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Optical properties of guided-mode resonant gratings with linearly varying period
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Guided-mode resonant gratings with spatially varying parameters are widely used as linear variable optical
filters, and their behavior is often described using the so-called local periodic approximation, in which the
structure is locally replaced by a strictly periodic grating with the period coinciding with the “local” period
at the considered point. In this work, we investigate the optical properties of guided-mode resonant gratings with
the period linearly varying along the periodicity direction. Using full-wave numerical simulations, we show that
when the period change rate is relatively high (about 0.5–1 μm/mm for the considered structures), the local
periodic approximation becomes inapplicable, and the linewidth and the line shape of the resonances depend
significantly on the period change rate. We qualitatively explain the appearance of an asymmetric non-Fano
line shape with secondary maxima by analyzing the local photonic band structure of the studied varying-period
gratings. For a more accurate description of such gratings, we develop a spatiotemporal coupled-mode theory,
the predictions of which are in good agreement with the rigorous numerical simulation results. The validity of
the derived theoretical model is additionally confirmed by a proof-of-concept experiment with a varying-period
guided-mode resonant grating. The obtained results may find application in the design of compact linear variable
filters based on resonant gratings with spatially varying parameters.
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I. INTRODUCTION

Over the past decade, much attention has been paid to
the study of resonant effects in nanophotonic structures [1,2]
due to both fundamental interest and numerous potential ap-
plications in optical filters and spectrometers, chemical and
biological sensors, laser and photovoltaic devices, etc. [1].
One of the most comprehensively studied types of resonant
photonic structures is constituted by diffraction gratings. De-
spite a long history [3–6], such structures continue to attract
great research interest due to a wide range of extraordinary
optical effects exhibited under resonant conditions [7–9].

One of the most important applications of resonant diffrac-
tion gratings is found in the problem of spectral filtering of
light. For this purpose, single-layer subwavelength dielectric
gratings as well as two-layer structures consisting of a grat-
ing located on the surface of a dielectric slab waveguide are
widely used [10–14]. The optical properties of such structures,
namely, narrow peaks and dips in the reflection and transmis-
sion spectra, have a resonant nature and are associated with
the excitation of quasiguided modes in the grating or in the
waveguide layer.

When creating spectrometric systems, the problem of di-
viding the incident radiation into a large number of spectral
channels arises. An efficient approach to the creation of spec-
tral filters for such systems is the use of resonant diffractive
structures, in which one or several parameters change in
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the plane of the structure. This enables filtering different
wavelengths in different regions of the filter. Usually, the
filtered wavelength changes linearly across a certain spatial
dimension of the filter; such structures are referred to as lin-
ear variable filters (LVFs). The most well-known LVF type
is based on multilayer phase-shifted Bragg gratings with a
wedged central (“defect”) layer [15–19].

Resonant diffraction gratings with one or several parame-
ters, which change in the direction of the periodicity or in the
perpendicular direction, constitute another promising type of
LVFs [20–41]. One of the advantages of such gratings is that
their thickness is comparable with the incident wavelength
since they consist of only one (the diffraction grating itself) or
two (grating and waveguide) layers. They are also relatively
easy to fabricate since for their creation, simple and cheap
methods of interference lithography [20,21] and ion-beam
etching with a mask [19,20] can be used. In addition to the
spectrometric applications, the gratings with spatially varying
parameters are also promising for use as refractive index sen-
sors [29,33], biosensors [36,39], and torque sensors [27].

Most often, the period of the diffraction grating is used as
the varying parameter [24–32]. In the vast majority of cases,
the rate of change in the period is very small and, as a rule,
lies in the range 5–50 nm/mm (i.e., 0.005–0.05 μm/mm).
Note that the period in these works does not exceed the
wavelength of the incident light, which makes such gratings
different from the so-called varied line-space (VLS) gratings
[42]. In [33–35], the thickness of the waveguide layer changes
(the rate of change is from 0.7 to 8 nm/mm). In [22,23],
the thickness of the diffraction grating is used as the varying
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parameter (with variation rates of 1.1–3.3 nm/mm). In [36],
the duty cycle of the grating is changed. In some works, two
parameters are varied simultaneously: the period and waveg-
uide layer thickness in [37–40] and the period and grating
height in [41]. In the mentioned papers, the varying parameter
(or parameters) changes rather slowly. For the description of
such “slowly varying” structures, it is usually sufficient to use
the so-called local periodic approximation (LPA), in which a
structure with varying parameters is locally approximated by
an infinite periodic structure with parameters coinciding with
the parameters of the initial structure at the current point. At
the same time, the design of compact filters requires the de-
velopment of a theoretical model describing resonant optical
properties and filtering performance of varying-period struc-
tures at higher period change rates, where the LPA is no longer
applicable. Such a theory, on the one hand, would enable
achieving an optimal trade-off between the spectral resolution,
the width of the working spectral range, and the geometrical
dimensions of the filter and, on the other hand, would make
it possible to estimate the limits of applicability of the LPA.
In this regard, it is important to note that the overwhelming
majority of works devoted to grating-based linear variable
filters are either purely experimental [20–31,33–39,41] or
purely numerical [32,40], and for structures of this type,
no theory has been developed to describe, in particular, the
broadening, change in the line shape, and shift of the spectral
peaks caused by the spatial variation of the parameters of the
structure.

In the present work, we theoretically, numerically, and
experimentally investigate varying-period guided-mode reso-
nant gratings with relatively high period change rates reaching
1 μm/mm. In Sec. II, we briefly discuss strictly periodic
guided-mode resonant gratings and introduce the geometry of
the studied structures with linearly varying period. In Sec. III,
we present the results of the numerical simulations of the
varying-period structures. Section IV provides a qualitative
explanation of the appearance of non-Fano resonance line
shapes with secondary maxima in terms of the local pho-
tonic band structure. In Sec. V, we derive a coupled-mode
theory (CMT) describing the resonant optical properties of
guided-mode resonant gratings with a spatially varying pe-
riod. Section VI presents the results of a proof-of-concept
experiment confirming the validity of the developed theoreti-
cal model. Section VII concludes the paper.

II. GUIDED-MODE RESONANT GRATINGS
WITH LINEARLY VARYING PERIOD

The geometry of the investigated structure is schematically
depicted in Fig. 1(a). The structure consists of a binary diffrac-
tion grating with height hgr placed on top of a dielectric slab
waveguide with thickness hwg. The period of the grating d (x)
varies in the direction of the x axis. Although such a structure
is not periodic, for the sake of convenience, we will still refer
to this direction as the periodicity direction.

Before studying the optical properties of a structure with
varying period, let us briefly revisit the strictly periodic case,
for which d (x) = d0 = const [Fig. 1(b)]. We consider an ex-
ample with the following parameters: grating period d0 =

FIG. 1. (a) Geometry of the considered varying-period structure.
(b) Geometry of a strictly periodic grating used for the local peri-
odic approximation of the varying-period structure. (c) Simulation
supercell of the varying-period structure with adjacent superperiods
separated by perfectly matched layers (PMLs).

195 nm, ratio of the ridge width to the grating period (fill
factor) f = 0.9, grating height hgr = 30 nm, waveguide layer
thickness hwg = 50 nm, refractive index of the grating and
the waveguide layer ngr = nwg = 3.5, and refractive indices
of the superstrate and substrate nsup = 1 and nsub = 1.5, re-
spectively.

At normal incidence of a transverse-electric- (TE-) polar-
ized plane wave, this structure exhibits a resonant reflectance
peak at λ = 544 nm (see the inset in Fig. 2). At this wave-
length, the magnitude of the in-plane wave-vector components
of the positive and negative first diffraction orders matches

FIG. 2. Reflectance R of a strictly periodic grating vs its pe-
riod and wavelength of a normally incident plane wave calculated
using RCWA. The plot can also be regarded as the reflected field
distributions over a varying-period structure at different wavelengths
calculated using the local periodic approximation (α = 0). The inset
shows the reflectance spectrum of a grating with period d0 = 195 nm.
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the wave number of the guided mode of the slab waveguide.
Therefore, the resonance arises due to the excitation of this
eigenmode. Since the reflectance peak appears on a low back-
ground, this structure can be utilized as a narrow-band spectral
filter. The spectral position of the reflectance peak changes
almost linearly with a change in the period of the structure.
This is illustrated by Fig. 2 showing the reflectance spectra
vs the grating period d . The reflectance was calculated using
the rigorous coupled-wave analysis (RCWA; also referred to
as the Fourier modal method) [43,44].

For applications in optical filtering and sensing, it is im-
portant to design a structure with linearly varying period
[Fig. 1(a)] providing the filtering of different wavelengths at
different spatial positions along the periodicity direction. As
was mentioned in the Introduction, such structures are usually
referred to as linear variable filters. As in the case of fixed-
period gratings, the filtering properties of such structures have
a resonant nature (in contrast to the VLS gratings [42], the
optical properties of which are determined by a change in the
direction of a nonspecular diffraction order).

In this work, we will consider the following linear period
variation law:

d (x) = d0 + αx, (1)

where d0 = 195 nm is the central period and α defines the
period change rate. Note that d (x) in Eq. (1) is the local
period, which is, roughly speaking, the distance between the
centers of two adjacent grating ridges [see Fig. 1(a)].

Let us design a structure with the local period varying
according to Eq. (1). To do this, we define the dielectric
permittivity inside the unit cell of the grating layer using the
function ε(t ), which is periodic with unit period [ε(t + 1) =
ε(t )] and, at t ∈ [0, 1], reads

ε(t ) =
{

n2
gr, t � f ,

n2
sup, t > f .

Therefore, the grating with a fixed period d0 is described
by the function ε(x/d0). Now, let us choose the argument
of ε(t ) to be ε(x/D(x)) and find such a function D(x), so
that the local period of the varying-period structure agrees
with Eq. (1). Counterintuitively, the “naive” approach of using
D(x) = d (x) turns out to be wrong. Indeed, the local period
can be found by analyzing how fast the argument of the
function ε is changing, i.e., by evaluating the derivative of
x/D(x), which should be equal to the local period inverse. By
writing this condition, we arrive at the following differential
equation:

1

D(x)
− x

D′(x)

D(x)2
= 1

d (x)
. (2)

Using Eq. (1) and requiring limx→0[x/D(x)] = 0, we obtain
the following solution:

D(x) = αx

ln
(
1 + α x

d0

) . (3)

Since D(x) = d0 + αx
2 + O(α2), the period should change ap-

proximately two times slower than in the naive approach
assuming D(x) = d (x).

Summarizing this section, we have shown that the function
ε(x/D(x)) with D(x) given by Eq. (3) defines the geometry

of the structure with the linearly varying local period d (x)
[Eq. (1)].

III. NUMERICAL SIMULATION

Having determined the geometry of the varying-period
grating, let us now move to the discussion of its optical
properties. When considering such structures as optical filters,
one is usually interested in the reflectance and transmittance
at different points of the structure (along its periodicity di-
rection) and different wavelengths [20,21,29,30,33,38]. When
the period change rate α is sufficiently small, at each point
of the varying-period grating, we can replace it with a strictly
periodic one with the period equal to the local period of the
investigated varying-period structure. Under this local peri-
odic approximation, we arrive at the very same Fig. 2 with
the period d being the local period of the investigated struc-
ture. When, however, the value of α is of the order of 10−4

(0.1 μm/mm) or greater, the LPA ceases to be valid, and a
more elaborate theoretical description is required. In order
to demonstrate this, let us simulate the whole varying-period
structure.

As in the previous section, for the simulation, we used
the rigorous coupled-wave analysis [43,44]. However, since
the RCWA is aimed at simulating strictly periodic diffractive
structures, the following superperiod (supercell) approach had
to be used. The considered varying-period structure, consist-
ing of a certain large, but finite, number of periods, was
artificially periodized along the x axis. The adjacent artificial
periods (superperiods) were separated by absorbing perfectly
matched layers (PMLs) in order to eliminate the optical
interaction between them [see Fig. 1(c)]. To estimate the re-
flectance of the structure, we simulated the diffraction of a
normally incident TE-polarized plane wave and calculated the
reflected field distribution |Ey|2 along a straight horizontal line
located 170 nm above the structure. The described simulation
was performed for wavelengths from the spectral range of
interest, 500–580 nm.

The simulation results are presented in Figs. 3(a)–3(c),
which correspond to three different period change rates α: 0.2,
0.5, and 1 μm/mm, respectively. In the simulations, the su-
perperiod contained a segment of the varying-period structure
with the local periods ranging from 185 to 205 nm. At the con-
sidered period change rates, this leads to the following sizes
of the simulated structures: W = 100 μm [Fig. 3(a)], W =
40 μm [Fig. 3(b)], and W = 20 μm [Fig. 3(c)]. Therefore,
the total superperiod of the simulated structure, which also
includes the PML regions, exceeds 200λ, which requires the
use of about 2 × 1000 + 1 Fourier harmonics in the RCWA.
Such a simulation can be performed on a modern desktop PC;
nevertheless, let us mention that if at larger superperiods, the
memory and time requirements of the conventional RCWA
become prohibitively large, the contrast-field formulation of
the RCWA can be utilized [45,46].

It is evident from Figs. 3(a)–3(c) that the investigated
varying-period structures exhibit pronounced reflectance
peaks with the spatial position depending on the incident
wavelength. In order to discuss the shape of the resonant peaks
in more detail, let us examine the vertical cross sections of
the reflectance plots shown in Figs. 2 and 3(a)–3(c). The
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FIG. 3. Reflected field distributions R calculated at different wavelengths of the incident plane wave and different positions along the
structure using (a)–(c) RCWA (R = |Ey|2) and (d)–(f) using CMT (R = | fR|2). The subplots correspond to different period change rates:
(a) and (d) α = 0.2 μm/mm, (b) and (e) α = 0.5 μm/mm, and (c) and (f) α = 1 μm/mm. The presented color map applies to all subplots.

normalized cross sections at x = 0 (local period d = 195nm)
are presented in Fig. 4. From Fig. 4, it can be clearly seen that
with an increase in α, the FWHM of the resonances increases
and amounts to 2.5, 4.7, 7.9, and 10.3 nm for α = 0, 0.2, 0.5,
and 1 μm/mm, respectively. In addition, the line shape of the
resonance depends significantly on the period change rate α:
at α = 0, the resonance has a Fano line shape, which is close
to the symmetric Lorentzian line shape for the considered
structure; at greater α values, the broadening of the resonant
peak is accompanied by a change in shape and the appearance
of secondary maxima at shorter wavelengths. We will explain

the appearance of these secondary maxima, which become
more pronounced at greater α values, in the following section.

IV. LOCAL PHOTONIC BAND STRUCTURE

Let us consider the reflected field distribution along
the varying-period structure at the wavelength λ = 544 nm
[Fig. 5(a)]. This distribution was calculated for α =
0.5 μm/mm and therefore is a horizontal cross section of
Fig. 3(b). Like in Fig. 4, the field distribution is essentially
asymmetric with secondary maxima present to the right of
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FIG. 4. Normalized spectra of the field reflected by the structure
at x = 0 at different period change rates α: RCWA simulations (solid
blue lines) and CMT predictions (dashed red lines). The first plot
(α = 0) was calculated using the local periodic approximation.

the main peak. To explain this fact, let us consider the local
dispersion of the eigenmodes of the investigated structure.

Figure 5(b) shows the rigorously calculated [47,48] dis-
persion of the TE-polarized eigenmodes of strictly periodic
gratings with the periods d equal to 190, 195, and 200 nm.

FIG. 5. (a) Normalized reflected field distribution along the
varying-period structure at the wavelength λ = 544 nm for α =
0.5 μm/mm. (b) Local band diagram at different local periods:
d = 190 nm (dashed red curves), d = 195 nm (solid black curves),
and d = 200 nm (dash-dotted blue curves). Horizontal dashed line
shows the wavelength of λ = 544 nm. The band gap at d = 190 nm
is shown in red.

According to Fig. 5(b), at d = 195 nm, the eigenmode is ex-
cited at normal incidence at λ = 544 nm. This eigenmode is
the even (symmetric) one and is marked with a solid black
dot on the upper solid black curve, whereas the odd (anti-
symmetric) mode is marked with a black circle on the lower
solid black curve. The frequency range lying between these
two modes constitutes the band gap of the structure, where no
modes can propagate in the ±x directions. With an increase in
the grating period, the dispersion curves (and, consequently,
the band gap) will “move down” to the longer wavelengths
(see the dash-dotted blue curves). Decreasing the period will
shift the dispersion curves “up” to the shorter wavelengths
(see the dashed red curves).

Let us now discuss how the local dispersion law deter-
mines the optical properties of the varying-period structure
and, in particular, the reflected field distribution. To do this,
we consider the normal incidence of a monochromatic TE-
polarized plane wave. At a certain local period, the in-plane
wave-vector components of the positive and negative first
diffraction orders will match the wave number (propagation
constant) of the eigenmode supported by the waveguide layer
at the incident wavelength. For the considered example (λ =
544 nm), this happens at the points of the structure where the
local period is close to 195 nm. In this region, the incident
energy is efficiently coupled to the waveguide layer, and the
excited modes propagate to the left and to the right inside the
waveguide.

When the light propagates to the left, the local period
decreases, and the incident wavelength enters the band gap of
the “local” grating [see Fig. 5(b)]. In the band gap, there are no
modes that can carry energy, and the mode becomes reflected
to the right instead of propagating to the left. In contrast,
when the light propagates to the right, two counterpropagating
eigenmodes [blue dots in Fig. 5(b)] that can carry energy at
the considered wavelength appear. Upon propagation, these
eigenmodes leak out of the waveguide with the leakage di-
rection varying along the structure, which gives the secondary
peaks discussed above.

The presented local photonic band structure analysis gives
a rough qualitative explanation of the asymmetric field distri-
bution in the considered structure. Let us note that the plots
in Fig. 3 are almost translationally invariant along an inclined
straight line in the λ-x parameter space. Therefore, the vertical
and horizontal cross sections of each plot have approximately
the same shape, and hence, the presented local photonic band
description also explains the asymmetric line shape of the res-
onance with respect to the varying wavelength (see Fig. 4). A
more accurate, quantitative description can be obtained using
the coupled-mode theory derived in the next section.

V. COUPLED-MODE THEORY

In this section, we develop a spatiotemporal coupled-mode
theory describing the optical properties of a varying-period
guided-mode resonant grating. First, we revisit the CMT for
the case of a strictly periodic grating, and then we introduce
spatial variation of the parameters of the model to take into
account the period change rate α and apply the obtained
theory to the considered grating example.
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A. Periodic grating

To describe the optical properties of a symmetric grating
with a fixed period d0, let us write the coupled-mode theory in
the form of two coupled unidirectional wave equations [49]:

∂u

∂t
= −vg

∂u

∂x
+ i(kmodevg − ω0)u

− γ u + κe2ikx,grxv + q f (x, t )eikx,grx,

∂v

∂t
= vg

∂v

∂x
+ i(kmodevg − ω0)v

− γ v + κe−2ikx,grxu + q f (x, t )e−ikx,grx. (4)

Here, u and v denote the complex amplitudes of the modes
propagating inside the waveguide in the positive and negative
directions of the x axis, respectively. The dispersion of these
modes is assumed to be linear near the frequency ω0 and is
defined by the group velocity vg and the wave number kmode

at this frequency.
The coupling coefficients γ , κ , and q describe the follow-

ing scattering processes: mode leakage is described by the real
leakage rate γ ; coupling between modes u and v is described
by the complex coefficient κ , and mode excitation by the
incident field f (x, t ) is described by the complex coupling
coefficient q. The coupling and excitation of the modes occur
due to the diffraction of light into one of the diffraction orders.
Assuming that the modes are excited by the positive and
negative first diffraction orders (which is the case for the struc-
tures considered throughout this work), the corresponding
phase change is described by the exponents [49,50] in Eq. (4)
with

kx,gr = 2π

d0
. (5)

The eigenmodes are excited by a normally incident plane
wave with frequency ω0 when the wave number of the mode at
this frequency coincides with the in-plane wave-vector com-
ponent of the first diffraction order: kx,gr = kmode.

Note that for a symmetric lossless grating, the coefficients
ω0, γ , and κ can be expressed in terms of complex frequencies
of the eigenmodes of the grating at the center of the first
Brillouin zone in the following form [49]:

ω0 = Re
ωp1 + ωp2

2
,

γ = − Im
ωp1 + ωp2

2
,

κ = ωp1 − ωp2

2i
. (6)

Here, ωp1 and ωp2 are the complex frequencies of the sym-
metric (even) and antisymmetric (odd) eigenmodes, which are
shown in Fig. 5(b) with a solid black dot and a black circle,
respectively.

The complex amplitude of the reflected field can be written
as [49]

fR(x, t ) = r0 f (x, t ) + qru(x, t )e−ikx,grx + qrv(x, t )eikx,grx,

(7)

where the first term describes the nonresonant scattering and
the other terms contain the resonant contribution due to the

energy leakage from modes u and v. Thus, the coefficient r0

can be referred to as the nonresonant reflection coefficient,
and qr is the “mode-to-superstrate” leakage rate. A similar
equation, which is not presented here for the sake of brevity,
can be written for the transmitted field.

In the presented coupled-mode equations, we considered a
periodic structure with the symmetry plane x = 0. For further
analysis, we will also be interested in considering a symmetric
grating that is shifted by a distance 
 along the x axis. The
coupled-mode equations for such a structure can be obtained
by replacing x with x + 
 in the exponents of Eqs. (4) and
(7).

It is worth mentioning that applying the two-dimensional
Fourier transform to Eqs. (4) and (7) with respect to t and
x allows one to obtain the reflection coefficient of a strictly
periodic grating as a function of the angular frequency ω and
the in-plane wave-vector component kx of the incident wave
[see Eq. (A1) in the Appendix] [49].

B. Grating with a linearly varying period

As we discussed in Sec. II, the permittivity of the varying-
period structure is given by ε(x/D(x)). Let us consider the
permittivity in the vicinity of the point x = x0 and replace the
argument of the function ε with the first two terms of its Taylor
series:

ε

(
x

D(x)

)
≈ ε

(
x − 
(x0)

d (x0)

)
,

where 
(x0) = x0[1 − d (x0)/D(x0)], which follows from
Eq. (2). The obtained equation means that we can locally ap-
proximate the varying-period structure with the fixed-period
one having the period equal to the local period d (x0) and
shifted by 
(x0). On the other hand, by replacing x with
x + 
 in Eqs. (4) and (7), we can see that we can take into
account the offset 
 by using Eqs. (4) and (7) with kx,gr

redefined as

kx,gr (x) = 2π

D(x)
. (8)

This means that local approximation of the varying-period
grating at the point x = x0 with a grating with the fixed period
d (x0) that is shifted by 
(x0) is formally equivalent to ap-
proximating it with a nonshifted grating with the fixed period
D(x0).

Let us note that in the “conventional” LPA (see Fig. 2),
the strictly periodic grating locally approximating the varying-
period structure is used to calculate the local reflectance. In
contrast, in the approach discussed in this section, we locally
approximate a varying-period structure with strictly periodic
ones to derive the CMT with spatially varying parameters. As
we will show below, this approach is much more accurate
and enables describing the influence of the period change
rate on the resonance line shape. It is also worth mentioning
that in the case of a varying-period structure, all the other
parameters (kmode, vg, ω0, γ , κ, q, qr, r0) in the coupled-mode
equations (4) and (7) also become functions of the spatial
coordinate x. However, in what follows, we will take into
account only the dependence of kx,gr on x [Eq. (8)], which,
as it turns out, has the highest impact on the optical properties
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of the varying-period grating, whereas the other parameters
can be assumed to be constant. As a result, the x dependence
will appear only under the exponents in Eq. (4).

To write the CMT for a varying-period structure, let us
assume that the incident light is a monochromatic plane wave
with unit amplitude, which normally impinges on the grating:
f (x, t ) = e−iωt . In this case, the mode amplitudes u and v will
also depend on time as e−iωt . Therefore, we can rewrite the
system of Eqs. (4) and (7) in terms of the functions ũ(x) =
u(x, t )e−ikx,gr (x)xeiωt and ṽ(x) = v(x, t )eikx,gr (x)xeiωt depending
solely on the spatial coordinate x:

−iωũ = vg

[
−dũ

dx
− iũ

d[x kx,gr (x)]

dx
+ ikx,gr (0)ũ

]

− iω0ũ − γ ũ + ṽ + q,

−iωṽ = vg

[
d ṽ

dx
− iṽ

d[x kx,gr (x)]

dx
+ ikx,gr (0)ṽ

]

− iω0ṽ − γ ṽ + κ ũ + q,

f̃R(x, ω) = r0 + qrũ + qr ṽ. (9)

Here, f̃R = fReiωt is the reflected field at the position x of
the varying-period grating calculated at the angular frequency
of the incident light ω. Note that in Eq. (9), we assumed
kmode = kx,gr (0). By doing this, we required that at the angular
frequency ω0, the wave number of the mode should match
the wave number of the first diffraction order at x = 0; there-
fore, the eigenmode is excited at this point at the specified
frequency [see the discussion after Eq. (5)].

From Eqs. (2) and (8), it follows that d[x kx,gr (x)]/dx =
2π/d (x) and kx,gr (0) = 2π/d (0). Therefore, we can rewrite
Eq. (9) as

vg
dũ

dx
=

[
i(ω − ω0) − γ + 2π ivg

(
1

d (0)
− 1

d (x)

)]
ũ

+ κ ṽ + q,

−vg
d ṽ

dx
=

[
i(ω − ω0) − γ + 2π ivg

(
1

d (0)
− 1

d (x)

)]
ṽ

+ κ ũ + q,

f̃R(x, ω) = r0 + qrũ + qr ṽ. (10)

The obtained system of equations (10) constitutes the
coupled-mode theory for the considered varying-period
guided-mode resonant gratings. It is important to note that it
is valid for any (not necessarily linear) local period variation
law d (x).

Now, let us assume that the local period varies linearly
[Eq. (1)] and the period change rate α is small enough to
enable replacing 1/d (x) with only the first two terms of its
Taylor series with respect to α:

1

d (x)
= 1

d0 + αx
≈ 1

d0
− α

d2
0

x + O(α2).

This brings us to the following linearized coupled-mode equa-
tions:

vg
dũ

dx
=

[
i(ω − ω0) − γ + iα

2πvg

d2
0

x

]
ũ + κ ṽ + q,

−vg
d ṽ

dx
=

[
i(ω − ω0) − γ + iα

2πvg

d2
0

x

]
ṽ + κ ũ + q,

f̃R(x, ω) = r0 + qrũ + qr ṽ. (11)

From these equations, it follows that

f̃R(x + δ, ω) = f̃R

(
x, ω + αδ

2πvg

d2
0

)
,

which means that a change δ in the position x along the
structure is equivalent to a frequency shift αδ2πvg/d2

0 , which
agrees with the analysis based on the empty-lattice approxi-
mation. Since α is assumed to be small, the equivalent shift in
wavelength is −αδ(λ/d0)2vg/c, which explains the approxi-
mate translational invariance of the plots in Fig. 3 that was
used when discussing the local photonic band structure in
Sec. IV.

C. Simulation results

In order to verify the developed CMT, we numerically
solved the system (10) for the varying-period gratings consid-
ered in Secs. II and III. Note that we used the more accurate
system (10) [however, system (11) gives very similar results].
In the calculations, we used the following values of the pa-
rameters of the model:

ωp1 = 3.4616 × 1015 − 7.8216 × 1012i s−1,

ωp2 = 3.3752 × 1015 s−1,

vg = 0.27953c,

qqr = (2.7910 + 2.0017i) × 1012 s−1,

r0 = 0.15012 − 0.013279i.

Note that the values ωp1 and ωp2 determine ω0, γ , and κ

through Eq. (6). It is also important to note that, as discussed
above in Sec. V B, all the presented parameters were calcu-
lated by considering only the strictly periodic grating (in the
studied example, the grating with the period d0 = 195 nm).
A detailed description of the parameter calculation process is
presented in the Appendix.

In order to solve Eqs. (10) numerically, one needs to im-
pose boundary conditions. We used the conditions

u(−W/2) = 0,

v(W/2) = 0, (12)

which are similar to the PML conditions used in the RCWA
simulations presented in Sec. III. Indeed, according to
Eqs. (12), there is no mode propagating to the right at the left
boundary (at x = −W/2). Therefore, the v mode propagating
to the left is not reflected at this boundary. Similarly, the right
boundary (x = W/2) does not “emit” modes propagating to
the left.

The reflected field distributions calculated using the devel-
oped CMT of Eq. (10) with the boundary conditions (12) are
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FIG. 6. Optical setup: (a) light source, (b) 20× micro-objective,
(c) 40-μm pinhole, (d) and (e) lenses, (f) polarizer, (g) mirror,
(h) beam-splitting cube, (i) sample varying-period grating, (j) 10×
micro-objective, and (k) CCD matrix.

presented in Figs. 3(d)–3(f). It is evident from Fig. 3 that the
CMT predictions (right column) are in excellent agreement
with the rigorous simulation results based on RCWA (left
column). For the sake of comparison, we also presented the
CMT predictions calculated at a fixed point (x = 0) in Fig. 4
(dashed red lines). We believe that the slight differences be-
tween the RCWA and CMT results are mainly due to the fact
that in the CMT calculations, we assumed that the nonreso-
nant reflection coefficient r0 does not depend on frequency.
Let us also note that the fact that we replaced part of the
varying period grating with PMLs in the RCWA simulations
[or used equivalent boundary conditions of Eq. (12) in the
CMT] means that the modes that would have been excited
by these parts of the grating do not contribute to the field
distributions shown in Fig. 3. This results in “bending” of
the secondary maxima, which is clearly seen in Fig. 3 in the
wavelength range λ ∈ [500, 520] nm and local period range
d ∈ [185, 190] nm for the distributions calculated using both
RCWA and the proposed CMT.

VI. EXPERIMENT

In this section, we present the results of a proof-of-concept
experiment confirming the validity of the developed theoret-
ical model. In this regard, it is important to note that the
presented coupled-mode theory can be applied not only to
the varying-period guided-mode resonant filters considered
above exhibiting a well-defined “main” resonant reflectance
peak on a low background but also to other varying-period
guided-mode resonant gratings. For the experimental investi-
gation, we fabricated such varying-period gratings patterned
in a polymethylmethacrylate (PMMA) layer using a XENOS
XeDraw 2 e-beam lithography device with a Carl Zeiss Supra
25 electron microscope. The PMMA layer was spin coated
on top of a TiO2 waveguide layer sputtered on a fused-silica
substrate. The thicknesses and the refractive indices of the
deposited layers were controlled using a spectroscopic el-
lipsometer Woollam M-2000. The fabricated structures have
the following parameters: grating thickness hgr = 300 nm,
waveguide layer thickness hwg = 130 nm, grating fill fac-
tor f = 1/2, and grating central period d0 = 330 nm. Three
varying-period samples were fabricated, each having the same
dimensions (100 × 100 μm2) but different period change
rates α: 0.25, 0.5, and 1 μm/mm.

The optical setup utilized for the experimental investi-
gation of the fabricated gratings is shown in Fig. 6. As a

light source (labeled a), we used a tunable laser EKSPLA
NT242. To generate a collimated optical beam, we used a 20×
micro-objective (labeled b), a pinhole with 40-μm aperture
(labeled c) acting as a secondary point light source, and a
collimator consisting of a pair of lenses (labeled d and e).
The required TE polarization of the generated beam was set
using a polarizer (labeled f). After being reflected by a mirror
(labeled g) and passing through a beam-splitting cube (labeled
h) used to separate the incident and reflected light (Fig. 6), the
beam impinged on the investigated varying-period grating (la-
beled i). The radiation reflected from the grating was imaged
on a CCD matrix (labeled k) using a 10× micro-objective
(labeled j).

The measured reflected field distributions at λ = 626 nm
for the three fabricated gratings are shown in Figs. 7(a)–
7(c). Figures 7(d)–7(f) show the corresponding field cross
sections averaged along the vertical direction for wavelengths
of 618, 626, and 633 nm. Figures 7(g)–7(i) show the model
field distributions calculated using the proposed coupled-
mode equations (10) with the following parameters:

ωp1 = 3.0530 × 1015 − 2.7806 × 1012i s−1,

ωp2 = 3.0510 × 1015 s−1,

vg = 0.37296c,

qqr = (−1.1848 + 0.55954i) × 1012 s−1,

r0 = 0.13732 − 0.012337i. (13)

It is evident from Figs. 7(d)–7(i) that the predictions of the
coupled-mode theory are in good agreement with the experi-
mental results.

Let us note that compared to the structure investigated in
Secs. II–V, the fabricated structure has higher group velocity
vg of the modes. As a result, the secondary peaks are more
pronounced and are comparable in magnitude to the main
(“central”) peak. Moreover, according to Eq. (13), the band
gap of the fabricated structure is very narrow (the difference
between the wavelengths of the even and odd modes is less
than 1 nm). Such a narrow band gap allows the modes to
tunnel through, which results in the appearance of secondary
peaks both to the left and to the right of the central peak.
Nevertheless, all these features are well reproduced by the
developed CMT.

VII. CONCLUSION

In the present work, we investigated optical properties of
guided-mode resonant gratings with linearly varying period.
We considered period variation rates up to 1 μm/mm, which
significantly exceeds the values considered in the majority
of previously published works, and, using full-wave numer-
ical simulations based on the rigorous coupled-wave analysis,
demonstrated that in this case, the local periodic approxima-
tion usually used for describing the optical properties of such
structures becomes inapplicable. We qualitatively explained
the asymmetric non-Fano resonance shapes with secondary
maxima appearing at high period change rates by examin-
ing the local band structure of the varying-period gratings.
In order to obtain an accurate quantitative description, we
developed a spatiotemporal coupled-mode theory for gratings
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FIG. 7. (a)–(c) Experimentally obtained reflected field distributions at λ = 626 nm and (d)–(f) normalized averaged cross sections of such
distributions at wavelengths λ = 633 nm (yellow upper lines), λ = 626 nm (red middle lines), and λ = 618nm (blue lower lines). The lines
for λ = 626 nm and λ = 633 nm are vertically offset by 1 and 2, respectively, for the sake of visual clarity. (g)–(i) Reflected field distributions
predicted by the coupled-mode theory at the same wavelengths. Field distributions are presented for three different period change rates: (a),
(d), and (g) α = 0.25 μm/mm, (b), (e), and (h) α = 0.5 μm/mm, and (c), (f), and (i) α = 1 μm/mm.

with a spatially varying period. The developed model does
not require fitting of any parameters since their values are
determined by analyzing a strictly periodic guided-mode res-
onant grating. At all the considered period change rates, the
predictions of the derived CMT model are in good agreement
with the numerical simulation results and with the results of a
proof-of-concept experiment, which included the fabrication
of resonant varying-period gratings and the investigation of
their optical properties.

We believe that the presented results are important for the
design of compact linear variable filters based on varying-
period guided-mode resonant gratings. In particular, the
presented coupled-mode theory can be used for estimating the
achievable spectral resolution of such filters. In this regard,
it is important to mention that the calculation of the reflection
spectra using the derived CMT model is several orders of mag-
nitude faster than the full-wave electromagnetic simulation.
In particular, the computation of the data for Fig. 3(a) using
RCWA took about 3 h, whereas the CMT-based calculations
[Fig. 3(d)] required less than a minute. At the same time, it
is evident that the model “captures” the main effects occur-
ring in the varying-period structures such as the appearance
of secondary maxima of the reflected field, their magnitude,

and the spacing between them along the periodicity
direction.

An analytical or semianalytical investigation of the equa-
tions of the derived CMT model may lead to approximate
closed-form estimates of the linewidth and the line shape of
the resonances. In our opinion, the presented results can also
be extended to other resonant (quasi)periodic structures with
spatially varying parameters, e. g., guided-mode gratings with
varying thickness of the waveguide layer or photonic crystal
slabs with varying height, as well as structures with several
simultaneously varying parameters. This will be the subject
of future research.
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APPENDIX: CALCULATING THE PARAMETERS
OF THE COUPLED-MODE THEORY

In this Appendix, we describe the calculation of the param-
eters used in the spatiotemporal coupled-mode theory. This
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theory gives the following approximate expression for the
reflection coefficient of a fixed-period guided-mode resonant
grating [49]:

r(ω, kx ) = r0

v2
gk2

x − (ω − ωz)(ω − ωp2)

v2
gk2

x − (ω − ωp1)(ω − ωp2)
, (A1)

where

ωz = ωp1 − 2iqqr/r0. (A2)

Taking into account Eqs. (6) and (A2), one can see that
Eq. (A1) contains all the parameters used in Eq. (10), which is
the main equation of this work describing varying-period res-
onant gratings. Therefore, these parameters can be estimated
by requiring that Eq. (A1) approximate well the rigorously
calculated reflection spectrum rRCWA(ω, kx ) of a fixed-period
grating. However, finding these parameters by simply fitting
Eq. (A1) to the rigorously calculated spectrum gives, as a rule,
poor results. Below, we present another approach based on the
calculation of the eigenmodes of the structure, which is fast
and robust.

First, we assume kx = 0. According to Eq. (A1), in this
case, the scattering matrix S(ω, kx = 0) of the structure has
two complex poles ωp1 and ωp2, which are the frequencies
of the eigenmodes of the structure. These poles can be rig-
orously calculated using the numerical approach presented in
[48].

Then, we pick a real frequency near these eigenfrequencies
[e.g., the frequency ω0 = Re(ωp1 + ωp2)/2]. In this case, the
scattering matrix S(ω = ω0, kx ) considered as a function of kx

has two poles kx = ±kp, which describe the complex-wave-
number eigenmodes of the structure. As above, we calculate

the value of kp using the numerical approach of [48]. By
equating the denominator in Eq. (A1) at ω = ω0, kx = kp to
zero, we obtain the group velocity as

vg = Re

√
(ω0 − ωp1)(ω0 − ωp2)

kp
.

Note that the group velocity in the CMT is real, so taking the
real part here is to eliminate numerical errors resulting in a
small imaginary part.

Then, we calculate the parameter ωz, which, according to
Eq. (A1), is the angular frequency value providing a reflection
zero in the case of normal incidence. Hence, ωz can be found
by numerically solving the equation rRCWA(ωz, 0) = 0.

Next, to find the nonresonant reflection coefficient r0, we
equate the rigorously calculated reflection coefficient and the
CMT prediction of Eq. (A1) in the case of normal incidence
(kx = 0) at the frequency ω0: r(ω0, 0) = rRCWA(ω0, 0). This
gives us

r0 = rRCWA(ω0, 0)
ω0 − ωz

ω0 − ωp2
.

Finally, the product qqr can be expressed from Eq. (A2) as

qqr = ir0
ωz − ωp1

2
.

To summarize, the presented approach is based on finding
the values ωp1, ωp2, kp, and ωz. The calculation of each of
these parameters requires a numerical solution of an equa-
tion involving the RCWA-calculated scattering matrix of a
fixed-period grating. One more scattering matrix calculation is
required for estimating the nonresonant reflection coefficient
r0. For the structures considered in this work, these computa-
tions take less than 2 s.
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