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Single-exposure Fourier-transform ghost imaging based on spatial correlation
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Ultrafast x-ray diffraction imaging provides an opportunity to realize x-ray nanoimaging of biomolecules
before radiation damage, while the image resolution is still restricted by the photon flux. Fourier-transform
ghost imaging based on the temporal intensity correlation can achieve diffraction-limited imaging. However,
a large number of temporal samplings are inevitable, which makes it almost impossible to be implemented in
the ultrafast x-ray imaging. Here, we propose an x-ray single-exposure Fourier-transform ghost imaging (SFGI)
approach. The Fourier information of an unknown sample can be obtained by measuring the spatial intensity
correlation between two speckle fields, and the sample needs to be exposed only once. In our demonstration
experiment of SFGI, the Fourier-transform diffraction pattern of a two-dimensional sample is achieved, and its
face-centered-cubic feature in the spatial domain is retrieved successfully. The simulation results of the DNA
origami and rice dwarf virus indicate that a spatial resolution of 10 nm may be reached, and x-ray ghost imaging
with 0.1 photon/pixel speckle detection can be expected. Our research paves the way for the future application
of ultrafast x-ray ghost imaging.
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I. INTRODUCTION

X-ray imaging is a powerful tool in materials science,
biomedical research, and many other fields [1,2]. With the
development of x-ray sources, such as x-ray free-electron
lasers (XFEL) [3,4] and high-harmonic x-ray sources [5],
it offers an opportunity for the ultrafast exploration of ma-
terial nanostructures and biological macromolecules. X-ray
coherent diffraction imaging (CDI) [6–8], a lensless imaging
method, is famous for obtaining high-resolution images of
noncrystalline samples with coherent light, which makes it
especially suitable for XFEL applications. Recently, a single-
particle imaging [9] method based on CDI has been proposed
and the image of a virus sample has been achieved with XFEL
[10]. However, as a diffraction imaging method exploiting
the first-order coherence of optical fields, CDI requires a
detector with very high dynamic range, and the x-ray pho-
tons are not fully utilized in the imaging process [11]. In
the meantime, imaging technology based on the high-order
coherence of optical fields, known as ghost imaging (GI)
[12–14], has prospered in the past decades [15–17], and it
has been rapidly applied in remote sensing, super-resolution
imaging, single-pixel cameras, etc. [18–21]. Ghost imaging
is a kind of indirect imaging technology which can extract the
information of unknown samples by measuring the high-order
correlation between the intensity fluctuations of optical fields.
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This phenomenon was first observed in the quantum field
[12,13]. Soon after, it was demonstrated with classical light
sources [14,22], which makes GI more accessible. Nowa-
days, GI techniques have been extended to the x-ray regime
[23–28], which shows the feasibility of imaging beyond the
intrinsic diffraction limit [29,30] or under ultralow illumina-
tion [26,31].

X-ray ghost imaging can be realized in both real space
[24–26] and reciprocal space [23,29]. In real-space x-ray
GI, the image resolution is restricted by the optical compo-
nents [32], and a large number of temporal measurements are
required. Ghost imaging in reciprocal space, namely, Fourier-
transform ghost imaging (FGI), was proposed in 2004 [33]
and experimentally demonstrated using synchrotron x rays in
2016 [23]. In x-ray FGI, the same Fourier diffraction pattern
as that in x-ray CDI can be achieved in a lensless way, re-
ducing the requirements of spatial coherence and providing
the possibility of nonlocal modulation, which provides the po-
tential of high-resolution biomedical microscopy and material
structure analysis. However, it suffers from massive temporal
measurements as well. Even though various methods based
on compressed sensing have been proposed to improve the
sampling efficiency [34–36], thousands of temporal measure-
ments are still needed to obtain a high-quality image. This
brings a big challenge to x-ray applications, especially in
the XFEL experiments, because nanoparticles are inevitably
destroyed after single-shot exposure due to the high energy of
XFEL pulses [37].
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FIG. 1. Illustration of (a) x-ray Fourier-transform ghost imaging
based on temporal correlation and (b) x-ray single-exposure Fourier-
transform ghost imaging based on spatial correlation.

In this paper, we propose x-ray single-exposure Fourier-
transform ghost imaging (SFGI): a lensless Fourier-transform
imaging method based on the high-order spatial correlation of
optical fields. By exploiting this spatial correlation character-
istic, SFGI can greatly reduce the requirement for temporal
samplings. Different from most x-ray ghost imaging tech-
niques, the sample needs to be exposed only once during the
SFGI imaging process, which makes it possible to be used
in XFEL experiments. Relevant theoretical derivation and ex-
perimental results are presented. And the potential application
of x-ray SFGI is discussed through exploratory simulation
of the DNA origami and rice dwarf virus (RDV) imaging.
We anticipate that this approach can pave the way for the
realization of ultrafast high-resolution x-ray ghost imaging.

II. THEORY

The principle of basic x-ray FGI is shown in Fig. 1(a).
A thermal or pseudothermal x-ray beam, the distribution of
which satisfies the complex Gaussian distribution, is virtually
divided into two beams by shifting the sample into and out
of the optical path [23]. When the sample is inserted into
the optical path, the x-ray intensity at a certain point on the
detector plane is recorded as I (m)

t (xt = 0). When the sample is
moved out of the optical path, the x-ray speckle distribution
on the detector plane is recorded as I (m)

r (xr ). The distance
from the source to the sample is d1, and the distance from
the sample to the detector is d2. After many measurements,
the Fourier-transform diffraction pattern of the sample can be
obtained by calculating the second-order correlation between

the temporal intensity fluctuations of the two beams, which
can be expressed as [23,33]

�G(2)(xr, xt = 0) = 〈Ir (xr )It (xt = 0)〉 − 〈Ir (xr )〉〈It (xt = 0)〉

∝
∣∣∣∣
∫

dξo(ξ ) exp
(
− j2π

xt − xr

λd2
ξ
)∣∣∣∣

2

,

(1)

where o(ξ ) is the transmittance of the sample, λ is the x-
ray wavelength, and the operation 〈·〉 denotes the ensemble
average, which is a temporal average over multiple intensity
measurements.

Now we present our x-ray single-exposure Fourier-
transform ghost imaging scheme. As illustrated in Fig. 1(b), a
panel detector is adopted instead of a point detector to acquire
the intensity distribution downstream of the sample, and a
modulator is inserted into the optical path when the sample is
moved out. In the imaging process, the sample is illuminated
only once, and the Fourier information of the sample is ex-
tracted by calculating the spatial correlation between the two
speckle distributions It (xt ) and Ir (xr ). This spatial correlation
calculation is a spatial average over the intensity of pixel pairs
between the two area detectors.

If we suppose the optical field on the source plane is rep-
resented by E (r), the intensity distributions of the two beams
on the detector plane can be written as

Ik (xk ) =
∫

dr1dr2E (r1)E∗(r2)hk (r1, xk )h∗
k (r2, xk ), k = r, t,

(2)
where ht (r, xt ) and hr (r, xr ) are the impulse response functions
of the two beams, and r and xk are the coordinates of the
source and detector planes, respectively. Under the paraxial
approximation, we have

ht (r, xt ) ∝
∫

dξ exp

{
− jπ

λd1
(r − ξ )2}o(ξ )

× exp{− jπ

λd2
(ξ − xt )

2

}
, (3)

hr (r, xr ) ∝
∫

dξ exp

{
− jπ

λd1
(r − ξ )2}s(ξ )

× exp{− jπ

λd2
(ξ − xr )2

}
. (4)

Here s(ξ ) is the transmittance of the modulator. Note that the
modulator is inserted into the beam at the same position of
the sample, so we can use the same variable ξ to denote the
coordinates of the sample and modulator planes.

Then, we can calculate the second-order spatial intensity
correlation between the two speckle fields, which is

G(2)
Spatial(�x = xt − xr ) =

∫
It (xr + �x)Ir (xr )dxr ∝

∫
dr1dr2dr3dr4dξ1dξ2dξ3dξ4dxrE (r1)E∗(r2)E (r3)E∗(r4)

× exp

{
− jπ

λd1

[
r2

1 + ξ 2
1 − 2ξ1

(
r1 + d1

d2
xr

)]}
o(ξ1) exp

{
jπ

λd1

[
r2

2 + ξ 2
2 − 2ξ2

(
r2 + d1

d2
xr

)]}
o∗(ξ2)

× exp

{
− jπ

λd1

[
r2

3 + ξ 2
3 − 2ξ3

(
r3 + d1

d2
xr

)]}
s(ξ3) exp

{
− jπ

λd2
ξ 2

3

}

053521-2



SINGLE-EXPOSURE FOURIER-TRANSFORM GHOST … PHYSICAL REVIEW A 106, 053521 (2022)

× exp

{
jπ

λd1

[
r2

4 + ξ 2
4 − 2ξ4

(
r4 + d1

d2
xr

)]}
s∗(ξ4) exp

{
jπ

λd2
ξ 2
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}

× exp

{
− jπ

λd2

(
ξ 2

1 − 2ξ1�x
)}

exp

{
jπ

λd2

(
ξ 2

2 − 2ξ2�x
)}

. (5)

Define R = r + (d1/d2)xr , x = (d1/d2)xr , and let A(r) =
E (r) × exp{− jπr2/(λd1)}. In many cases, the field fluctua-
tions of the source can be described by a complex circular
Gaussian ergodic random process with zero mean [38]. The
integral on variable x can be regarded as a spatial averaging
process, and then we have

∫
dxA(R1 − x)A∗(R2 − x)A(R3 − x)A∗(R4 − x)

= G(1)
S (R1, R2)G(1)

S (R3, R4) + G(1)
S (R1, R3)G(1)

S (R2, R4),
(6)

where G(1)
S denotes the first-order spatial intensity correlation

function. If we suppose the source is large enough and the
feature size of the fluctuations is small enough, G(1)

S can be
treated as a Delta function.

Substituting Eq. (6) into Eq. (5), after some calculations,
we obtain the following expression:

�G(2)
Spatial(�x = xt − xr )

=
∫

Ir (xr )It (xr + �x)dxr −
∫

dxrIr (xr )
∫

dxt It (xt )

∝
∣∣∣∣
∫

dξo(ξ )s∗(ξ ) exp
(
− j2π

xt − xr

λd2
ξ
)∣∣∣∣

2

. (7)

Therefore, by means of the second-order spatial correlation
calculation, the Fourier information of the sample modulated
by the modulator can be achieved. It should be mentioned that
when the feature size of the fluctuation is not small enough,
the image quality will deteriorate.

Simply using an aperture no smaller than the sample as the
modulator, the correlation result will be the Fourier-transform
diffraction pattern of the sample. Moreover, we know from
the above that the sample can be nonlocally modulated by the
modulator. This implies that the sample and the modulator
can be exposed separately. This feature is the same as the
nonlocally coded FGI based on temporal correlation, which
provides the possibility of achieving better image quality
[39,40].

In addition, the Fourier-transform pattern of the squared
modulus of the sample’s transmittance can be obtained
through the spatial autocorrelation calculation. This means
that only one exposure is needed to obtain the sample’s am-
plitude and phase information separately, which can also be
exploited to improve the image quality [23,41].

III. EXPERIMENTS

The experiment was carried out on the 08U1B beamline
at the Shanghai Synchrotron Radiation Facility [42]. The

fundamental photon energy of the beamline ranged from 85
to 150 eV, and the whole system operated in vacuum.

Figure 2 shows the schematic layout of our experiment.
A 4.2-m-long APPLE-II type elliptically polarized undulator

with 100-mm periods produced extreme ultraviolet or soft-
x-ray photons. A four-blade aperture (Slit1) with the size of
1100 µm was placed in the optical path to define the accep-
tance angle of the beam. Two cylindrical mirrors (CM1 and
CM2) were employed to focus the beam horizontally and
vertically, and suppress the high-order harmonics [43]. The
second four-blade aperture (Slit2) positioned at the focus of
the cylindrical mirrors was used to balance the spatial coher-
ence and brightness of the beam. In the experiment, the size
of Slit2 was set to 33 µm, and the total flux was 2.6 × 1014

photons/s. The distance from Slit2 to the diffuser was 9 m,
and the theoretical coherence width of the light on the diffuser
plane was 3.65 mm at 92.5 eV. As shown in the subgraph of
Fig. 2, the diffuser adopted in the experiment was a gold film
with randomly distributed holes. The gold film was fabricated
on a 1 × 1 mm2 Si3N4 substrate. The diameter of the holes
was 200 nm, which is significantly larger than the wavelength,
and the area duty ratio of the holes was about 18%. Using
the diffuser, a controllable speckle field with random intensity
fluctuation was generated. The sample and modulator were
mounted on an electric translation stage, which can move
them into and out of the optical path remotely. At the end
of the beam, the x-ray intensity distribution was recorded
by an Andor CCD camera with a pixel size of 13 µm. We
first investigated the characteristics of the speckle field. A
50 × 50 µm2 square aperture was inserted into the optical path
as a working modulator. The distance from the diffuser to the
aperture was d1 = 4 cm, and the distance from the aperture

FIG. 2. Schematic layout of the single-exposure Fourier-trans-
form ghost imaging experiment. The beam emitted from the
undulator propagates from left to right. Slit1 and Slit2 are two four-
blade apertures. CM1 and CM2 are two cylindrical mirrors. The
diffuser is a gold film with randomly distributed holes. The subgraph
shows the scanning electron microscope image of the diffuser. An
electric translation stage moves the sample and modulator into and
out of the beam remotely. A CCD camera is placed at the end of the
beam to record speckle fields. By calculating the spatial correlation
between speckle fields, the Fourier-transform diffraction pattern of
the sample can be obtained, and then the real-space image of the
sample is retrieved.
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FIG. 3. Investigation on the characteristics of the speckle field
with a 50 × 50 µm2 square aperture in the optical path. (a) Inten-
sity distribution obtained by experiment. (b) Intensity distribution
obtained by simulation. (c) Autocorrelation results calculated from
the speckle patterns in (a) and (b). 256 × 256 pixels were used in
each calculation

to the CCD was d2 = 16 cm. Figure 3 displays the results.
Figure 3(a) is the intensity distribution obtained in the ex-
periment. We did some regular filtering to reduce the noise
in the raw image. Median filtering was used to reduce salt
and pepper noise, and morphological filtering was adopted to
reduce uneven background noise. Figure 3(b) gives the corre-
sponding simulation result for comparison. It can be observed
that the statistical characteristics of the experimental speckle
is similar to the simulation result. The average speckle size
in Fig. 3(a) is very close to that in Fig. 3(b). For quantita-
tive evaluation, the autocorrelation functions of the speckle
fields were calculated. According to the convolution theorem
[44], the spatial correlation operation was performed in the
Fourier domain for simplicity. We used 256 × 256 pixels in
the speckle image in each calculation. The results are shown in
Fig. 3(c). The two curves in Fig. 3(c) have similar correlation
peaks, and the full width at half maximum (FWHM) of the
two curves are almost the same. The measured FWHM is
4 pixels (4 × 13 µm = 52 µm), and the difference from the
theoretical value is less than 1 pixel.

After the speckle field investigation, we inserted a sample
into the beam. The sample was a gold film with 35 slits
on a Si3N4 substrate. The slits were separated by dslit =
1.4 µm and the width of each slit was 0.5 µm. The total width
of the 35 slits was 49.5 µm, which was equivalent to the
size of the aperture modulator. Figure 4 gives the imaging
results of this slits sample. Figure 4(a) is the intensity dis-
tribution obtained with the sample in the optical path. The
spatial correlation between the sample beam and the modu-
lator beam was calculated following Eq. (7). The solid line
in Fig. 4(b) shows the cross-section curve of the spatial cor-
relation result. The Fourier-transform diffraction peaks of the
sample are very clear. The peak spacing is 4.5 µm−1, which
is consistent with the theoretical value of the peak spacing
2π/dslit = 4.49 µm−1. Thus, the sample’s Fourier-transform
diffraction pattern can be achieved by spatial correlation cal-
culation with the sample exposed only once in the imaging
process.

FIG. 4. Experimental results of a slits sample. (a) Intensity dis-
tribution obtained with the slits sample inserted into the beam.
(b) Cross-section curves of the spatial correlation results. The solid
and dashed lines correspond to the correlation results of the 50- and
100-µm aperture modulators, respectively.

It can be seen from Eq. (7) that using a modulator smaller
than the sample size may lose information of the sample. The-
oretically, when the spatial sampling is sufficient, increasing
the modulator size has no influence on the imaging results.
However, due to the restriction of the detector size or pho-
ton flux, the spatial sampling is usually limited in practical
applications. When the spatial sampling is insufficient, the
pattern quality will decline. In order to verify this effect, we
inserted a 100-µm aperture modulator into the beam, and
calculated the spatial correlation between the sample beam
and the modulator beam again. The result is shown by the
dashed line in Fig. 4(b). In this case, the diffraction peaks
of the sample are almost submerged in the background noise.
This is because the larger the modulator size, the smaller the
speckle size will be. The size of the speckle produced by the
100-µm aperture is smaller than that produced by the 50-µm
aperture. Thus, to obtain the same pattern quality, the number
of the spatial samplings for the 100-µm aperture modulator
should be increased several times accordingly. In the exper-
iment, the spatial sampling of 256 × 256 pixels remained,
so the correlation results deteriorated. Therefore, to achieve
better results in practice, the size of the modulator should
approach the size of the sample. This prevents the loss of
sample information and avoids extra sampling requirements.
Finally, a two-dimensional (2D) sample was inserted into the
beam to further test our method. The sample consisted of
five circular holes, which mimics the face of a typical face-
centered-cubic structure. The diameter of the four surrounding
holes was 2.6 µm, and the diameter of the central hole was
1.4 µm. The distance from the central hole to the center of the
surrounding hole was 4 µm. The sample was fabricated on a
Si3N4 substrate, and the total size of the sample was about
10 µm. Figure 5(a) displays the scanning electron microscope
image of the sample. Figure 5(b) is the intensity distribution
obtained in the experiment. The exposure time was 700 s. As
mentioned above, the Fourier-transform diffraction pattern of
the sample can be obtained by calculating the second-order
spatial correlation function. The correlation result is shown in
Fig. 5(c). Figure 5(d) is the real-space image of the sample
retrieved from the diffraction pattern in Fig. 5(c). The features
of the image are obviously in agreement with the sample.
Here, the phase recovery process consists of two steps. First,
the relaxed averaged alternating reflections algorithm [45] was
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FIG. 5. Experimental results of a two-dimensional sample.
(a) Scanning electron microscope image of the sample. (b) Inten-
sity distribution obtained with the sample positioned in the beam.
(c) Fourier-transform diffraction pattern of the sample obtained by
spatial correlation calculation. (d) Real-space image of the sample
retrieved from the diffraction pattern in (c).

adopted, and the relaxation parameter was set to 0.8. We
calculated 100 runs, and each run started with a random initial
guess. The iteration number for each run was 200. After all
the 100 runs, we chose the image with the least error as the
template. Secondly, we implemented the difference map (DM)
algorithm [46] with the obtained template. The relaxation
parameter and the iteration number used in the DM algorithm
were 0.8 and 200, respectively.

There are some points we should mention. In order to avoid
the influence of the high-order harmonics in the beam, the
sample was moved slightly away from the optical axis. This
is not required in the SFGI experiment with monochromatic
light. In our experiment, a diffuser was used to generate the
x-ray spatial intensity fluctuation, but sometimes it may be un-
necessary. To demonstrate our method, we use a simple square
aperture as the modulator. In practice, the modulator can be
specifically designed to obtain coded diffraction patterns, and
better image quality can be expected, especially for complex
samples. Considering the fabrication difficulty, a binary mask
may be a feasible choice. Theoretically, three different binary
masks are sufficient to obtain precise phase retrieval results
[39,40].

IV. SIMULATIONS

To explore the potential of biological application in the
future, we conducted some proof-of-concept numerical sim-
ulations. The DNA origami icosahedra and rice dwarf virus
were used as samples in our simulation.

Figure 6 presents the simulation results of the DNA
origami icosahedra. Figure 6(a) shows the three-dimensional
nanoscale geometry of the DNA origami scaffold. It was
generated by the online open-source DAEDALUS software de-
veloped by the Laboratory of Computational Biology and

FIG. 6. Simulation results of DNA origami icosahedra.
(a) Three-dimensional nanoscale geometry of the DNA origami
scaffold. The length of each edge is 52 base pairs (≈17 nm).
(b) Two-dimensional projection of the DNA origami in a specific
orientation. The scale bar is 20 nm. (c) Speckle distribution on the
detector plane. The average photon number for each pixel is one
photon. The scale bar is 2 mm. (e) Diffraction pattern obtained
by spatial correlation calculation. The scale bar is 0.5 nm−1.
(d) Retrieved image. The scale bar is 20 nm. (f) Radial profile of the
diffraction pattern compared with the theoretical value. (g) Noise
influence on the radial profile of the diffraction pattern.

Biophysics at MIT [47]. An icosahedral structure with 52 base
pairs on each edge was synthesized, and the length of each
edge was approximately 17 nm. The atom types and positions
were used to calculate the complex refractive index, and then
the transmittance of the DNA origami can be obtained [48,49].

In our simulation, an x-ray field with random phase dis-
tribution was generated as a start. The energy of x-ray
photons is 8 keV (0.15 nm). Then the sample was simu-
lated and illuminated by the x-ray field. After exposure, the
photon (intensity) distribution on the detecting plane was
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FIG. 7. Simulation results of RDV. (a) Atomic structure of RDV.
(b, c, d) Speckle patterns of 0.01, 0.1, and 1 photon/pixel, respec-
tively. (e, f, g) Spatial correlation results corresponding to the speckle
patterns in (b), (c), and (d).

calculated according to the scattering propagation formula
[50]. The distance from the sample to the detector was
66.7 cm. The pixel size of the detector used in the simulation
was 75 µm, which is the same as that used in the single-
particle imaging experiment at the Linac Coherent Light
Source [51]. The analog-to-digital units count per photon was
130, which means a photon can be detected with a count of
130. To make the simulation results reflect the experimental
data, random noise with Gaussian distribution was added to
the simulation data. The noise was estimated on the basis
of the pixel rms of the detector and set to 2.6 digital units
according to practical devices [52]. Using the obtained photon
distribution on the detector, the diffraction pattern of the sam-
ple was obtained through the second-order spatial correlation
calculation. Finally, the sample structure in real space was
retrieved by the phase retrieval algorithm described in the
experimental section.

Figure 6(b) shows the 2D projection of the DNA origami
in a specific orientation. Figure 6(c) is a cropped image of the
simulated speckle distribution recorded by the detector, and
the size of the image is 128 × 128 pixels. The average photon
number for each pixel is 1 photon. The diffraction pattern
obtained by spatial autocorrelation calculation is shown in
Fig. 6(e). We used 4096 × 4096 pixels in the calculation.
Figure 6(d) is the result recovered from Fig. 6(e). It is quite
similar to the original image of the 2D projection in Fig. 6(b).
For better evaluation, the radial profile of the diffraction pat-
tern is given in Fig. 6(f) as a function of momentum transfer.
With the increase of momentum transfer, the simulation curve
deviates from the theoretical value. A half-period resolution
of about 10 nm may be achieved with the development of the
diffuser fabrication technology. Simulation with soft x rays (1
keV) was also performed. The distance from the sample to the
detector was 40 cm, and the result is shown in Fig. 6(f). It
can be found that the spatial resolution will reduce to about
20 nm. Figure 6(g) shows the influence of noise. The result
is acceptable while the single-to-noise ratio is 10 dB. As the
noise increases, the contrast of the diffraction pattern will
decrease and the image quality will deteriorate.

Figure 7 presents the simulation results of RDV. Fig-
ure 7(a) is the atomic structure of the RDV sample, which can

be read from the protein data bank (PDB ID:1UF2) [53,54].
We performed simulations to investigate the influence of the
intensity of the detected speckles. The simulation process of
RDV is the same as that of the DNA origami. The speckle
patterns of different photon numbers obtained on the detec-
tor plane are shown in Figs. 7(b)–7(d). The photon numbers
are 0.01, 0.1, and 1 photon/pixel, respectively. Figures 7(e)–
7(f) are the corresponding spatial correlation results obtained
from the speckle patterns in Figs. 7(b)–7(d). The results are
displayed on a logarithmic scale. The structural similarity
(SSIM) index [55] between Figs. 7(f) and 7(g) is 0.99, which
means the results of 0.1 and 1 photon/pixel are almost the
same. However, the SSIM between Figs. 7(e) and 7(g) is only
0.32. This implies that when the intensity of the detected
speckle is 0.01 photon/pixel, the quality of the diffraction pat-
tern decreases dramatically, and it will be difficult to retrieve
the sample structure in the spatial domain.

V. CONCLUSION

In summary, we have proposed an x-ray single-exposure
Fourier-transform ghost imaging approach, which overcomes
the obstacle of a large amount of temporal samplings in most
x-ray ghost imaging, and shows the feasibility of using the
advanced x-ray sources to realize ultrafast x-ray ghost imag-
ing. It is proved theoretically that the Fourier information
of an unknown sample can be obtained by measuring the
spatial intensity correlation between two speckle fields, and
the sample needs to be exposed only once in x-ray SFGI. We
demonstrate the SFGI method with synchrotron radiation. In
the experiment, the Fourier-transform diffraction pattern of
a two-dimensional sample with face-centered-cubic feature
was achieved, and the spatial distribution of the sample was
successfully retrieved. Relevant simulation results of the DNA
origami and rice dwarf virus are provided to show the poten-
tial of SFGI in high-resolution x-ray microscopy of biological
samples. According to the simulation, a spatial resolution of
10 nm may be reached, and x-ray ghost imaging with 0.1
photon/pixel speckle detection can be expected.

SFGI is a lensless Fourier imaging method, and its theoret-
ical resolution is only limited by the wavelength. To obtain
better image resolution in practice, substantial spatial sam-
plings are needed, which may result in an increased demand
for the illumination flux. Incorporating compressive sensing
or deep learning technology to extract the sample information
more effectively will be helpful. It is worth mentioning that
SFGI offers a more flexible scheme to improve image quality.
Since the sample can be nonlocally encoded by the modula-
tor, the image quality can be enhanced [39]. This feature is
significant to the x-ray imaging of biological samples.
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APPENDIX A: THEORETICAL DERIVATION

Here we provide a detailed derivation from Eq. (5) to Eq. (7). We first simplify the formula (5) as follows:

G(2)
Spatial(�x = xt − xr ) ∝

∫
dr1dr2dr3dr4dξ1dξ2dξ3dξ4dxr

× E (r1) exp

{
− jπ

λd1

[
r2

1 + ξ 2
1 − 2ξ1(r1 + d1

d2
xr )

]}
o(ξ1) exp

{
− jπ

λd2

(
ξ 2

1 − 2ξ1�x
)}

× E∗(r2) exp

{
jπ

λd1

[
r2

2 + ξ 2
2 − 2ξ2

(
r2 + d1

d2
xr

)]}
o∗(ξ2) exp

{
jπ

λd2

(
ξ 2

2 − 2ξ2�x
)}

× E (r3) exp

{
− jπ

λd1

[
r2

3 + ξ 2
3 − 2ξ3

(
r3 + d1

d2
xr

)]}
s(ξ3) exp

{
− jπ

λd2
ξ 2

3

}

× E∗(r4) exp

{
jπ

λd1

[
r2

4 + ξ 2
4 − 2ξ4

(
r4 + d1

d2
xr

)]}
s∗(ξ4) exp

{
jπ

λd2
ξ 2

4

}
. (A1)

Define R = r + (d1/d2)xr , x = (d1/d2)xr , and let A(r) = E (r) × exp{− jπr2/(λd1)}. The value of the Jacobian determinant
is a constant d1/d2. So we have the following expression:

G(2)
Spatial(�x = xt − xr ) ∝

∫
dR1dR2dR3dR4dξ1dξ2dξ3dξ4dx

× A(R1 − x) exp

{
− jπ

λd1

(
ξ 2

1 − 2ξ1R1
)}

o(ξ1) exp

{
− jπ

λd2

(
ξ 2

1 − 2ξ1�x
)}

× A∗(R2 − x) exp

{
jπ

λd1

(
ξ 2

2 − 2ξ2R2
)}

o∗(ξ2) exp

{
jπ

λd2

(
ξ 2

2 − 2ξ2�x
)}

× A(R3 − x) exp

{
− jπ

λd1

(
ξ 2

3 − 2ξ3R3
)}

s(ξ3) exp

{
− jπ

λd2
ξ 2

3

}

× A∗(R4 − x) exp

{
jπ

λd1

(
ξ 2

4 − 2ξ4R4
)}

s∗(ξ4) exp

{
jπ

λd2
ξ 2

4

}
. (A2)

Substituting Eq. (6) into Eq. (A2), we obtain

G(2)
Spatial(�x = xt − xr ) ∝

∫
dR1dR3dξ1dξ2dξ3dξ4 exp

{
− jπ

λd1

(
ξ 2

1 − ξ 2
2 + ξ 2

3 − ξ 2
4

)}

× exp

{
− jπ

λd1
2R1(ξ2 − ξ1)

}
exp

{
− jπ

λd1
2R3(ξ4 − ξ3)

}

× o(ξ1)s∗(ξ4) exp

{
− jπ

λd2

(
ξ 2

1 − ξ 2
4 − 2ξ1�x

)} × o∗(ξ2)s(ξ3) exp

{
jπ

λd2

(
ξ 2

2 − ξ 2
3 − 2ξ2�x

)}

+
∫

dR1dR3dξ1dξ2dξ3dξ4 exp

{
− jπ

λd1

(
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1 − ξ 2
2 + ξ 2

3 − ξ 2
4

)}

× exp

{
− jπ

λd1
2R1(ξ4 − ξ1)

}
exp

{
− jπ

λd1
2R3(ξ2 − ξ3)

}

× o(ξ1)s∗(ξ4) exp

{
− jπ

λd2

(
ξ 2

1 − ξ 2
4 − 2ξ1�x

)} × o∗(ξ2)s(ξ3) exp

{
jπ

λd2

(
ξ 2

2 − ξ 2
3 − 2ξ2�x

)}

=
∫

dξ |o(ξ )|2
∫

dξ |s(ξ )|2 +
∣∣∣∣
∫

dξo(ξ )s∗(ξ ) exp
(
− j2π

xt − xr

λd2
ξ
)∣∣∣∣

2

. (A3)

The first term is a constant background, which is proportional to
∫

dxrIr (xr )
∫

dxt It (xt ). The second term contains the Fourier
information of the sample modulated by the modulator. From above, Eq. (7) can be achieved.
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APPENDIX B: DIFFUSER AND SAMPLE FABRICATION

The patterns of the diffuser and the sample were generated
through electron-beam lithography. The fabrication process
started with a Si3N4 membrane, the thickness of the mem-
brane was 100 nm, and the size was 1 × 1 mm2. Then the
resist layer was spin coated on it from a resist solution
(6% of 350-k PMMA in ethyl-lactate) at 3000 rpm for 60 s
followed by a soft bake at 180◦C for 5 min. The pattern
exposure was carried out on a 100-keV electron-beam writer
(JEOL 6300FS) at 500-pA beam current. The development
was performed by immersing the exposed chip in a mixture of
isopropanol and water (7:3 by volume) for 3 min followed
by rinsing in deionized water for 30 s and drying in a N2

gas jet. The Au metal was filled into the PMMA mold by
electroplating. Finally, the PMMA was stripped in solvents
after plating.

The thickness of the diffuser was 67 nm and the thickness
of the sample was 300 nm. In fabrication, this thickness dif-
ference was achieved by controlling the electroplating time.

APPENDIX C: SAMPLE SIMULATION

The atom types and positions of the sample used in the
simulation were obtained from the public atom data. The

scattering length density DSL can be calculated via

DSL = ρNa
∑N

i=1 bi∑N
i=1 Mi

, (C1)

where Na is the Avogadro number, Mi is the atomic molar
mass for each element, and ρ is the density of the sample. The
scattering length bi indicates the scattering ability of the ith
atom. The relationship between scattering length density and
refractive index n = 1 − δ + iβ can be described as follows:

δ = λ2

2π
ReDSL, (C2a)

β = λ2

2π
ImDSL. (C2b)

Thus, we can achieve the complex refractive index of the
sample from the atom data.

In our simulation, the sample was divided into 128 ×
128 × 128 volumes, and we obtained the three-dimensional
complex refractive index of the sample according to the
above description. Then the sample was projected into
two-dimensional space, and the two-dimensional complex
amplitude distribution of the sample was calculated and used
in the simulation.
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