely absorbed or transmitted by turning
the magnetic field on or off when it creates the cavity MIT,
namely, controllable switching from CPA to CPT (or vice
versa) can be achieved in such a system. We analyze the
cavity input-output power relationships of the CQED system
based on the MIT configuration coupled by two horizontally
polarized input light fields from two opposite ends of the cav-
ity in the linear and nonlinear excitation regimes. By tuning
the magnetic field and altering the system parameters appro-
priately, the CPA can exist at different frequencies, which
is different from the previous studies about CPA only for
specific optical frequency. We also derive the approximate
analytical solutions of the cavity-output power and the specific
parameter matching conditions for the CPA. With the increase
of the cavity-input power in the cavity, it is necessary to
consider the nonlinearities as the atomic system is driven into
the nonlinear excitation regime, especially if the light fields
interfere constructively. In the nonlinear excitation regime,
the CQED system with two input light fields can be driven
into the bistable domain by the control of the magnetic field,
and the CPA can persist when the cavity-input power is above
the threshold value for optical bistability. In addition, the
line shape and the threshold value for optical bistability can
be flexibly controlled by varying the magnetic field and the
relative phase of the two input fields under experimentally
accessible conditions, and then optical bistability can be well
tuned on or off. This well-tuned optical bistability facilitates
the manipulation of the CPA. Also, we compare the analyt-
ical and numerical results of the cavity-output power in the
nonlinear excitation regime, and they are in good agreement.
Since the magnetic field can effectively control the CPA, this
three-level excited CQED scheme based on the MIT con-
figuration is suitable for future quantum light manipulation
[37], absorptive switching [107], CPA-laser devices [23,108],
quantum phase gates [109], etc.

Finally, it is worth pointing out that, according to the pre-
vious work [2], it is verified that tuning a system to a CPA
in general is to move a zero of the elastic-scattering matrix
onto the real wave-vector axis by introducing the appropriate
dissipation to the system. In our present atom-cavity scheme,
such an analysis about the motion of exact scattering-matrix
zeros and poles in the complex-k plane, along the lines of
Ref. [2], should also be made in principle and is left for further
study.
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FIG. 16. Contour plot of (a) the normalized right cavity-output power Pr
out/Pin, (b) the normalized left cavity-output power Pl

out/Pin, and
(c) the normalized total cavity-output power Pt

out/Pin (Pt
out = Pr

out + Pl
out) as a function of the cavity-input power Pin as well as the relative

phase ϕ between the two input light fields ar
in = |ar

in| and al
in = α|ar

in|eiϕ with B = 0. Contour plot of (d) the normalized right cavity-output
power Pr

out/Pin, (e) the normalized left cavity-output power Pl
out/Pin, and (f) the normalized total cavity-output power Pt

out/Pin as a function of
the cavity-input power Pin as well as the relative phase ϕ with B = 3.5 μT. The other parameters are Pl

in = Pr
in = Pin, g

√
N = 10γ , κ = 0.5γ ,

g = 0.02γ , T = 0.01, δp = √
2g2N , and δc = 0.

ACKNOWLEDGMENTS

We thank the two anonymous referees for many valu-
able suggestions. We are also grateful to Xiaoxue Yang
and Rong Yu for stimulating discussions. The present

research is supported partially by the National Key Research
and Development Program of China under Contract No.
2021YFA1400700 and by the National Natural Science Foun-
dation of China through Grant No. 12275092.

[1] M. Born and E. Wolf, Principles of Optics (Cambridge Uni-
versity, Cambridge, England, 1999).

[2] Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, Coherent Per-
fect Absorbers: Time-Reversed Lasers, Phys. Rev. Lett. 105,
053901 (2010).

[3] W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and
H. Cao, Time-reversed lasing and interferometric control of
absorption, Science 331, 889 (2011).

[4] D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. D.
Chong, Coherent perfect absorbers: linear control of light with
light, Nat. Rev. Mater. 2, 17064 (2017).

[5] S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin,
and S. D. Gupta, Coherent perfect absorption mediated anoma-
lous reflection and refraction, Opt. Lett. 37, 4452 (2012).

[6] H. M. Florez, L. S. Cruz, M. H. G. de Miranda, R. A.
de Oliveira, J. W. R. Tabosa, M. Martinelli, and D.
Felinto, Power-broadening-free correlation spectroscopy in
cold atoms, Phys. Rev. A 88, 033812 (2013).

[7] A. J. A. Carvalho, R. S. N. Moreira, J. Ferraz, S. S. Vianna,
L. H. Acioli, and D. Felinto, Enhanced absorption of weak
ultrashort light pulses by a narrowband atomic medium, Phys.
Rev. A 101, 053426 (2020).

[8] C. Q. Wang, W. R. Sweeney, A. D. Stone, and L. Yang,
Coherent perfect absorption at an exceptional point, Science
373, 1261 (2021).

[9] C. F. Gmachl, Suckers for light, Nature (London) 467, 37
(2010).

[10] Y. H. Wei, W. J. Gu, G. Q. Yang, Y. F. Zhu, and G. X. Li,
Coherent perfect absorption in a quantum nonlinear regime
of cavity quantum electrodynamics, Phys. Rev. A 97, 053825
(2018).

[11] W. Xiong, J. J. Chen, B. L. Fang, C. H. Lam, and J. Q. You,
Coherent perfect absorption in a weakly coupled atom-cavity
system, Phys. Rev. A 101, 063822 (2020).

[12] L. Y. Wang, J. G. Hu, J. J. Du, and K. Di, Broadband coherent
perfect absorption by cavity coupled to three-level atoms in
linear and nonlinear regimes, New J. Phys. 23, 123040 (2021).

[13] H. Noh, Y. D. Chong, A. D. Stone, and H. Cao, Perfect
coupling of light to surface plasmons by coherent absorption,
Phys. Rev. Lett. 108, 186805 (2012).

[14] M. B. Pu, Q. Feng, M. Wang, C. G. Hu, C. Huang, X. L. Ma,
Z. Y. Zhao, C. T. Wang, and X. G. Luo, Ultrathin broadband
nearly perfect absorber with symmetrical coherent illumina-
tion, Opt. Express 20, 2246 (2012).

053525-15

https://doi.org/10.1103/PhysRevLett.105.053901
https://doi.org/10.1126/science.1200735
https://doi.org/10.1038/natrevmats.2017.64
https://doi.org/10.1364/OL.37.004452
https://doi.org/10.1103/PhysRevA.88.033812
https://doi.org/10.1103/PhysRevA.101.053426
https://doi.org/10.1126/science.abj1028
https://doi.org/10.1038/467037a
https://doi.org/10.1103/PhysRevA.97.053825
https://doi.org/10.1103/PhysRevA.101.063822
https://doi.org/10.1088/1367-2630/ac38cd
https://doi.org/10.1103/PhysRevLett.108.186805
https://doi.org/10.1364/OE.20.002246


ZHIMING WU, JIAHUA LI, AND YING WU PHYSICAL REVIEW A 106, 053525 (2022)

[15] S. Feng and K. Halterman, Coherent perfect absorption in
epsilon-near-zero metamaterials, Phys. Rev. B 86, 165103
(2012).

[16] L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and G. H.
Derrick, Periodic models for thin optimal absorbers of electro-
magnetic radiation, Phys. Rev. B 55, R16072 (1997).

[17] Y. Nakata, Y. Urade, T. Nakanishi, and M. Kitano, Plane-wave
scattering by self-complementary metasurfaces in terms of
electromagnetic duality and Babinet’s principle, Phys. Rev. B
88, 205138 (2013).

[18] C. Y. Huang, R. Zhang, J. L. Han, J. Zheng, and J. Q.
Xu, Type-II perfect absorption and amplification modes with
controllable bandwidth in combined PT -symmetry and con-
ventional Bragg-grating structures, Phys. Rev. A 89, 023842
(2014).

[19] G. Pirruccio, L. M. Moreno, G. Lozano, and J. G. Rivas,
Coherent and Broadband Enhanced Optical Absorption in
Graphene, ACS Nano 7, 4810 (2013).

[20] D. S. Hecht, L. B. Hu, and G. Irvin, Emerging transpar-
ent electrodes based on thin films of carbon nanotubes,
graphene, and metallic nanostructures, Adv. Mater. 23, 1482
(2011).

[21] S. Yu, X. J. Piao, J. H. Hong, and N. Park, Progress toward
high-Q perfect absorption: A Fano antilaser, Phys. Rev. A 92,
011802(R) (2015).

[22] J. H. Wu, M. Artoni, and G. C. L. Rocca, Perfect absorption
and no reflection in disordered photonic crystals, Phys. Rev. A
95, 053862 (2017).

[23] Y. D. Chong, L. Ge, and A. D. Stone, PT -Symmetry Break-
ing and Laser-Absorber Modes in Optical Scattering Systems,
Phys. Rev. Lett. 106, 093902 (2011).

[24] Y. L. Liu, Q. C. Liu, S. P. Wang, Z. Chen, M. A. Sillanpää,
and T. F. Li, Optomechanical Anti-Lasing with Infinite Group
Delay at a Phase Singularity, Phys. Rev. Lett. 127, 273603
(2021).

[25] G. Y. Nie, Q. C. Shi, Z. Zhu, and J. H. Shi, Selective coherent
perfect absorption in metamaterials, Appl. Phys. Lett. 105,
201909 (2014).

[26] M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers, and
N. I. Zheludev, All-optical multichannel logic based on co-
herent perfect absorption in a plasmonic metamaterial, APL
Photonics 1, 090801 (2016).

[27] X. G. Hu, S. Yuan, A. Armghan, Y. Liu, C. Zeng, Z. Jiao,
H. J. Lv, Y. Huang, Q. Z. Huang, Y. Wang, and J. S. Xia, A
narrow-band coherent perfect absorption in bright-bright mode
coupling metamaterials, J. Opt. 18, 125101 (2016).

[28] A. Mostafazadeh and M. Sarisaman, Lasing-threshold con-
dition for oblique TE and TM modes, spectral singularities,
and coherent perfect absorption, Phys. Rev. A 91, 043804
(2015).

[29] P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y.
Wu, and Y. Lai, Simultaneous realization of a coherent perfect
absorber and laser by zero-index media with both gain and
loss, Phys. Rev. A 94, 063841 (2016).

[30] S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S.
Agarwal, Controllable coherent perfect absorption in a com-
posite film, Opt. Express 20, 1330 (2012).

[31] T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun,
and C. K. Hwangbo, General strategy for broadband coherent
perfect absorption and multi-wavelength all-optical switching

based on epsilon-near-zero multilayer films, Sci. Rep. 6, 22941
(2016).

[32] T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J.
Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D.
Faccio, Coherent perfect absorption in deeply subwavelength
films in the single-photon regime, Nat. Commun. 6, 7031
(2015).

[33] J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and
C. K. Hwangbo, Broadband epsilon-near-zero perfect absorp-
tion in the near-infrared, Sci. Rep. 5, 12788 (2015).

[34] H. Park, S. Y. Lee, J. Kim, B. Lee, and H. Kim, Near-infrared
coherent perfect absorption in plasmonic metal-insulator-
metal waveguide, Opt. Express 23, 24464 (2015).

[35] S. Mukherjee and S. D. Gupta, Coherent perfect absorption
mediated enhancement of transverse spin in a gap plasmon
guide, Eur. Phys. J. Appl. Phys. 76, 30001 (2016).

[36] P. del Hougne, K. B. Yeo, P. Besnier, and M. Davy, Coherent
Wave Control in Complex Media with Arbitrary Wavefronts,
Phys. Rev. Lett. 126, 193903 (2021).

[37] A. N. Vetlugin, Coherent perfect absorption of quantum light,
Phys. Rev. A 104, 013716 (2021).

[38] X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai,
and N. I. Zheludev, Ultrafast all-optical switching via coherent
modulation of metamaterial absorption, Appl. Phys. Lett. 104,
141102 (2014).

[39] X. Fang, K. F. MacDonald, and N. I. Zheludev, Controlling
light with light using coherent metadevices: all-optical tran-
sistor, summator and invertor, Light Sci. Appl. 4, e292 (2015).

[40] A. Xomalis, I. Demirtzioglou, E. Plum, Y. M. Jung, V. Nalla,
C. Lacava, K. F. MacDonald, P. Petropoulos, D. J. Richardson,
and N. I. Zheludev, Fibre-optic metadevice for all-optical sig-
nal modulation based on coherent absorption, Nat. Commun.
9, 182 (2018).

[41] P. J. Wei, C. Croënne, S. T. Chu, and J. Li, Symmetrical
and anti-symmetrical coherent perfect absorption for acoustic
waves, Appl. Phys. Lett. 104, 121902 (2014).

[42] T. Roger, S. Restuccia, A. Lyons, D. Giovannini, J. Romero,
J. Jeffers, M. Padgett, and D. Faccio, Coherent Absorption of
N00N States, Phys. Rev. Lett. 117, 023601 (2016).

[43] A. H. M. Abdelaziz and A. K. Sarma, Effective control and
switching of optical multistability in a three-level V-type
atomic system, Phys. Rev. A 102, 043719 (2020).

[44] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electro-
magnetically induced transparency: Optics in coherent media,
Rev. Mod. Phys. 77, 633 (2005).

[45] Y. C. Liu, B. B. Li, and Y. F. Xiao, Electromagnetically in-
duced transparency in optical microcavities, Nanophotonics 6,
789 (2017).

[46] G. S. Agarwal and Y. F. Zhu, Photon trapping in cavity quan-
tum electrodynamics, Phys. Rev. A 92, 023824 (2015).

[47] G. S. Agarwal, K. Di, L. Y. Wang, and Y. F. Zhu, Perfect
photon absorption in the nonlinear regime of cavity quantum
electrodynamics, Phys. Rev. A 93, 063805 (2016).

[48] L. Y. Wang, K. Di, Y. F. Zhu, and G. S. Agarwal, Interference
control of perfect photon absorption in cavity quantum elec-
trodynamics, Phys. Rev. A 95, 013841 (2017).

[49] A. Sommer, Inducing transparency with a magnetic field,
Physics 10, 70 (2017).

[50] R. Gad, J. G. Leopold, A. Fisher, D. R. Fredkin, and A.
Ron, Observation of Magnetically Induced Transparency in a

053525-16

https://doi.org/10.1103/PhysRevB.86.165103
https://doi.org/10.1103/PhysRevB.55.R16072
https://doi.org/10.1103/PhysRevB.88.205138
https://doi.org/10.1103/PhysRevA.89.023842
https://doi.org/10.1021/nn4012253
https://doi.org/10.1002/adma.201003188
https://doi.org/10.1103/PhysRevA.92.011802
https://doi.org/10.1103/PhysRevA.95.053862
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.127.273603
https://doi.org/10.1063/1.4902330
https://doi.org/10.1063/1.4966269
https://doi.org/10.1088/2040-8978/18/12/125101
https://doi.org/10.1103/PhysRevA.91.043804
https://doi.org/10.1103/PhysRevA.94.063841
https://doi.org/10.1364/OE.20.001330
https://doi.org/10.1038/srep22941
https://doi.org/10.1038/ncomms8031
https://doi.org/10.1038/srep12788
https://doi.org/10.1364/OE.23.024464
https://doi.org/10.1051/epjap/2016160330
https://doi.org/10.1103/PhysRevLett.126.193903
https://doi.org/10.1103/PhysRevA.104.013716
https://doi.org/10.1063/1.4870635
https://doi.org/10.1038/lsa.2015.65
https://doi.org/10.1038/s41467-017-02434-y
https://doi.org/10.1063/1.4869462
https://doi.org/10.1103/PhysRevLett.117.023601
https://doi.org/10.1103/PhysRevA.102.043719
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1515/nanoph-2016-0168
https://doi.org/10.1103/PhysRevA.92.023824
https://doi.org/10.1103/PhysRevA.93.063805
https://doi.org/10.1103/PhysRevA.95.013841
https://doi.org/10.1103/Physics.10.70


MAGNETIC-FIELD-ENGINEERED COHERENT PERFECT … PHYSICAL REVIEW A 106, 053525 (2022)

Classical Magnetized Plasma, Phys. Rev. Lett. 108, 155003
(2012).

[51] X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Strongly
Coupled Magnons and Cavity Microwave Photons, Phys. Rev.
Lett. 113, 156401 (2014).

[52] G. H. Dong, D. Z. Xu, and P. Zhang, Magnetically induced
optical transparency with an ultranarrow spectrum, Phys. Rev.
A 102, 033717 (2020).

[53] K. Ullah, M. T. Naseem, and Ö. E. Müstecaplıoǧlu, Tunable
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