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Underwater ghost imaging (GI) plays an important role in the marine research, marine environment protection,
and engineering applications. However, underwater GI encounters the challenges of numerous measurements and
noise interference caused by the scattering lights. To solve these problems, we propose a sub-Nyquist denoising
GI method to acquire high-quality images of the underwater objects. The proposed method first uses a Coiflet-
wavelet decomposition method to create an index order and then utilizes the order to reorder the Hadamard
pattern sequence. Then, a total variation regularization algorithm is designed to restore the object images, and
a nuclear-norm-minimization algorithm is developed to remove the noises from the restored images. Finally,
an experimental setup is built to simulate the complicated underwater environment that includes the turbulence
and bubbles. The numerical and experimental results show that the denoising capability of the proposed method
is strong, and the imaging performance of the proposed method is similar (slightly better in some cases) to
the recently reported state-of-the-art GI methods in the complicated underwater environment and sub-Nyquist
sampling ratio condition (e.g., 0.03). The proposed method may find applications in marine underwater imaging
areas.
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I. INTRODUCTION

Underwater imaging (UI) technology is essential for the
underwater research and engineering applications [1–4]. Due
to the water absorption and scattering of lights, UI techniques
[5–7] face the problems of noise interference, low contrast,
limited imaging distance, etc. Underwater ghost-imaging (GI)
technique is an alternative for the traditional UI and has been
utilized in UI over the past few years [8–10]. Unlike the
conventional UI methods, e.g., the deep-learning UI [11,12],
cross-talk compensation UI [13], metalens-based UI [14], etc.,
GI is a nonlocal indirect imaging technique [15–20] and can
be used to reconstruct the images of objects in scattering
medium [21–23], low-light environment [24], turbid media
[25–27], and so on. Moreover, GI can also recover an object
image with multiple spectra [28]. Owing to the above advan-
tages, GI has great application prospect in the UI area.

Recently, many works on the underwater GI (UGI) have
been presented. Gao et al. reported that the image reso-
lution of UGI could be improved by increasing the liquid
refractive index of the transparent liquid [29]. Zhang et al.
found [30] that GI could produce better image quality than
the traditional imaging technique in the seawater environ-
ment. Zhao et al. proposed a push-broom UGI method [31],
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where the GI images are recovered by an iterative shrinkage
thresholding algorithm. This method could effectively reduce
the backscattering. Luo et al. used a shaped Lorentz source
for the underwater illumination, and high-quality GI images
could be obtained even if the imaging distance is quite long
[32]. Wang et al. introduced a compressive sensing (CS) UGI
method, where a wavelet enhancement algorithm is used to
further enhance the quality of the restored images [33]. This
method can acquire clear images for underwater objects with
a sub-Nyquist sampling ratio. Yang et al. demonstrated a
UGI scheme based on the generative adversarial networks
[34]. The experimental and simulation results indicate that
this scheme effectively improves the image quality of UGI.
Moreover, the impacts of the water turbidity on the imaging
performance of UGI have aroused wide concerns. Bina et al.
demonstrated that the backscattering differential GI method
could achieve better contrast than the direct imaging scheme
in turbid media [27]. Le et al. studied the image quality of
UGI in different turbidities and angles [35]. The results show
that GI is not sensitive to the water turbidity changes. Yuan
et al. developed a GI method to imaging objects hidden in
the turbid media [25]. This method is not limited by the
object size. Besides, the influence of the water turbulence
to the UGI are also studied. For instance, Yin et al. showed
that GI had the turbulence-free ability in the conditions of
the low temperature, vibration, and turbidity of water [36].
Zhang et al. investigated the imaging performance of GI in
the oceanic turbulence condition [37]. They found that the
turbulence intensity and imaging distance have significant

2469-9926/2022/106(5)/053522(12) 053522-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0832-2218
https://orcid.org/0000-0002-3360-1756
https://orcid.org/0000-0003-0826-3596
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.053522&domain=pdf&date_stamp=2022-11-28
https://doi.org/10.1103/PhysRevA.106.053522


WU, ZHAO, HE, CHENG, AND LUO PHYSICAL REVIEW A 106, 053522 (2022)

impacts on the image quality of UGI. Wu et al. reported the
antidisturbance ability of UGI, and the results showed that
UGI is superior to the conventional imaging method in the
underwater disturbance condition [38]. Additionally, Liu et al.
presented a UGI method in the oceanic turbulence by using a
partially coherent beam [39]. They found that the quality and
visibility of the GI image are less affected by their method.

In Hadamard ghost imaging, the selection of patterns has
great influence on the quality of the recovered images in sub-
Nyquist sampling conditions [40–44]. Over the past few years,
many methods have been proposed to choose the patterns
from the Hadamard matrix by using the specially designed
orders, such the total gradient ascending order (TG) [42],
“cake cutting” (CC) [43], ascending scale (AS) [44], and so
on. The Coiflet wavelet (CW) has the properties of the near-
symmetric, orthogonal, and biorthogonal, which is widely
used in the digital signal processing. In the image-processing
area, the CW coefficients of an image can be obtained by
the wavelet decomposition method. From numerous numer-
ical and actual experiments, we find that the CW coefficients
can be used to reorder the Hadamard pattern sequence, and
high-quality ghost images can be produced with a usb-Nyquist
sampling ratio (e.g., 0.05 and 0.07) by using the reordered pat-
terns. Consequently, the CW coefficients can help to decrease
the measurements in GI.

To reduce measurement numbers and enhance the im-
age quality of UGI, we present a sub-Nyquist underwater
Hadamard GI method by using a CW decomposition method
and a CS-nuclear-norm-minimization algorithm. We propose
a CW order that is used to reorder the Hadamard pattern
sequence by a wavelet decomposition method. The CS com-
bining with the nuclear-norm-minimization (NNM) algorithm
is utilized for the object image reconstruction. The effective-
ness of the proposed CW order is verified by comparing with
six previous reported Hadamard orders. Moreover, seven GI
methods are used to compare the imaging performance of
the proposed method. Numerical and actual experiments are
implemented to show the effectiveness and advantages of the
proposed method.

II. METHOD

A. Imaging system

The configuration of the imaging system is shown in Fig. 1.
The imaging system is controlled by a personal computer
(PC). The PC sends a Hadamard pattern sequence (HPS) R
to a light-modulation device (LMD) which is used to mod-
ulate the light beam, and then records the corresponding
light-intensity sequence (LIS)D collected by a bucket detec-
tor (BD). Three lenses are installed in the system, where
the PL (projective lens) is utilized to project the modu-
lated light to the target; L1 and L2 are used to converge
the light beam. Here, the HPS and LIS are, respectively,
defined as

R = [R1(x, y),R2(x, y), · · · , RK (x, y)], (1)

D = [D1,D2, · · · , DK ], (2)

FIG. 1. Schematic plot of the imaging system. L1, lens 1; L2,
lens 2; LMD, light modulation device; PL, projective lens; BD,
bucket detector; PC, personal computer; SM, suspended microparti-
cles; BSL, backscattering light; FSL, forward-scattering light; OSL,
other stray light.

where the light intensity Dk in the LIS is obtained by
[15,18,45]

Ik =
∫∫

Rk (x, y)O(x, y)dxdy + �, (3)

where Rk (x, y), O(x, y), K , �, and (x, y) are the Hadamard
pattern, object function, total Hadamard pattern number,
noise interference, and pixel coordinate, respectively, k =
1, 2, · · · , K . Here, the target O(x, y) is placed in the water
that contains many suspended microparticles (SMs). Thus,
the noise interference � mainly includes three parts, the
backscattering light (BSL), other stray light (OSL), and
forward-scattering light (FSL).

In Eq. (1), the Hadamard pattern Rk (x, y) is produced by

Rk (x, y) = reshape(Gk, [Q, Q]), (4)

where Gk is the kth row of the Hadamard matrix (HM) G, and
Q is the size of the Hadamard pattern. Note that the HM is
created by G = hadamard(V ), where G is a V × V matrix.
Here, hadamard() and reshape() are MATLAB functions,
V = Q × Q. The reshape() function is used to turn Gk into
a Q × Q matrix.

As the Rk (x, y) consists of +1 and −1, a differential
method is used to change the −1 into +1, Rk (x, y) =
Rk

+(x, y) − Rk
−(x, y), where Rk

+(x, y) = [Rk (x, y) + 1]/2
and Rk

−(x, y) = 1−Rk
+(x, y) are composed of 0 and +1.

Consequently, each Hadamard pattern Rk (x, y) is divided into
two patterns that can be shown in the LMD.

B. Generation of the Coiflet-wavelet order

With Sec. II A, a HPS that is composed of the patterns
R+

k (x, y) and R−
k (x, y) is generated. As illustrated in the third

paragraph of the Introduction, the CW coefficients can be
applied to reorder HPS and reduce the measurements in GI.
Thus, a CW decomposition-based method is proposed to
rearrange the HPS. The proposed method first uses a CW
decomposition method to calculate the CW coefficients of
each pattern in the HPS and obtains a final CW coefficient
value corresponding to each pattern by summing the relative
CW coefficients. Therefore, a CW coefficient value se-
quence corresponding to the HPS is produced. Then, the CW
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FIG. 2. Example of the CW order generation. (a) Original
Hadamard matrix; (b), (c) Hadamard patterns, respectively, produced
by reshaping the rows of (a) and differential method (d) total coeffi-
cients, and (e) index array.

coefficient value sequence is sorted in an ascending order and
a sorted index is acquired. Finally, the HPS is rearranged with
the sorted index. The implementation process of the proposed
method is detailed as follows.

Firstly, all the positive ones (+1) in the R+
k (x, y) and

R−
k (x, y) are set as 255, which turns the pattern matrix into

images. This step is the data preprocessing which is used to
prepare images for computing the wavelet coefficients with
program languages. Secondly, the wavelet coefficients C+

k and
C−

k corresponding to the R+
k (x, y) and R−

k (x, y) are, respec-
tively, calculated by a decomposition method:

C±
k (α,β ) =

∫∫
R±

k (u, v)ϕ(α − u,β − v)dudv, (5)

where ϕ(·) denotes the Coiflet-wavelet basis function; α and
β are the shift factors. Here, Eq. (5) is solved by C±

k =
wavedec2(R±

k (x, y),H, ′coif1′), where wavedec2() is a MAT-
LAB function, H and ′coif1′ are the wavelet decomposition
level and wavelet type, respectively. This step is utilized to
generate the CW coefficients of each pattern in the HPS.
Thirdly, the total coefficients are computed by Ck = |C+

k | +
|C−

k |, where | · | is the absolute value function. By this way,
each pattern is corresponding to a final CW coefficient value
Ck . Finally, when all the coefficients of the HPS are acquired,
the coefficient sequence is ranged in an ascending order, and
the corresponding index array Sindex of the sorted coefficient
sequence is obtained. With Sindex, the HPS R is rearranged.
Note that the HPS obtained by the sorted CW coefficient
sequence is named the CW order HPS. By using the CW order
HPS, high-quality ghost images can be restored. These will be
verified by experiments in Sec. III A.

Figure 2 shows an example of the proposed CW order,
where Q = 16 and V = 256. Figure 2(a) exhibits the original
HM (256 × 256 pixels), where the −1 and +1 in the matrix
are set as 0 and 255, respectively. Figures 2(b) and 2(c) present
the images R+

k (x, y) and R−
k (x, y), respectively. The sizes of

images in Figs. 2(b) and 2(c) are 16 × 16 pixels. Figure 2(d)
is the total coefficients calculated from Figs. 2(b) and 2(c).
Figure 2(e) is the final CW order corresponding to the sorted
coefficients in Fig. 2 (d).

FIG. 3. Objects for simulations.

C. Compressive image reconstruction

A total variation (TV) regularization-based CS algorithm
is designed for the image reconstruction [46]. Although the
running speed of this algorithm is slower than the widely used
TVAL3 algorithm [47], the parameter setting of this algorithm
is fewer and the quality of the reconstructed image is better.
The image reconstruction of this algorithm is achieved by
solving the following optimization model:

min ‖Y ‖1, subject to �X = Y and �X = D, (6)

Where Y , D, and � are the gradient of the object image, LIS,
and gradient calculation matrix, respectively. X , �, and ‖ · ‖1
are the restored object image, measurement matrix, and l1
norm, respectively.

D. Image denoising with nuclear-norm minimization

The NNM is developed to reduce the noises in the image
X restored by the CS method in Sec. II C. The mathematical
model of the NNM denoising method is expressed as

arg min
U

‖Z − U‖2
F + λ‖U‖w,∗, (7)

where ‖ · ‖F is the F norm; ‖ · ‖w,∗ is the nuclear norm with
weight vector w; Z , U ,and λ are the observed data matrix,
latent data matrix, and positive constant, respectively. Here,
the observed data matrix Z is set as the restored image X . The
weighted NNM denoising algorithm in Ref. [48] is set as the
solver for Eq. (7).

After denoising by Eq. (7), the final image is output.

III. SIMULATIONS

A. Performance comparison of different orders

This simulation is designed to compare the imaging per-
formance of the proposed CW order with that of the six
state-of-the-art Hadamard orders. The “bird” and “bridge
arch” (128 × 128 pixels) are used as the object, as shown
in Figs. 3(a) and 3(b). The image reconstruction algorithm is
the correlation calculation [15,18,20], expressed as O(x, y) =
〈RD〉−〈R〉〈D〉, where 〈·〉 = 1

K

∑K
k=1 · denotes the assemble

average. Note that the correlation calculation algorithm can
objectively reflect the performance of each Hadamard order
because no special parameters are needed to set in this al-
gorithm. The images restored with different sampling ratios
(0.03, 0.05, 0.07, and 0.09) are shown in Fig. 4. Here, the
sampling ratio (SR) is defined as SR = A/(Q × Q), where
A is the actual measurement number. The seven comparison
Hadamard orders are the TG [42], CC [43], AS [44], sequency
ordering combining with the zigzag traversal (GCSS) [49],
total variation (TV) [42,50], ascending inertia (AI) [44], and
proposed CW (Pro) order.
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FIG. 4. Simulation results of targets (a) bird and (b) bridge arch under different sampling ratios.

FIG. 5. PSNR and SSIM of images in Fig. 4(a). FIG. 6. PSNR and SSIM of images in Fig. 4(b).
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FIG. 7. Simulation results of targets (a) white block and (b) house with different sampling ratios.

As displayed in Fig. 4, from the perspective of the direct
vison, the image quality of AS, GCSS, TV, AI, and Pro is
close to each other and better than that of the TG and CC
when the SR increases from 0.03 to 0.09. The details of the
recovered images (from AS to Pro) become clearer with the
increasing of SR. For instance, the eyes of the birds are quite
clear and textures of bridge arch are quite distinct when the SR
is 0.07. The peak signal-to-noise ratio (PSNR) [51] and Struc-
tural SIMilarity (SSIM) index [52] are used to quantitatively
compare the quality of the restored images. Figures 5 and 6
display the comparison results of PSNR and SSIM, where
Figs. 5(a) and 5(b) are corresponding to the images in
Fig. 4(a); Figs. 6(a) and 6(b) are corresponding to the images
in Fig. 4(b). As shown in Figs. 5(a) and 5(b), TG gains the
worst PSNR and SSIM. The PSNR and SSIM of CC are
better than TG, but worse than those of the other five methods

(from AS to Pro). The PSNR and SSIM of the mentioned five
methods are quite close. However, the PSNR and SSIM of
Pro are superior to the others when the SR is equal to 0.03
and 0.05. When the SR is equal to 0.07 and 0.09, the SSIM
of Pro is a little worse than the others. Nonetheless, from the
point of view of the comprehensive performance in Figs. 4, 5,
and 6, the proposed CW order is slightly better than the other
six orders in the sub-Nyquist SR conditions (e.g., SR = 0.03
and 0.05).

B. Performance comparison of different methods

1. Simulation 1

In this simulation, the imaging performance of the pro-
posed method (Pro) is compared with the other seven
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FIG. 8. (a) PSNR and (b) SSIM of images in Fig. 7(a). (c) PSNR
and (d) SSIM of images in Fig. 7(b).

methods. Here, the methods include the six methods in
Sec. III A. Note that the image reconstruction algorithms of
the six methods are reproduced according to the original pa-
per [42–44,49,50]. Besides, the wavelet enhancement-based
underwater GI is also used for comparison [33], simplified as
UGI. The targets “white block” and “house” (128 × 128 pix-
els) are utilized for simulations, as shown in Figs. 3(c) and
3(d). The results of the eight methods are exhibited in Fig. 7.
When the SR goes from 0.03 to 0.09, the image quality of
Pro is better than that of TG and CC, and close to the other
five methods. As shown in Figs. 7(a) and 7(b), when the SR
is equal to 0.05, AS, GCSS, TV, AI, and Pro can output high-

quality images. But, as for the CC and UGI, two unexpected
slits are produced at the bottom of the restored images in
Fig. 7(b) when the SR is 0.03 and 0.05. The two slits disappear
as the SR increases to 0.07 and 0.09.

The PSNR and SSIM of images in Fig. 7 are plotted in
Fig. 8, where Figs. 8(a) and 8(b) are the results of Fig. 7(a);
Figs. 8(c) and 8(d) are the results of Fig. 7(b). As shown in
Fig. 8, apart from the SSIM of Pro in Fig. 8(d) when SR =
0.05, the PSNR and SSIM of Pro are superior to all the other
methods, indicating that Pro gains the best image quality. In
Fig. 8(d) when SR = 0.05, the SSIM of CC and UGI is better
than that of Pro. This may be caused by the two unexpected
slits. Comparing Pro with other methods in Fig. 7, the images
of Pro look more smoothness and comfortable.

2. Simulation 2

In this simulation, Pro is compared with the other seven
methods in the underwater environment. Here, the underwater
noise is assumed to be the additive white Gaussian noise.
The noises � are generated by � = awgn(D,NL,′measured′),
where awgn( · ) is a MATLAB function that is used to add the
white Gaussian noise to signal, D and NL are the LIS and
noise level, respectively. Note that the smaller the NL value,
the heavier the noise. The simulation results are exhibited
in Figs. 9 and 10, where the NL is set as 20. Compared
with Fig. 7, the image sharpness decreases, and many noises
appear in Figs. 9 and 10. Specifically, the image quality of
TG is the worst among the eight methods. Except TG, the rest
of the seven methods can obtain acceptable images. Never-
theless, from the perspective of the detail restoration, Pro is
superior to all the other methods. For example, the northwest
part of the white block (Fig. 9) and the door of the house
(Fig. 10) are clearer than those of the other methods. The
PSNR and SSIM of images in Figs. 9 and 10 are plotted

FIG. 9. Simulation results of the target white block under different sampling ratios with the noise level 20.
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FIG. 10. Simulation results of the target house under different sampling ratios with the noise level 20.

in Fig. 11, where Figs. 11(a) and 11(b) are obtained from
Fig. 9; Figs. 11(c) and 11(d) are calculated from Fig. 10.
As shown in Figs. 11(a) and 11(b), the PSNR and SSIM of
Pro are the best among the eight methods. However, Pro has
the best PSNR in Fig. 11(c), but the SSIM of Pro is not the
optimum in Fig. 11(d). This demonstrates that the noises break
the structural similarity in the recovered images. Considering
the details, sharpness, and evaluation index of the restored im-
ages, the imaging effect of Pro is the optimum among the eight
methods.

As the simulation results shown in Figs. 4–11, the proposed
CW order can help to reconstruct high-quality images with

FIG. 11. (a) PSNR and (b) SSIM of images in Fig. 9. (c) PSNR
and (d) SSIM of images in Fig. 10.

sub-Nyquist sampling ratios (e.g., 0.05 and 0.07), which is
useful for reducing the measurement in Hadamard GI. More-
over, the image quality of Pro is superior to the mentioned
seven GI methods. Besides, the simulation results indicate that
Pro has strong denoising capability. The advantages of imag-
ing with low SR and strong denoising capability are helpful
for practical applications of Pro. The reasons are that many
noises exist in actual environment, and a low SR can help
to reduce the hardware requirement and improve the imaging
efficiency.

IV. EXPERIMENTS

An experimental system is built to verify the proposed
method, as shown in Fig. 12. The LMD is a digital light
projector (DLP, resolution 1920 × 1080 pixels, F4710 LC,
Fldiscovery), which projects the illumination patterns to the

FIG. 12. Experimental system. ACP, air connection pipe; DLP,
digital light projector; SP, submersible pump; WT, water tank; ZL,
zoom lens; CMOS, complementary metal oxide semiconductor.
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FIG. 13. (a) Structure of the submersible pump, (b) reference
image. WI, water inlet.

object. The bucket detector is a complementary metal oxide
semiconductor (CMOS) camera (Blackfly S BFS-U3-63S4C).
The test object is a machine vision calibration board and is put
into water. A zoom lens (focus length f = 35 cm) is mounted
before the camera, which is used to gather the reflective light
to the camera sensor.

A water tank (WT, refractive index1.49, size 45 × 30×
30 cm) is placed in front of the DLP and camera. Additionally,
a submersible pump (SP) that is installed on the sidewall of
WT is used to build the underwater turbulence and bubble
environment. The SP has four ports: one water-inlet port, two
water-outlet ports, and one air connection port, as shown in
Fig. 13(a). The water from the two water outlets is circularly
flowed around the WT, which produces a strong turbulence.
A pipe is connected to the air-connection port. If the pipe is
connected to the air, the SP can produce a great deal of bub-
bles. Otherwise, no bubble is generated. In the experiments,
a PC is used to control the DLP and camera. Three groups
of experiments are implemented. The configurations of each
experiment are shown in Table I.

FIG. 15. PSNR and SSIM of images in Fig. 14.

A. Group 1: Without turbulence and bubbles

In this experiment, the SP is turned down, where no
turbulence and bubbles are produced. Figure 14 shows the
experimental results. Note that the resolution of the restored
images in the three group experiments is all 128 × 128 pixels.
As shown in Fig. 14, the recovered images of TG look a little
blurred compared with the other seven methods. The image
quality of the seven methods (from CC to Pro) looks nearly the
same, which is hard to distinguish by the direct human vision.
To quantitively evaluate the image quality of Pro, a refence
image is created by ADOBE PHOTOSHOP. Figure 13(b) shows
the created reference image, which is utilized for calculating
the PSNR and SSIM. Figure 15 displays the PSNR and SSIM
curves corresponding to images in Fig. 14. The PSNR of Pro
is better than the other seven methods. Nevertheless, the SSIM
curves of CC and UGI nearly overlap each other and are better
than the rest of the methods. The SSIM curve of Pro is worse
than that of CC and UGI when the SR is equal to 0.03, 0.05,
and 0.07. When the SR is 0.09, the SSIM values of Pro, CC,
and UGI perform almost the same. Additionally, as shown
in Fig. 14, some noises appear in the restored images as the
SR increases, resulting in a decreasing of the image quality.

FIG. 14. Experimental results of the eight methods in the underwater environment, no turbulence and bubbles.
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FIG. 16. Experimental results of the eight methods in the underwater environment, with turbulence and no bubbles.

These can also be seen from the PSNR and SSIM curves in
Fig. 15. The reason may be that more measurements bring
more underwater noises to the imaging data and degrade the
image quality.

B. Group 2: With turbulence and no bubbles

In this experiment, the SP is turned on, and the air-
connection pipe (ACP) is put into the water to stop the air
coming in. Consequently, only the turbulence is created, and
no bubbles are generated because of no air. Figure 16 exhibits
the experiment results. The image-quality variation trend of
each method in Fig. 16 is consistent with that of Fig. 14.
Nonetheless, compared with Fig. 14, more noises appear in
the recovered images of Fig. 16, indicating that the underwater
turbulence reduces the quality of the image. The PSNR and
SSIM curves of images in Fig. 16 are plotted in Fig. 17. The
PSNR of Pro is still superior to the other seven methods,
while the SSIM of Pro is quite bad. However, compared to
the SSIM curves in Figs. 15 and 17, the SSIM curves of the
eight methods in Fig. 17 get closer to each other, meaning

FIG. 17. PSNR and SSIM of images in Fig. 16.

that the structure difference of the restored images is small.
When the SR is equal to 0.09, many noises are produced in
the reconstructed images, the structures of the images look
the same, and the images of Pro are a little lighter than those
of the other methods. Considering the images in Fig. 16 and
evaluation metrics in Fig. 17, the imaging performance of Pro
is slightly better than the other methods.

C. Group 3: With turbulence and bubbles

In this experiment the SP is turned on, and the ACP is
connected to the air. A strong turbulence and many bubbles
are generated in the WT. The image reconstruction results of
the eight methods are presented in Fig. 18. Comparing Fig. 18
with Figs. 14 and 16, the images of Fig. 18 contain more
noises, and the image structures in Fig. 18 become worse than
those in Figs. 14 and 16. Figure 19 shows the PSNR and
SSIM curves of images in Fig. 18. When the SR is equal to
0.03, Pro gains the biggest PSNR values. However, when the
SR is, respectively, equal to 0.05, 0.07, and 0.09, the PSNR
of TG is the optimum. The SSIM values of all methods are
lower than 0.3, meaning that the image structures are quite
bad. As Figs. 18 and 19 show, the quality of the recovered
images deteriorates seriously as the SR improves from 0.03
to 0.09. The main reasons lie in the following two aspects.

TABLE I. Experiment configurations.

Group Adding turbulence? Adding bubbles?

1 No No
2 Yes No
3 Yes Yes

053522-9



WU, ZHAO, HE, CHENG, AND LUO PHYSICAL REVIEW A 106, 053522 (2022)

FIG. 18. Experimental results of the eight methods in the underwater environment, with turbulence and bubbles.

Firstly, the impurity tap water is used in the experiments.
This kind of water contains many microparticles. The strong
turbulence in the water can accelerate the random motion of
microparticles. These generate many random scattered lights
that reduce the image quality of GI methods. Secondly, the
bubbles can also produce scattered lights. These scattered
lights turn out to be noises during the GI image reconstruction
and cause the degradation of the image quality for Pro and
other GI methods.

As the results show in Figs. 14–19, Pro and other GI
methods can obtain acceptable images in the underwater envi-
ronment when the SR is equal to 0.03. With the increasing of
SR, the image quality goes down. This means that a lower SR
is helpful for underwater GI. Besides, the experiment results
show that the turbulence and bubbles in the impurity water
will lead to the degradation of GI images. From the numerical
and experimental results in Secs. III and IV, Pro has a strong
denoising capability and can restore high-quality images with
a sub-Nyquist SR in the complicated underwater environment
(e.g., turbulence and bubbles).

FIG. 19. PSNR and SSIM of images in Fig. 18.

V. CONCLUSION

We have proposed and presented a Hadamard GI
method for imaging objects in the complicated underwater
environment. A CW decomposition-based method (CW or-
der) is proposed to create an optimized HPS. The CS and
NNM algorithms are developed to restore high-quality im-
ages. The effectiveness and advantages of the proposed
method are validated by three numerical simulations and three
actual experiments. The numerical results show that the pro-
posed CW order is superior to the previous Hadamard orders,
e.g., TV, GCSS, AI, etc. The impact of underwater noises to
the image quality of GI methods is also investigated. Both
the numerical and experimental results demonstrate that the
proposed method has strong denoising capability and per-
forms similarly (slightly better in some cases) to existing
best methods (e.g., CC, GCSS, AI, UGI, etc.) in sub-Nyquist
SR conditions. As the underwater turbulence and bubbles
degrade the image quality of GI methods, new methods will
be designed to solve these problems in our future work. The
proposed method offers an effective way to improve the image
quality and imaging speed of underwater GI. In the future,
we will develop deep learning-based methods to improve the
image quality of UGI.
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