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Bound states and photon emission in non-Hermitian nanophotonics
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We establish a general framework for studying the bound states and the photon-emission dynamics of quantum
emitters coupled to structured nanophotonic lattices with engineered dissipation (loss). In the single-excitation
sector, the system can be described exactly by a non-Hermitian formalism. We have pointed out in the
accompanying letter [Gong et al., Phys. Rev. Lett. 129, 223601 (2022)] that a single emitter coupled to a one-
dimensional non-Hermitian lattice may already exhibit anomalous behaviors without Hermitian counterparts.
Here we provide further details on these observations. We also present several additional examples on cases with
multiple quantum emitters or in higher dimensions. Our work unveils the tip of the iceberg of rich non-Hermitian

phenomena in dissipative nanophotonic systems.
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I. INTRODUCTION

Controlling the interaction between atoms (few-level sys-
tems) and light (bosonic fields) is a central goal in quantum
optics. Recently, there has been considerable interest in con-
trolling the propagation of light, and thus its interaction with
atoms, through nanophotonic structures or atomic arrays [1].
In addition, there have been longstanding efforts to create syn-
thetic quantum optical systems comprised of artificial atoms
coupled to arrays of bosonic modes, for example, transmon
qubits coupled to superconducting circuits [2-5] or surface
acoustic waves [6], or ultracold atoms in state-dependent
lattices [7-9]. Engineering the bath has the potential of dra-
matically improving key figures of merit, such as storage
fidelity [10], or to enable novel devices, for example, to
simulate spin systems with long-range interactions [11] or
interactions with exotic spatial profiles [12]. These successes
motivate the search for other design paradigms, with novel
physics, that may be exploited in future devices.

In a different context, there is remarkable recent progress in
understanding non-Hermitian (NH) systems [13—-16], which
may exhibit peculiar properties without Hermitian counter-
parts [17-36]. One of the most well-known unique features
is exceptional points (EPs), which are specific points in the
parameter space where the NH Hamiltonian becomes non-
diagonalizable and some of its eigenstates coalesce [37]. In
lattice systems, the parameter space is typically the Bril-
louin zone and an EP may appear at a band-touching point.
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Depending on the symmetry of the Hamiltonian and the
dimension of parameter space, the EPs may form curves,
surfaces, or even higher-dimensional objects [38—40]. More
recently, the NH skin effect [30], which refers to the phe-
nomenon where the “bulk” eigenstates of a NH lattice localize
at the boundary under open boundary conditions (OBCs), has
attracted considerable interest. In one dimension (1D), the
skin effect has been found to originate from the point-gap
topology and may be enriched by symmetries [31,36,41,42].
In higher dimensions, the skin effect has been shown to
appear as long as the energy spectrum covers areas rather
than curves [43], which is typically the case. Some unique
NH phenomena have been observed in various experimental
platforms, including but not restricted to mechanical [44—49],
optical or photonic [50-61], atomic [62—-65], and electric or
superconducting circuit [66—68] systems.

In this paper, we merge these two emergent fields by
studying quantum emitters in NH baths in a relatively com-
prehensive manner. While there are a few previous studies
about this topic (see, e.g., Refs. [69,70]), all of them focus
on rather specific (classes of) models. Moreover, the role of
genuine NH topology [31,34,35] remains fully unexplored.
Here, we establish a general framework encompassing all the
related previous works. We restrict ourselves to the single-
excitation sector, for which the NH description becomes
exact. We focus not only on the bound states [71] but also
on the photon and emitter dynamics [72,73], keeping in mind
a special concern about genuine NH phenomena such as
point-gap band topology. While it is beyond the scope of the
present paper, our framework also applies to the many-body
regime [10,71,74,75], which could be a fruitful topic for future
studies.

We provide a few case studies on several minimal NH
models, finding that they already exhibit unexpectedly rich
phenomena. As already highlighted in Ref. [76], the NH skin
effect results in the so-called hidden bound states that behave
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very differently from the usual bound states in Hermitian
systems. For example, they have the remarkable property that
their energy is exactly pinned to the emitter detuning. This
property turns out to remain valid for multiple emitters. In
addition, the dynamics of a photon emitted into such a NH
bath may differ a lot from free propagation, as can be under-
stood from the generalized Brillouin zone (GBZ), a concept
originally developed to explain the skin effect quantitatively
[77,78]. Also, we show how to utilize the NH degrees of free-
dom to realize nonexponential (typically algebraic) emitter
decay, which is usually invisible in (1D) Hermitian systems
due to the existence of stable bound states. In particular, we
provide further details on the passive PT-symmetric lattice
studied in Ref. [76] and quantitatively explain the exponents
of algebraic decay. We also provide a few more examples
exhibiting nonexponential decay in both 1D and 2D.

The rest of the paper is structured as follows. In Sec. II,
we introduce the general framework for describing two-level
emitters coupled to a NH bath with both coherent hopping and
collective one-body loss. We also present a formal solution
within the single-excitation sector. In Sec. III, we present a
case study on the general Hatano-Nelson model, extending
the unidirectional limit considered in Ref. [76]. This example
showcases the impact of NH topology. In Sec. IV, we present
a second case study on a Wick-rotated (i.e., multiplied by i)
Hermitian 1D model, rendering it fully anti-Hermitian. We
also discuss some general features of such a construction
based on Wick rotation. In Sec. V, we present a third case
study on two models with EPs in 1D and 2D. In particular, we
provide quantitative explanations to the algebraic atom decays
observed in Ref. [76]. In Sec. VI, we discuss some common
features of these models as well as possible experimental im-
plementations. Finally, we summarize the paper and provide
an outlook in Sec. VIIL.

II. GENERAL FRAMEWORK

In this section, we present a general framework for
studying quantum emitters in nanophotonic lattices that are
completely captured by a NH description. We also provide a
formal analytic solution to the eigenstate problem as well as
the nonequilibrium dynamics.

A. Equation of motion

We consider N (not necessarily identical) quantum emit-
ters, modeled as two-level atoms, coupled to a d-dimensional
nanophotonic lattice A C Z¢ with engineered dissipation.
Under the Markovian and rotating-wave approximations, in
the rotating frame, the entire equation of motion is given by
the Lindblad master equation:

b= —illy + By + V. 1+ Ly + Lo (1)

Here the coherent part consists of three terms. The atom
Hamiltonian reads

H, = Z A5, @)

Aww —

where 6" = |w,)(w)| (w, w’ = e, g) and A}, is the coherent
detumng of the nth atom. The photon Hamiltonian takes a

O O O O O O
O (’b@f)oo
o@ﬁd’\bo@o
O 00 O O O O

o O O

FIG. 1. Inour general setup, two-level atoms are coupled to a NH
lattice with both coherent hopping J (blue arrow) and collective loss
k (red box), which are described by Eqgs. (3) and (6), respectively.
The atoms themselves undergo spontaneous decay, as captured by
Eq. (5). While not shown in the figure, the atom-photon detuning is
generally nonzero [cf. Eq. (2)].

general (number-conserving) quadratic form

= Z ers,r’s’&;&r’s’v (3)

rrel s, s'el

where [ is a set of internal states per unit cell that may involve,
e.g., polarization and/or sublattice degrees of freedom, and dy.
annihilates a photon with internal state s at r. The photon-atom
interaction is assumed to be local (on site),

N
VZZZ(gngEM +HC) @

n=1 sel

where r, labels the unit cell in which the nth atom is located
and g, is the coupling strength (also known as the single-
photon Rabi frequency) between the nth atom and photon with
internal state s. Note that Eq. (4) conserves the total number
of atom and photon excitations. The dissipative part consists
of individual atom decays,

N
= > vD[5], 5)
n=1

where y, is the decay rate of the nth atom and D[L]p =
LpL™ — {LTL, p}/2 is the Lindblad superoperator, and collec-
tive photon loss,

Ly=x) 2} D[L1], (6)
reA pu=

where « controls the loss rate, i labels the dissipation channel,
and L} takes the following form:

= g @)

rel s'el

See Fig. 1 for a schematic illustration of this setup.
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The effective NH Hamiltonian of Eq. (1) can be computed
via

n e (®)

Ly
n=1 reA p=1
and reads
eff = Z AnAee + Z Z Jrsrs’a ar’ !
rorel s,s'el
N
+ 3 (gwbial  + Hee), 9)
n=1 sel
where both the detuning
i
An= A= (10)

and the photon hopping amplitudes

éK i Z lrl'ﬁ*r.slrﬂ r's' (11)

n=1r"eA

Jrs,r’s’ = Jrs,;r's —

become complex. One can check that, since L}'’s only entail
annihilation operators, starting from a single excitation state
like po = [Y0) (Yol with [¥) = 6,%|g) ® |vac), where |g) =
|g182...gn) and |vac) is the photon vacuum, the solution to the
master equation (1) is given by [73,79]

pr = e B poein 4 p ) (g] ® |vac) (vac],
pr = 1 — Tr[e et poeitlant]. (12)

It is thus sufficient to analyze the NH effective Hamiltonian
(9) if we focus on the single-excitation sector. In particular,
we would like to consider the bound state

N
¥) = (Z EERED Y Zcmajs> 8) ® vac)  (13)

n=1 reA sel

that satisfies ﬁeffhpb) = E|yp) with nonzero atom weights
and localized photon profiles near the atoms. We would also
like to know the nonunitary real-time dynamics,

N
W) = [Z QLAY Zcma)alg] ) ® [vac), (14)

n=1 reA sel

governed by |y;) = et |Yo) starting from a localized or
collective atomic excitation.

B. Formal analytic solution

Assuming that the dissipative nanophotonic lattice is trans-
lation invariant and has periodic boundary conditions (PBCs),
i.e., Jpspy = Jp_p sy and IF we can rewrite Eq. (9)

n
rr//_ r— r/ o/ 9

into

Her = Z AL+ g hdiy

keBZ
1 N
+——=Y" > (65ajg, +He),  (15)
|A| n=1 keBZ

where BZ refers to the Brillouin zone, a; = [aks]sTel with
= |A|7? D ren e *ra,. (|Al: volume of A), g, =
[gnse™ iker, "]T <; and the NH Bloch Hamiltonian reads

l. m
[hk]ss’ = Jk,ss’ - EK Z llétv*llgv’ (16)
n=1
Here Jiso = Y yep Jrsve ¥ and I = 3, IFe7* are the
Fourier transformations of the photon hopping amplitudes (3)
and the coefficients in the photon loss dissipators (7), respec-
tively.

In terms of @;’s, the bound state can be rewritten as

N
) = (Z cobet + ﬁ 3 ckak> ) ® Ivac),  (17)

n=1 keBZ

where ¢, = [cks]fe ; contains the coefficients of all the photon
modes with quasimomentum k. Further introducing the de-
tuning matrix A = diag[A, Ay, ..., Ay], the atom-coefficient
vector ¢, = [cf, ¢5, ..., cf\,]T and the |I| x N coupling matrix

8k = [8k1> 8k ---» 8y ], We can explicitly write ﬁeffh/fb) =
Elvr,) as
Ac, + Z ghex = Ee.,
keBZ
hxex + grc. = Ecx, Vk € BZ. (18)

Eliminating ¢;’s yields

[E — A —X(E)]e. =0, (19)
where the self-energy ¥(z) is an N x N matrix given by
1
2@ =5 > ek =) g (20)
keBZ

If we take the thermodynamic limit A — Z¢, Eq. (20) be-

comes
dk
(z) = 2 — ) g 21
(2) /Bz (Zn)dgk(z k)" 8k 2D
Since a bound state necessarily requires ¢, # 0, we have
det[E — A — X(E)] = 0. (22)

Given a solution E to Eq. (22), we can in turn determine c,
(up to normalization) and then ¢i’s via

cx = (E — ) ' gree. (23)

The normalization of the bound state implies

: Y gI(E — )(E* =1

getc.=1. (24)
|A| keBZ }
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The real-space photon profile can thus be determined by the
inverse Fourier transformation, i.e.,

1 ; 74 ddk .
Crs = Z Ckselk-r M) f —dckselk-r~ (25)
[A] KeBZ Bz (27)

Provided that E is not located on the complex photon disper-
sions, we can prove that (see Appendix A) the photon profiles
are exponentially localized near r,,’s and thus |v,) is indeed a
bound state.

To calculate the real-time dynamics, we employ the
resolvent method (see Appendix B) to express c.(t) =
[ci(@), 5(), ..., cle\,(t)]T as

i e .
c.(t) = —/ dE G,(E + i0M)e " ¢,(0), (26)
2w J_

oo
where the atom (emitter) Green’s function G,(z) is given by
1
- A =X’

which is again an N x N matrix just like X(z) in Egs. (20) and
(21). Similarly, c(¢)’s can be evaluated from

Ge(z) = 27)

c(t) = ZL / dE Gy(E + i0M)e ¢, (0), (28)
T J-co

where the photon Green’s function Gg(z) is related to G.(z) in
Eq. (27) via

Gr(z) =

1
8kGe(2). (29)
Z— hk

Again, the real-space photon dynamics can be obtained by
Fourier transforming ¢ (¢) following Eq. (25). Introducing

i oo ddk eik~r7iEt
t)y= — dE , 30
¢ 0= /_w /BZ Qn)! E — Iy + i0* G0

which describes the bare photon propagation (in the absence
of emitters) in real spacetime starting from a localized state
at r =0, we can explicitly express ¢,(t) = [cm(t)];fd as a
convolution:

1
er(t) = =i [ dr' o, = e G31)
0
where the kernel function ®,(¢) is a |I| x N matrix given by
[Dr(O)]sn = D [y, ()]sv &ns- (32)
s'el

One can check the self-consistency of Eq. (31) in the short-
time regime: for a sufficiently small ¢, we have [®,(¢)],, =~
8r.r,8ns and thus cps(t) = —igpst ZQ’ZI y.r,co(0), exactly re-
producing the leading-order approximation (rs|(—iHest)|¥o),
where |rs) = @ |vac).

III. CASE STUDY I—NON-HERMITIAN TOPOLOGY

In our first case study, we wish to examine the effect of
NH topology on the dynamics of our system by studying
a model that has a nonzero spectral winding number [31].
The most paradigmatic model with this feature is the Hatano-
Nelson model [17], which consists of a periodic 1D chain with
anisotropic nearest-neighbor (NN) hoppings. See Fig. 2(a)

0.0
—10 0 10 20 10 0 10 20

T T

FIG. 2. (a) Hatano-Nelson model with three emitters coupled
at three different locations. Conventional bound state (b) and hid-
den bound state (c) for such a system with parameters: J = 0.15«,
A,/k =0.05(n+1)—0.5i,n=1,2,3,and g, = 0.5«. Dashed ver-
tical lines mark the positions x, of the emitters.

for an illustration. To realize this model in the effective NH
Hamiltonian in Eq. (9), we choose the nonlocal dissipator
Ly=a,— idy+1 [31,80] (x: unit-cell label in 1D), such that
lyv = 8xx — i8x41.v, and restrict hoppings along the 1D pho-
tonic lattice to NN only. Note that we have dropped the label s
because we only have one degree of freedom per site. We then
find that the effective photon hopping amplitudes [cf. Eq. (11)]
read
J I-< J+ =

x,x+1 — 27 x,x—1 — + 27
where we set Jy 41 =Jy—1x =J € R and J;, =0, which
leads to the following effective photon Hamiltonian:

4 _ Z 2PS IN
Heff,p = Jx,x’axax’

Jow = —ik,  (33)

Il
—~
~
|
NSRIRN
N—"
A
><Q>

s

K &
+ (v + E)ajﬂax — ik a;ax}. (34)

Fourier transforming this model, we find /; in Eq. (15) to be
=2Jcosk —ix(sink + 1), (35)

which simply gives the band dispersion. The photon energy
thus indeed forms a loop in complex energy plane. As it turns
out, one can classify NH topological systems with point gaps
using the winding number of the dispersion relation around
any point z in its interior [31]:
. T dk
ind(h, —2) = / — 0 Indet(hy — 2). (36)
_x 2mi
The Hatano-Nelson model can be in two phases: ind(h; —
z) = —1forJ > O (stronger hoppings to the right) or ind(h; —
z) = 1 for J < 0 (stronger hoppings to the left).
In the following, we consider several emitters, each one
coupled locally to a single site of the bath. Thus, the cou-
pling function for the nth emitter reads gx, = g,,e’”“”. From
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Eq. (20), we can now compute the matrix elements of the self-
energy as [E(Z)]mn = gj;;gnd)(zy xmn), where Xmn = Xm — Xn is
the (signed) distance between the mth and nth emitter, and

1 ke eikx
JX) = — dk . 37
$(z.x) ZHL i (37)
The integral in this formula can be computed using residue
integration (see Appendix C). For |J| # « /2, the final result
can be expressed as

1
(z,x) = Mo, —yHe.), (3%
¢ x/z2+2ifcz—4.12(er Y )
where
7+ ik F /72 + 2ikz — 4J?
Vi = i , (39)

2J — sign(x)x

and ®4 = O(1 — |y+|) (® denotes Heaviside’s step function).
This expression is valid also for x = 0, which corresponds to
the single-emitter case, choosing either sign(0) = =£1, aresult
that was reported already in Ref. [69]. For the fully directional
Hatano-Nelson model (]J| = «/2) a similar expression can be
obtained (shown in Appendix C); this specific case is studied
in the companion letter [76].

Asitturns out, ¢(z,x > 0) =0forJ > 0[p(z,x <0)=0
for J < 0] for z inside the loop formed by the bath’s disper-
sion relation. Hereafter, we denote £ as the interior of the
loop so the condition reads z € £. This is not a coincidence,
but a general phenomenon linking the topology of the NH
bath to the quantum emitter properties. In Appendix C, us-
ing the argument principle [81], we prove that for arbitrary
1D, single-band lattices with a finite hopping range, the self-
energy vanishes in the regions of the complex plane with
maximal spectral winding number.

A. Bound states

Now, we can compute the energy E of the single-particle
bound states using Eq. (22). For any given E, the photonic
component (wave function in the bath) of the bound states is,
according to Eq. (25), given by ¢(E, d):

N

o= ) chenp(E, x —x,). (40)

n=1

So, in general, the photonic component of any bound state
is a superposition of exponentially localized wave functions
around each emitter. Importantly, ¢(E, x) does not have the
same decay length for the left-half (x < 0) and right-half (x >
0) spaces. In fact, as we have just mentioned, ¢(E, x) may
even vanish completely on one of the sides.

The shape of the bound states is intimately related to the
characteristics of the bath and, in particular, to its topology.
We can classify solutions in two classes that we call conven-
tional bound states if E lies outside the loop and hidden bound
states if E lies inside the loop. The former are composed of
wave functions that decay on both sides of the emitters, see
Fig. 2(b). The latter are composed of fully directional wave
functions, even if the bath has finite hopping amplitudes in
both directions, and they decay toward the direction of the
weaker hopping amplitudes, see Fig. 2(c). They are unique to

0.15

0.05

0
10 15 20

60 -5 0 5
2Jt T

FIG. 3. Real-space photon-emission dynamics for the general
Hatano-Nelson model (35) with A = —ik, g = 2« [(a), (b)], A =0,
g="2k [(c), (d)] and A =0, g= 5« [(e), ()]. In all figures, J =
2.5k. Insets in (a), (c), and (e): Original (dashed circle) and general-
ized Brillouin zone (solid circle) in the complex plane 8 = e~*. The
red crosses indicate the poles of the integrand in Eq. (44). Dashed
black lines in (a), (c), and (e) correspond to the exponential decay of
free propagation, the residue of the marked pole, and the bound state,
respectively. Just like Fig. 14(b), the photon profiles are rescaled
by multiplying +~/2J¢ in (b), (d), and (f) so the probability (almost)
converges in the long-time limit [76].

NH systems with nonzero spectral winding numbers. Strik-
ingly, their energies are not affected by the presence of other
emitters, contrary to what happens for conventional bound
states (except when the bath is fully directional). This is due
to the fact that X(E) is strictly upper (lower) triangular if we
label the emitters by increasing position for E € £ if J > 0
J <0),s0

N
detlE — A—S(E)) =[[(E—An. ifEct. (41

n=1

The equation det[E — A — X(E)] =0 [cf. Eq. (22)] has,
therefore, a solution E = A, for every A, € £. Here, we re-
call the possibility of having different detunings A,, for each
emitter, and A = diag[A, Ay, ..., Ax].

We can recognize these hidden bound states as the NH
analogs of the vacancylike bound states discussed in the Her-
mitian context [82]. Indeed, if we put a vacancy in the site to
which an emitter is coupled, we split the bath in two semi-
infinite chains, whose eigenmodes can be computed using,
e.g., the transfer-matrix method [83]. Skin modes correspond
to those eigenvalues of the transfer matrix with absolute value
smaller than one, which restricts their energy to the interior of
hi. Thus, the condition for a perfect vacancylike bound state,
namely, that the emitter detuning coincides with the energy
of the vacancy mode (in this case, skin mode), is trivially
satisfied whenever A lies inside the loop.
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Interestingly, conventional bound states may require a suf-
ficiently strong coupling constant g to exist, depending on the
value of A. This is due to the fact that [X(z)],.,, has a finite
discontinuity when z traverses the bath’s dispersion relation.
This behavior is very different from the one expected for 1D
Hermitian systems, where the divergence of the real part of
the self-energy at the band edges of the bath’s spectrum guar-
antees the existence of bound states in every gap, regardless
the value of A or g [71].

B. Photon-emission dynamics

In the companion letter [76], we obtained the analytic
expression for the time evolution of a photon emitted from the
atomic excitation in the unidirectional limit. While it seems
impossible to have an analytic solution in the general case, we
can readily perform numerical calculations. We demonstrate
that the three different dynamical regimes still exist and can
be well understood with the help of the GBZ [30,78].

As mentioned previously, a unique feature of 1D NH
nanophotonic systems is that the bound states may disappear if
the light-matter coupling is too weak. In addition, the hidden
bound states with eigenenergies inside the loop of the bath
dispersion do not contribute to the dynamics and are thus
invisible. One may thus naively expect that, in the absence
of conventional bound states, the photon emission dynamics
should resemble free propagation. This is indeed the case
by choosing, e.g., (J, A, g) = (2.5, —i, 2)x. The correspond-
ing dynamics is shown in Figs. 3(a) and 3(b). Unlike the

unidirectional case, there is a nonzero leftward-propagating
component, although it quickly decays. The oscillations re-
sult from the interference effect that already appears in the
free-propagation dynamics, which is actually exactly solvable
to be [84]

J+5\"
|c}j"(t)|2 = < 3) T (VAI? — k2)2e 42)

J=3

starting from ¢, (0) = 8,9, i.e., a photon localized at the origin.
Here J.(z) is the Bessel function of the first kind and is
known to exhibit sinelike oscillations for large z. Note that the
amplification rate corresponds to the radius of the GBZ and
the coefficient before ¢ is nothing but the bandwidth under the
OBC.

However, if we change the detuning to be A = 0, we find a
spatial amplifying dynamics with a decay rate (at a fixed site)
considerably smaller than free propagation. See Figs. 3(c) and
3(d). To gain some quantitative insights, we write the running-
wave contribution, which should dominate in the long-time
limit provided there is no bound state (or the bound sate has a
very short lifetime),

T dk
V() = g/ — —,
7 2 hk AN E(hk + ”7k)

eikx—ihkt

(43)

where 7, is a vanishingly small quantity such that A + in;
lies outside the loop. After straightforward calculations and
the replacement 8 = e~*, the running-wave contribution can
be expressed as the following contour integral:

ge—KtIB—xe—i[(J+K/2)ﬂ+(J—K/2)ﬂ’l]l[(J + K/Z),B _ (J _ K/Z),B_l]

|
V() =§£ 4P
|

pi=1 2B (J + /22 B2 = (J = k/2)*B72 — (A +i)[(J +./2)B — (J —«/2)B7'] — g

At least at large spacetime scales, one can justify from
the stationary-phase approximation [85] that the above con-
tour integral at the GBZ |8] = /(J —«/2)/(J + «/2) [15]
should be like free propagation. This contribution differs from
Eq. (44) only in some residues associated with the poles of the
integrand sandwiched by the GBZ and the original Brillouin
zone |B| = 1. In the present case, there are three such poles
[cf. inset in Fig. 3(c)] and the residue of the one lying on the
imaginary axis turns out to be dominant and overwhelms the
free-propagation-like component. We mention that there are
actually two relevant poles in the previous case [cf. inset in
Fig. 3(a)], but their residues have the same decay rate as free
propagation but smaller spatial amplification rate. Therefore,
the free-propagation-like component dominates in the previ-
ous case.

If we further enhance the coupling strength to be g = 5«,
we observe not only temporal but also spatial decay in the long
time limit, as shown in Figs. 3(e) and 3(f). This is simply due
to the existence of slowly decaying bound states, which over-
whelm the free-propagation component. Here the oscillations
arise from the superposition of two bound states with different
(actually opposite) real energies.

Finally, we should stress that the general Hatano-Nelson
model is rather specific in the sense that its spectrum un-
der the OBC has a constant imaginary part and is thus

(44)

(

Hermitianlike. In a general setting, the OBC spectrum covers
a finite range along the imaginary axis. In this case, it becomes
unclear whether the GBZ is still a privileged choice, but the
idea of deforming the integral contour remains applicable.
We leave a complete solution to this problem for a future
study.

IV. CASE STUDY II—WICK-ROTATED
HERMITIAN BATHS

In our second case study, we introduce a simple recipe
other than the PT-symmetry breaking mentioned in Ref. [76]
to realize nonexponential (algebraic) emitter decay.

A. General analysis

As pointed out in Ref. [76], the essential ingredient needed
to realize such algebraic emitter decay is a bath with a vanish-
ing damping gap (in the following denoted as critical), i.e., a
bath whose spectrum touches the real axis. A simple way to
design critical baths is to consider fully anti-Hermitian baths
obtained simply by multiplying i to Hermitian baths:

Herp = iflg, Hj = Hg. (45)
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FIG. 4. (a) A two-level emitter coupled to an anti-Hermitian 1D
lattice obtained by Wick rotation. (b) Algebraic (o< r=3) emitter decay
for various detunings. Here g = J and the dashed line is given by
Eq. (54). (c) The original integral (26) (dashed orange contour) for
computing the emitter decay dynamics can be decomposed into the
branch-cut and pole contributions (solid orange contours).

From a dynamical point of view, such an operation is equiva-
lent to making the real time imaginary, and thus may also be
called a Wick rotation [16]. If Hg has a negative spectrum with
a band edge exactly at zero energy, then the resulting NH bath
will have a vanishing damping gap. According to Eq. (21),
the self-energy ¥ in the anti-Hermitian model is related to the
self-energy for the Hermitian counterpart ¥p through

%(z) = —iXp(—iz). (46)
Therefore, for real energy E, if
TR(E £i07) =8(E) Fil'(E)/2, 47

with real Lamb-shift §(E) and decay rate I'(E) for a single
emitter, we have

Y(E £0") = —iS(E) £ T(E)/2. (48)

Since the role of the Lamb-shift and decay rate are re-
versed, the decay of the quantum emitter may be dramatically
changed by Wick-rotating the bath, as will be illustrated in a
concrete model in the following.

B. Example

As a simple example, we consider a 1D NN Hermitian
lattice described by

Hg = —J ) (@], + alac +2aja,),  (49)

xeA

whose dispersion relation is given by i = —2J(cosk + 1).
See Fig. 4(a) for an illustration. The Wick-rotated version
ﬂeff,p = iHg has il as its dispersion relation, so it is critical,
with a branch point at zgp = 0. This model can be obtained in
a 1D photonic lattice with a single site per unit cell, choosing
Jyw =0 and L.=a,+ ay+1. Since the decay rate diverges
as T(iE) o< |[E|~'/? for E — 07, the algebraic decay is of the
usual kind, i.e., proportional to ¢ .

In fact, we can explicitly figure out the coefficient of the
asymptotic algebraic decay. For a general branch cut termi-
nating at a branch point zgp, its contribution can be calculated
on the basis of the general formula [69]

e—in(u+l)/21—~(v 4 I)F e—iZBpt
2 v+t

where F' and v are determined by

1 1

z—A=%(2) z—A—-%(%)
for z close to zgp, with self-energy X.(z) [X(z)] evaluated
from the right (left) side of the branch cut. For the Wick-
rotated 1D lattice, according to the well-known result for a 1D

Hermitian NN lattice [73] and Eq. (46), we can easily write the
self-energy as

(50)

cpe(t)

~F(z—zp) (51

I G
V@ +4iT)’

where the square root should be taken such that X(z) ~ g?/z
for large z. Therefore, for z near zgp = 0, the left-hand side

(Ihs) of Eq. (51) reads
2822z + 4i)) ~ _4«/ﬁ ! 53)
WCrdiNG AP g @

implying that v = 1/2 and F = —4+/iJ /g*. Substituting these
results into Eq. (50), we obtain

X(2) = (52)

J 1

ngt 3’

which turns out to have no dependence on the detuning A.
As shown in Fig. 4(b), the asymptotic emitter decay is indeed
given by Eq. (54). While the exact result should involve the
contributions from the poles (corresponding to bound states)
and another branch cut terminating at —4iJ, as shown in
Fig. 4(c), all of these components decay exponentially in time
and are thus quickly overwhelmed by Eq. (54).

Clearly, the long-time behavior of a quantum emitter in
the Wick-rotated 1D lattice is very different from that in the
original Hermitian lattice, for which A matters a lot and the
algebraic decay is invisible [73]. On the other hand, it is
well-known in the context of NH topological phases that a
Wick rotation is irrelevant in the sense that it does not alter
the topological classification at all [35,86]. There is actually
no inconsistency. In the former case, we only have to focus
on those eigenmodes with the largest imaginary parts, which
dominate the long-time dynamics. These modes may change
dramatically upon the Wick rotation. In the latter case, our
focus is whether two NH Hamiltonians can be continuously
deformed into each other while keeping the gap open. Note
that both the continuous path and gap persist upon the Wick
rotation.

lepe (t)[* =~ (54)

V. CASE STUDY III—EXCEPTIONAL POINTS

In our third case study, we provide further details on the
1D model with the alternating loss mentioned in Ref. [76].
We also propose a 2D model with exceptional lines in the
band structure, which turns out to exhibit both nonexponential
emitter decay and diffusive photon dynamics.
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Kt

FIG. 5. (a) Crossover from ¢! to =% decay for the coupling to a

dissipative site under different choices of A. The black and colored

dashed lines are determined by Eqgs. (63) and (64), respectively.

(b) Asymptotic =3 decay for the coupling to a nondissipative site

under different choices of A, which only alter the short-time behav-

iors. The black dashed line is determined by Eq. (65). In both (a) and
(b),J =« and g = 1.5«.

A. One dimension

We consider a 1D NH bath with a two-site unit cell. The
two sublattice degrees of freedom are denoted as A and B, as
illustrated on the top of Fig. 5. Considering L, = /2,4 and
again restricting the hopping in the 1D photonic lattice to NN
by ChOOSing Jx&,x’s’ =J(1 = 845 )(8rx + 5x+l—28 rA,x’)7 we find

s

that the effective NH photon Hamiltonian reads
Aerp = Y I (@), +al,, s + Hee. — ikl (55)
xeA

The corresponding NH Bloch Hamiltonian is given by

—iK J(1 4 e~y
=lratey o
. (56)
:Ja+cmm&%hmmhw—%xw@+ﬁx
whose energy dispersion reads
K K2
€t = —i5 +,/2J%2(1 4 cos k) — T (57)

Here o*>* are the Pauli matrices and oy is the 2 x 2 identity.
This system exhibits a passive parity-time (PT) symmetry
[50]

cr"(hk + %KO’()) ot =M + %KO’Q (58)
and has two EPs at kgp = = arccos(k?/(8J%) — 1) for J >
k /4. Depending on whether the atom is located on an even
(sublattice A) or odd (sublattice B) site, we have g4 = g,
gp =0o0rgs =0, gg = g, respectively.

For simplicity, we assume the same (real) single-photon
Rabi frequency g for all the emitters. Applying Eq. (20) and
followed by some calculations similar to Eq. (C1), we obtain
the entries in the self-energy matrix to be

gz

T @ = Z=[ie, —yle ],

NS
&z + ix)
NE

Zon(@) = e, —yle ],

&J

$48(2) = %[Fx,,m (041)0; — F,, (y)O_],
T2(2) = Ip8(), (59)

where ©1 = (1 — |y+]), F(y) = yM +y*~ !, and § is the
discriminant of the second-order polynomial ay? + by + ¢
with coefficients

a=c=-J% b=-20"+zz+iKx), (60)
whose roots are given by yr = (—b=* \/5)/(261). The su-
perscripts in %, (e.g., AA or AB) are determined by the
sublattices in which the emitters are located. In this case,
at any point z of the complex plane, only one of the roots
contributes since y;y_ = 1 (there are no regions with wind-
ing number other than 0). The analytic continuation of these
functions to the second Riemann sheet is obtained replacing
®:t d ®$.

1. Single-emitter dynamics

We denote the single-emitter self-energy as X,(z) =
¥A4(z) or Tp(z) = £BB(z), depending on the sublattice to
which the emitter is coupled. Setting |x,,,| = O in the first two

lines of Eq. (59), we obtain

Yu(2) = %(®+ - 0.), (61)
Tu(2) = %(@u _e.). 62)

No matter in which sublattice the emitter is located, we expect
that the long-time dynamics is dominated by the algebraic
decay since there is a branch point at the origin and all the
poles have negative imaginary parts. Such a situation is similar
to that of the Wick-rotated 1D lattice discussed in Sec. IVB
[cf. Fig. 4(c)].

Quantitatively, we can again determine the explicit asymp-
totic form using Eqgs. (50) and (51) (see Appendix D for
details). If the emitter is in sublattice A (with on-site loss) and
the coupling is resonant (A = 0), by substituting Eq. (61) into
Eq. (51), we obtain v = —1/2 and |F| = 4J/k /g%, leading to
an asymptotic ! decay:

4% 1
Tt t’
Otherwise, whenever the detuning A is nonzero, we have v =

1/2 and |F| = g*/(J|A|>/K), leading to the conventional >
decay:

lepe ()] =~ (63)

g 1

S S 64
167 |A[*T% 13 ©4)

lepe ()] =
For sufficiently small A, one may expect a crossover from ¢!
to t =3, as indeed confirmed numerically in Fig. 5(a).

If the emitter is in sublattice B, we always have v = 1/2
and |F| = 4J/(g*\/k), leading to the conventional 3 decay:

J? 1
wgictd

|lepe (1) ~ (65)
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FIG. 6. (a) Band dispersion and density of states (DOS) for the
alternatingly lossy lattice with J = 0.2x. While the energy spec-
trum is purely imaginary and thus there is no EP, the DOS at zero
energy (with maximal imaginary part) diverges. (b) Corresponding
asymptotic ¢~! (green) and ¢~ (blue) decay for the coupling to a
dissipative site with A = 0 and A = «, respectively. The green and
blue dashed lines are determined by Eqs. (63) and (64), respectively.
Here g = 1.5«.

Remarkably, similar to the case of the Wick-rotated 1D bath
(54), the coefficient in Eq. (65) does not depend on A, as also
confirmed numerically in Fig. 5(b).

As already mentioned in Ref. [76], the existence of EPs
is not so crucial—we can still observe the above algebraic
decays for 0 < J < « /4. See Fig. 6 for an example. Moreover,
the detuning to the EP A = —ik /2 does not make a qualitative
difference either (although not shown here). What is important
here turns out to be the criticality (gaplessness) of the system
and the divergent density of states at the eigenvalue with zero
imaginary part. Even though for Hermitian systems this alge-
braic decay is also present, its contribution to the dynamics
is obscured by the bound states, which have real energy and
therefore do not decay.

An intriguing feature of the alternating-dissipation model
described by Eq. (55) is the fact that the self-energy for
emitters coupled to the A sublattice does not diverge, but it
vanishes at the branch point zgp = 0, i.e., £4(0) = 0. This not
only gives rise to the anomalous ¢ ~! decay mentioned already,
but also to a non-decaying eigenstate that may not necessarily
have a localized photon profile (since the energy is not well
separated from the photon spectrum; cf. Appendix A). Indeed,
under PBCs, one can check that this eigenstate is nothing but
the photon Bloch wave created by &z g Withk =m.

On the other hand, under OBCs and provided that the emit-
ter is close to the right edge as well as A = 0, there appears a
(quasi) bound state in the continuum (BIC). Its wave function
can be chosen to be real, and it is given, up to a normalization
constant, by

J
[VBIC) X |:§ 6 — Z(—l)x_x"&ig] lg) ® |vac),  (66)

X=X,

where x, is the index of the unit cell where the emitter is
coupled. Note that for this model, since HeTff = Hgg (under
the natural basis consisting of the single atom or photon
excitations created by 6% or ‘A‘Lx /B from |g) ® |vac)), left
and right eigenvectors are the complex conjugate of one an-
other. The consequences of this can be clearly appreciated
in Fig. 7, where the fractional decay of the initially excited
emitter is related to the emitter weight of the quasibound state,
limy_ o |c.(1)]* = |c§IC|4, which decreases as |C§IC|2 o L~}

(a) lee(t)]? (b) Jee(t — o0)|?

10° 3 0 L)
E 10 E_ ©
L E o\
L [ o
\ -2
10_1 :_L B —l 1072 g_ © \‘O( L
I 107°
2| L=12 F
07 Fr—16 i |
10" 10° 10" 10°
Kt L

FIG. 7. (a) Excited-state population dynamics for a single emitter
coupled to an A site in a finite bath of varying size N and OBCs; the
emitter is coupled to the middle of the chain. The parameters of the
model are A =0, J =k, and g = 1.2«. (b) Long-term value of the
excited-state population for the same system.

as the system size L increases; or, rather, as the distance
between the emitter and the right end of the chain increases.
BICs of this kind are not unique to NH systems [87]. Actu-
ally, the same state, |Y¥gic) in Eq. (66), is an eigenstate in the
limit k — 0, in which the bath becomes a simple (Hermitian)
1D chain with NN couplings. However, there is also a crucial
difference. Note that in 1D Hermitian systems, BICs similar
to the one in Eq. (66) exist (have nonzero amplitude) between
the emitter and any edge of the bath, whereas in our NH model
stable BICs only exist between the emitter and the right edge
of the chain. To prove this, we just have to realize that these
BICs are a particular type of vacancylike bound states [82],
so their energies coincide with the energies of the eigenstates
of open chains. For our model, there are only three different
kinds of open chains, depending on the starting and ending
sublattice: AB...AB,AB...BA, and BA ... AB. It is only this
last kind that has an eigenstate with real energy. Of course, a
stable BIC with nonzero amplitude between the emitter and
the left edge will exist if we allow chains to start with a B site.

2. Two-emitter dynamics

For two emitters coupled to the same sublattice, the
self-energy is a symmetric two-by-two matrix with constant
diagonal elements. Thus, its eigenvectors are the symmetric
and antisymmetric superpositions ¢x = [1, £1]7/+/2 (cor-
responding to |+) o (6,° £ 6,%)gg)), allowing the spectral
decomposition,

X(2) = E4 ()P4 + X_(2)P-, (67)

with X1(2) = 211(z) £ ¥12(z) and Py = cici. In other
words, the probability amplitudes of the (anti)symmetric
superpositions are independent of each other and can be com-
puted the same way as the probability amplitude of the excited
state in the single-emitter case, the only difference being the
functional form of the self-energy associated to each state. As
it turns out, when both emitters are coupled to the A sublattice
(dissipative sublattice), depending on the parity of the number
of unit cells separating the two emitters, the (anti)symmetric
superposition has a nonzero overlap with a proper (normal-
izable) stable bound state, ¥_(0) =0 [X4(0) = 0] if x|
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FIG. 8. (a) Emitter dynamics for a pair of quantum emitters
coupled to the A sublattice. The initial state is the symmetric su-
perposition. The rest of the parameters are / =« and g = 1.5«.
(b) Bath dynamics for a system with x;; =5 and A = 0 [the rest
of the parameters are the same as in panel (a)].

is even (odd), whose wave function has the form (assuming
X < Xz)

J (4 X A €
h”b) e {g[é—lg +(=1) 21+1028]

-y (—1)**'ai3}|gg>®|vac>. (68)

X <x<xy

As a consequence, an initial (anti)symmetric state does not
fully decay, as shown in Fig. 8(a) (blue curve), and part of
the emitted photon remains trapped indefinitely between the
two emitters, see Fig. 8(b). This proper bound state does not
exist when both emitters are coupled to the B sublattice, or to
different sublattices. Note that such kind of two-emitter bound
state (68) appears also in the absence of dissipation (k = 0),
as mentioned in Ref. [73].

In addition, with two emitters we can observe other alge-
braic decays, which are not present in the single-emitter case.
For example, for two emitters coupled to the A sublattice out
of resonance with the bound state (A # 0), we find a decay
ot 3, see Fig. 8(a) (green curve). Such a power law can again
be quantitatively understood from the analytic expression of
the self-energy (59) and the general formula in Eqgs. (50) and
(51) (see Appendix D for detail).

B. Two dimensions

Finally, let us consider a 2D model with an exceptional
ring. As shown in Fig. 9(a), this model is inspired by the
four-step SWAP model [88], which is arguably the simplest
example of 2D anomalous Floquet insulators with chiral
edge modes but zero Chern number (actually no dynamics in
the bulk). The crucial difference here is that each arrow in

ReE/k

— ']f

-
=2

i

0 2
3 ImFE/k

FIG. 9. (a) 2D NH lattice described by Eq. (69) (apart from a
global loss). Here each arrow represents a unidirectional hopping and
the orange rectangle indicates a unit cell containing two sublattice
degrees of freedom A and B. (b) Real (upper) and imaginary (lower)
band dispersions. The yellow lines indicate the exceptional ring.

Fig. 9(a) is interpreted as a unidirectional hopping rather than
shift. Note that the unidirectional Hatano-Nelson model can
be obtained from a 1D shift (Thouless pump [89]) via such a
mapping. Recalling that the underlying open system is lossy,
we know that the NH Bloch Hamiltonian reads

_n; 7i(ky+kx)
hk:/c[ 2 lte } (69)

eikx + eiky —2i
This effective NH Hamiltonian can be obtained by choosing
H,, to involve only NN hopping with amplitude J = « /2, m =
4 and

51 ~ A ~0 ~ A
Lr = CrA — ICr—e,,B> r = CrA — lcr—e_v,B,

~ ~

3 4 n 4 A n
L] =¢Cp —iCa, L =20Cp— ICrie te,,A- (70

Here the sublattice labels A and B are indicated in Fig. 9(a)

and e, , denotes the unit vector along x, y direction.
Interestingly, apart from the background loss, the Bloch

Hamiltonian (69) is the square root of the NN hopping model,

(hk + 2iK0p)* = 2k*(cos ky + cos ky)ay. (71)

Accordingly, one can readily obtain the band dispersions to be

€xr = —2ix £ k/2(cosk, + cosky), (72)

implying that the EPs constitute the contour k, £k, =7
mod 27 [see Fig. 9(b)]. Using the same property (71), one
can analytically evaluate the single-emitter self-energy to be
[73]

5 )_/ d*k &z + 2iK)
9= Bz (27)? (2 + 2ik)* — 2k2(cos ky + cos ky)

-5 ]
T w(z + 2ik) 7+ 2ik ’

where K(m) = [7/>d0/y/1 — msin® 6 is the complete ellip-
tical integral of the first kind. One can check that there is
a logarithmic branch point at the origin, around which the
self-energy is dominated by [90]

ig? z
() =5 —In (g) (74)

Such a singularity is similar to that found in the NN 2D
Hermitian model at the band center [72,73] and gives rise

73)
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FIG. 10. Emission dynamics for a single emitter with A =0,
coupled to a single site of the 2D NH lattice described by Eq. (69);
the lattice considered has 30 x 30 unit cells and PBCs. Top row:
Bath occupations around the emitter location, |c,(¢)|?, at different
times, for the case with g = 0.4«; the color scale has been nor-
malized in each snapshot such that the brightest color corresponds
to the maximum single-site bath occupation. Bottom row: Emitter
excited-state population (left) and mean-squared displacement of the
photonic cloud (right) as a function of time for different values of
the coupling constant. The expectation value is computed as follows:
(0)5 = tu[Opp(1))/trlps(@)], and pg = PppPy, with Py =1—6,®
|vac)(vac]| .

to a nonexponential atom decay, as numerically confirmed in
Fig. 10. However, recalling that we are considering the square
root of the NN 2D Hermitian model, the observed nonexpo-
nential decay should be attributed to the lower branch cut in
the Hermitian model, where its contribution is overwhelmed
by the lower bound states. In contrast, here this branch point
has the largest imaginary part and thus dominates the long-
time dynamics.

Quantitatively, for the time interval in our numerical cal-
culations, we find that the nonexponential decay seems to
be well described by oc #7273, as is also the case in the Her-
mitian model [72,73]. However, by naively identifying the
logarithmic scaling on the right-hand side (rhs) of Eq. (51)
as a zero power (v = 0), we may expect from Eq. (50) that the
decay follows an algebraic law ¢ =2, possibly with logarithmic
corrections that may account for the apparent inconsistency.
Note that such an actual scaling has also been mentioned in
Ref. [73].

In addition, just like the 1D (passive) PT -symmetric model
(56) considered above, the gradient of Eq. (69) at the wave
number with the largest imaginary part vanishes. While, un-
like the 1D case, this does not lead to a divergent density of
states, it significantly alters the photon dynamics, which turns
out to be diffusive rather than ballistic, as numerically demon-
strated in Fig. 10. This result may be understood from the fact
that the free photon propagation in this 2D lattice is diffusive.
Qualitatively, this may be understood from the fact that at each
site the photon can only move along one of the two directions,
so the dynamics should be rather constrained. Quantitatively,
by expanding the NH Bloch Hamiltonian near the zero damp-
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-0.5 + + * + + *
< i * 4 i i
~ it i x
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FIG. 11. Spectrum of a quantum emitter coupled to a Hatano-
Nelson lattice (35) with 50 sites under periodic (green +) and open
(blue x) boundary conditions. The bare photon dispersion is indi-
cated by the black dashed curve. In all the panels, J = 0.6k and
A = —0.5ik.

ing point (ky, k,) = (v, w), we can estimate the diffusive
photon (density) profile to be roughly (kt)™2e~%" */(kt) up to
a constant coefficient, which also implies the entire photon
decay is critical and follows an algebraic law ¢!,

In fact, the diffusive photon propagation appears also in the
passive PT-symmetric 1D model (56). This property, in turn,
provides an intuition into the algebraic emitter decay observed
in all these models: Since the emitted photon propagates very
slowly, there is a larger (compared to the ballistic case) prob-
ability that it is absorbed (and then emitted) by the emitter
again, leading to an enhancement of non-Markovianity. This
argument also gives the intuition why the branch-cut con-
tribution becomes large when the detuning is close to the
band edges in Hermitian systems [73], near which the photon
modes have almost vanishing group velocities.

Before ending this subsection, we would like to mention
that neither the nonexponential decay nor the diffusive photon
dynamics necessarily requires EPs. Indeed, we expect that
similar phenomena may be observed in a Wick-rotated 2D
Hermitian model (cf. Sec. IV). To observe exotic phenomena
directly related to EPs, we may have to require the imaginary
part of EPs to be the largest, a seemingly very uncommon
situation. This could be yet another specific open problem for
future studies.

VI. DISCUSSIONS

In this section, we discuss some general observations we
found in our case studies. We also discuss the experimental
relevance of our models.

A. Spectral stability

A unique feature of NH matrices is the spectral instability
against perturbations. However, for all the examples consid-
ered above, where we put one or a few emitters in periodic
lattices in the thermodynamic limit, the system spectra do
not seem to be altered so much except for the bound states
(see Fig. 11 for an explicit illustration). It is thus natural to
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ask whether the spectral stability is a universal property. For
simplicity, we focus on the case of a single emitter.

One can show that the number of bound states outside
the bare photon spectrum (especially excluding BICs) should
always be finite in the thermodynamic limit. We first recall
that the eigenenergies of bound states are determined by
Eq. (22), i.e., the poles of the Green’s function. Provided that
the system is local, we know that the Bloch Hamiltonian 7y
depends smoothly on k and so will the self-energy X(E) on E
away from the bare photon spectrum. In complex analysis, this
property is known as analyticity, implying that the function is
holographic, i.e., it can be fully determined from a small re-
gion or even a subset of infinite points within it. In particular,
if an analytic function has infinite zeros on a finite region, it is
identically zero [81]. Now back to the lhs of Eq. (22), which is
analytic in E and its zeros should locate in a bounded region
since |X(E)| decay like |E|~! for large |E|, we know that an
infinite number of bound states implies that the lhs of Eq. (22)
is identically zero, leading to a contradiction.

The remaining problem is whether dramatic spectral
change could occur on and inside the bare photon spectrum,
such as a significant redistribution of the density of states. We
conjecture this cannot occur either, provided that we keep g
finite or take the thermodynamic limit first. The intuition is
that, according to the finite-size version of Eq. (22) which
applies to any eigenstates, there should be a solution near
each eigenvalue of 7, around which the self-energy becomes
very sensitive. To explain a bit more why this problem could
be difficult, let us focus on a single-band lattice with band
dispersion h. If the system is Hermitian and the detuning
is real, one can readily check that Eq. (22) is equivalent to
V/(E) = 0, with

| A

Ve =75k —AY =) Infz—Ryl. (75)

keBZ

This function may be interpreted as a potential for a charged
particle arising from a harmonic trap centered at A and an
array of charged particles fixed at /’s. Here the Coulomb
force is repulsive and proportional to the inverse of distance.
The zeros of V'(z) are thus (stable) equilibrium points of
this potential. Intuitively, there should be equilibrium points
between any two adjacent charges. This result suggests a small
deviation from the bare photon spectrum. For NH systems,
however, we should get rid of the absolute values in the
Coulomb potentials in Eq. (75). Hence, V (z) becomes com-
plex in general and can no longer be interpreted as a potential.
It is thus not obvious whether the zeros of V’(z) are guaranteed
to be around #;’s. Mathematically, the crucial difference is
related to the fact that the mean value theorem, which holds
true for real functions, generally breaks down for complex
functions [91].

On the other hand, if we first take the large-g limit for a
finite-size system, we expect the system spectrum would be
that of the NH lattice with some vacancy defects at the sites
directly coupled to the emitters [82]. This may significantly
alter the spectrum (see the right-bottom panel in Fig. 11 for
an example) due to the boundary condition sensitivity of NH
systems, as will be discussed in the next subsection. Note that
the noncommutativity between the thermodynamic limit and

certain limit of coupling strength has already been highlighted
in Refs. [31,92] for NH lattices alone.

B. Impact of boundary conditions

As an important implication of the instability of NH matri-
ces against perturbations, it is known that both spectra and
eigenstates of NH systems may dramatically change under
different boundary conditions. Indeed, such boundary condi-
tion sensitivity appears in any NH system with skin effect,
exemplified by the Hatano-Nelson model. This is also the
case in the presence of emitters. For example, for the Hatano-
Nelson model (35), one can check that while all bound states
are localized near the emitter under PBCs, all the eigenstates
are localized at one boundary under the OBC, provided that
the coupling strength is not so strong. This applies partic-
ularly to those bound-state-like modes (whose eigenvalues
obviously locate outside the “bulk” spectrum under the OBC)
in the upper panels in Fig. 11.

On the other hand, we found that the atom-decay and
photon-emission dynamics do not depend on the bound-
ary condition, at least in the short-time regime. In fact, it
has recently been proved for an arbitrary NH lattice with
finite-range hopping that the wave propagation in the bulk
is (almost) not altered by the boundary condition [93]. The
proof applies directly to our setups and justifies the boundary
insensitivity of bulk dynamics in general. Here, we provide
an alternative argument based on the equivalence of Lindblad
dynamics and NH Hamiltonian evolution in the single-particle
sector of a lossy Markovian open system. By further imposing
locality, we know that the Lindblad dynamics satisfies the
Lieb-Robinson bound [94], and thus so does the NH Hamil-
tonian evolution. This further implies that the dynamics in the
bulk should have weak boundary-condition dependence [95].

It is worthwhile to mention that the Lieb-Robinson bound
is expected to be generally violated in NH systems with
multiple particles [96,97]. An intuitive understanding is
that nonlocal measurements and postselections are usually
required to achieve NH Hamiltonian evolutions. This obser-
vation may potentially imply nontrivial boundary dependence
for dynamics in NH nanophotonic systems upon going beyond
the single-particle paradigm.

C. Validity of the single-pole approximation

Perhaps the simplest approach to understanding the emitter
dynamics in Hermitian baths is the single-pole approxima-
tion (SPA), which consists of replacing the self-energy X(F),
appearing in the integral (26), by a constant X(A). Such
an approximation is also known as Fermi’s golden rule or
the Wigner-Weisskopf approach [98]. In this approximation,
the effect of the whole bath is reduced to a shift (possibly
with both a real and an imaginary component) of the emitter
detuning:

Co(t) e e TATERN, (76)

This is valid in the weak-coupling regime (g < «,J) and
when the self-energy X(FE) is smooth around £ = A.

Within this approximation, it is easy to understand that
for Hermitian systems there is a transition in the emitter
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FIG. 12. (a) Spectrum of the unidirectional Hatano-Nelson
model under PBC (green) and OBC (blue). (b) Dependence of the
imaginary part of the pole (divided by «) on the complex detuning A
for g = 0.2«. The left and right panels show the exact results (77) and
those under the SPA (76), respectively. Clearly, significant difference
appears only near the OBC spectrum.

dynamics: the excited state population either decays or not
depending on whether the emitter is resonant or not with the
bath modes. At the transition between the two kinds of behav-
ior, the self-energy is singular, so the SPA breaks down—it is
where the non-Markovian effects are the strongest.

One may wonder whether a similar effect occurs in NH
systems. Is there a dramatic change in the emitter dynamics
when the emitter is resonant with the bath modes? The answer
is not so straightforward as in the Hermitian case, since the
spectrum for OBC or PBC can be very different (especially in
NH systems with point-gap topology). As it turns out, being
resonant with PBC modes may not have a big impact on
the emitter dynamics. For example, in Fig. 12 we plot the
decay rate for a single emitter coupled to the unidirectional
Hatano-Nelson model, i.e., Eq. (35) with J = k /2. The emit-
ter dynamics is given exactly by

c(t) = Rie™ ™" 4+ R_e~, 77
where 272 = A — ik + /(A +ik)? +4g> and Ry = +(z+ +

ik)/(z+ — z—). The “exact” decay rate, which is taken as the
imaginary part of the pole that is closest to A (z4 if ReA > 0,
or z_ otherwise), agrees well with the one given by the SPA
all over the PBC spectrum. By contrast, they disagree when A
is tuned close to the OBC spectrum, where, in fact, the self-
energy diverges. Actually, for A tuned to the singularity (A =
—iK) |z+ — Al = |z= — A] and |R4| = |R_]|, so in that case
the SPA breaks down, no matter how small g is.

Let us provide a plausible argument about why the break-
down of SPA is more relevant to the spectrum under OBCs
instead of PBCs in 1D. In general, a 1D NH Bloch Hamilto-
nian /; may exhibit some nontrivial spectral winding topology
so its spectrum forms one or several loops. The self-energy
can be evaluated as [cf. Eq. (21)]

5(2) = f Bt oy (78)
= e 12 ,Bgﬂ B 88

where we have replaced k by B = e, Recalling that the NH
lattice is assumed to be short-ranged and the atom-photon
coupling is on site, we know that hg and gg are analytic
(on the whole complex plane excluding B = 0, 0o) and so is
3(z) outside the loop. As long as the spectrum of hg does
not touch z, one can freely deform the integral contour to a
circle with arbitrary radius, which actually corresponds to the
twisted boundary condition with an imaginary flux [17,99],

while keeping the integral result invariant. This also gives
a natural way of holographically reconstructing X(z), tech-
nically known as analytic continuation, since the spectrum
of hg might shrink on a deformed contour. Denoting D and
D' as the interiors of the original and shrinked spectra, we
know that 3(z) can be analytically extended to D\ D’ via
the deformation. In fact, it has been shown that the common
part (set intersection) of the interior of the spectra of hg for
various contours gives nothing but the OBC spectrum [41].
This implies that the analytic continuation of X(z) is possible
outside the OBC spectrum. Also, the analytically continued
3(z) necessarily exhibits some singularities (divergence) on
the OBC spectrum, where perturbative analysis in terms of
small g breaks down and so does the SPA.

D. Experimental implementations

Many experimental platforms exist in which NH lat-
tice Hamiltonians (see, for example, the overviews in
Refs. [15,16]), or even the full Lindbladian dynamics (see,
e.g., Refs. [100-102]) can be realized. In the systems con-
sidered in this paper, one or multiple additional modes or
qubits (emitters) have to be coupled to the lattice. To make
contact with the typical setup in quantum optics, the emitters
need to effectively be two-level systems, such as atoms or
qubits. While this is not required to study the single-particle
effects that we discuss here, it will be crucial to observe
many-particle effects such as Dicke superradiance. Closest
to the idea of emitters coupled to NH baths are realizations
such as atoms coupled to nanophotonic structures [1]. In such
devices, loss of photons in the bath naturally occurs, but it may
be difficult to control. Better control is afforded in synthetic
platforms, such as superconducting qubits coupled to super-
conducting metamaterials [2,5] or ultracold atoms in optical
lattices (see proposal in Ref. [71]). Since all of the physics
discussed here are single-photon physics, having two-level
emitters is not strictly necessary, and any synthetic platform in
which NH arrays can be (weakly) coupled to isolated modes
constitutes a viable platform. In the following, we describe
a concrete idea how collective loss may be engineered in
synthetic platforms.

A key challenge in any platform is to introduce spatially
nonlocal collective loss as described by Eq. (7). A general idea
is to introduce some auxiliary rapidly decaying modes and
couple them coherently and nonlocally to the primary degrees
of freedom. After adiabatically eliminating these fast modes
[103], we will end up with a collective loss of the primary
degrees of freedom. This technique has been described in
detail in Refs. [80,104,105] and demonstrated experimentally
in coupled resonators [106], Josephson junctions [107], and
optomechanics [108,109]. See Fig. 13(a) for an illustration for
the minimal two-mode setup. In general, if we can introduce a
set of auxiliary degrees of freedom b,, on the same lattice,
where © = 1,2, ...,m and each internal state p undergoes
on-site loss with decay rate «,, we can engineer the desired
collective loss operators L}’s by coupling these auxiliary
modes to the primary photon modes of interest through

M - Z Z KMK rr’s ru.ar/s’ + H-C-), (79)

rrel s'el
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FIG. 13. (a) Schematic illustration of realizing collective loss of
two modes @, and &, by coupling them to a common ancilla mode
b. If the ancilla mode has a large decay rate, we can adiabatically
eliminate it, obtaining an effective collective loss for a, and a,.
(b) Implementation of the 2D NH model in Eq. (69). Here the
gray (pink) circles correspond to the primary (auxiliary) degrees of
freedom. I-?M (u = 1,2,3,4) is responsible for the jump operator L*
in Eq. (70). Solid and dotted bonds in color share the same coupling
strength but differ by a phase factor i.

provided that «,, is large enough compared to other parameters
such that the adiabatic elimination is well justified. Here, we
provide a concrete example of implementing the 2D model
in Eq. (69). As shown in Fig. 13(b), there are four auxiliary
modes (pink circles) associated with one unit cell, each cou-
pled to two nearest primary modes (gray circles). To realize
the jump operators in Eq. (70), we should fine-tune the cou-
plings between the auxiliary and primary modes indicated by
the solid bonds in Fig. 13(b) to be J,p, while those indicated
by the dotted bonds to be —iJy.

Let us provide a bit more detail about how to realize the
models we studied on specific experimental platforms. We
will specifically focus on platforms that directly extend to
the many-body regime, which requires nonlinear emitters.
Ultracold atoms in optical lattices have been proposed as a
candidate for realizing Hermitian nanophotonic systems [7]
and NH lattices [31,110,111]. Following these proposals, a
localized emitter decaying into a bath can be simulated by
employing two (meta)stable states of a bosonic atom |s) and
|g), trapped in a state-dependent optical lattice that is very
deep for |s) and shallow for |g). In this configuration, the atom
is localized if it is in |s) (corresponding to an excited emitter)
but itinerant if it is in state |g) (corresponding to a photon). Us-
ing a two-photon transition via an excited state driven by two
lasers, the stationary atom in |s) can be coupled coherently
to itinerant atoms at a specified frequency [7]. Single-site
addressing can be employed to flexibly engineer the positions
of the emitters. The hopping amplitudes with complex phases
may be engineered by using techniques developed for gen-
erating artificial gauge fields [112,113]. When going to the
many-body regime, we can use Feshbach resonances [114] to
set the interactions among the photons |g) and between pho-
tons |g) and emitters |s) to zero, while enforcing an effective
two-level nonlinearity by making the interaction among |s)
large. Finally, spatially dependent loss can be introduced via
another Raman transition to an untrapped state.

Superconducting circuits serve as yet another ideal plat-
form. Here, the two main ingredients could be transmon qubits

[115] and a superconducting metamaterial, as demonstrated
in Ref. [116]. To control the interactions between modes,
tunable couplers can be used, which have been demonstrated
in many different settings (see Ref. [117] and references
therein). Nonreciprocal coupling requires an effective gauge
field in addition to dissipation, which can be achieved through
parametric driving [118]. Passive implementations have also
been realized [119]. This control can then be used to directly
realize the scheme in Fig. 13; this has been demonstrated for
few modes already [106,107].

Before ending this subsection, we would like to discuss
the possibility of exciting bound states in NH nanophotonic
systems, a topic with particular experimental interest. In the
context of waveguide quantum electrodynamics, particular
attention has been devoted to BICs, which may arise when re-
tardation in the waveguide is no longer negligible [120]. From
the point of view of applications, an important question is how
this state can be addressed and detected. Since a BIC is an
eigenstate of the Hermitian emitter—waveguide Hamiltonian
in the single-excitation subspace [e.g., Eq. (66) in the zero
dissipation limit], it cannot be excited by a single-photon wave
packet but instead requires carefully engineered two-photon
wave packets [121]. To reach optimal excitation probability,
very long pulses have to be used [122]. The reason why single-
photon wave packets do not suffice can easily be understood
by calculating the time-dependent overlap of a wave packet
| (¢)) with the bound-state wave function |yr,),

(Y| e~ tmisnt |y, (0)) = =B ([ (0)), (80)

where I-?Hermmanhpb) = Ep|¥p). In contrast, a key feature of
NH systems is that left and right eigenstates of the Hamilto-
nian are distinct and that eigenstates are no longer necessarily
orthogonal and thus Eq. (80) ceases to hold. As a result, the
overlap between the bound state [1y) and the time-evolved
state |{(7)) is no longer conserved and, therefore, in stark
contrast to Hermitian systems, the bound state can be excited
from the continuum. We illustrate this fact with a simple
example involving one emitter coupled to a Hatano-Nelson
chain, see Fig. 14. Interestingly, while both Hermitian-like
and hidden bound states can be excited as the simple argument
above always applies, it turns out that the latter can be excited
more efficiently, at least for our specific choices of parameters.
A more quantitative analysis may require a framework for
studying scatterings [123] between photons traveling in NH
baths and emitters. This goes beyond the scope of this paper
and we would like to leave it as future work.

We note that the (complex) overlap (Y| (¢)) is a linear
combination of the complex amplitudes of the state on each
site. On photonic platforms, this can be measured using ho-
modyne tomography [124]. In a classical platform such as a
mechanical metamaterial [47], this can directly be obtained
from the trajectory of each resonator.

VII. CONCLUSION AND OUTLOOK

In summary, we have established a general framework for
exploring NH physics in nanophotonic systems with engi-
neered dissipation. We have also provided some case studies
on a couple of minimal models that nevertheless exhibit
rich phenomena. In particular, we have demonstrated that the
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FIG. 14. We simulate an emitter coupled with strength g = 0.5«
to a fully directional Hatano-Nelson chain [Eq. (35), with J = /2]
with a total of L = 80 sites and PBC. The initial state consists of a
single excitation localized at the Oth bath site, while the emitter is
coupled at the 20th bath site. (a) Overlap of the time-evolved wave
function with the bound state at different detunings A = (2 —i/2)x
(orange squares) and A = —ik /2 (blue dots). In the former (latter)
case, there is only a Hermitian-like (hidden) bound state. Note that
for a Hermitian bath, the overlap would be constant [cf. Eq. (80)].
(b) Probability to find the excitation in different bath sites as a
function of time.

hidden bound states (of multiple emitters) and unconventional
photon-emission dynamics unveiled in Ref. [76] also appeared
in the general Hatano-Nelson model. We have pointed out that
an algebraic atom decay can be readily achieved by an imag-
inarily (Wick) rotated 1D lattice, and new exponents appear
for multiple emitters in the passive PT -symmetric lattice with
alternating loss. We have also studied a NH 2D model with
nonexponential emitter decay and diffusive photon dynamics.
Finally, we have discussed some general features and possible
experimental realizations of these NH nanophotonic systems.

There are a lot of possible directions for future studies.
Aside from the specific problems mentioned in the main
text, the many-body generalization [10,71,75], where atomic
(spin) and photonic (bosonic) excitations are no longer equiv-
alent, could be a natural but challenging project. In this
context, a question of particular interest is whether the unique
NH features based on the single-particle picture, such as
the point-gap topology, still play an essential role. On top
of the ultrastrong-coupling regime [125-127] mentioned in
Ref. [76], we would like to point out another relevant situation
in which the bath involves some parametric amplifications
described by pairing terms like aa 4+ H.c. Note that such a
bath alone may exhibit some genuine NH topology even in
the absence of dissipation [128], although its influence on
quantum emitters remains unexplored. In addition, one should
necessarily consider multiple-excitation sectors if the jump
operators involve particle gain [129,130].

As stated in Ref. [76], even on the single-particle level
there are many natural generalizations to, e.g., giant-atom
emitters with spatially nonlocal couplings [131-133], other
NH band topology [31,34,35,41,134] and exceptional struc-
tures [38—40,135,136], and to systems with disorder [137],
which are ubiquitous in real experiments. One may also con-
sider how the bath-mediated interaction between the emitters,
which is already nontrivial for atomic arrays in the vacuum
[10,138-140], could be enriched by introducing unnatural
non-Hermiticity. Further studies along this line may also open
up new possibilities for practical applications in, e.g., quan-
tum simulation [141], quantum state preparation [142,143],
and quantum metrology [144,145].

Finally, we would like to mention two specific problems
that are, in our opinion, of particular interest and require
systematic studies. One is to classify various van Hove sin-
gularities in NH systems and clarify their impact on emitter
dynamics. To make a connection with branch cuts in the
Green’s function, we expect it is more appropriate to consider
the singularities associated with the GBZ. In 1D, these singu-
larities should appear at the ends of the treelike (OBC) energy
spectra. The other problem is to study quantum emitters lo-
cated at the boundaries of Hermitian topological systems (e.g.,
Chern insulators). Inspired by the Hermitian-NH correspon-
dence discovered in Ref. [146], we expect such a setting
may share some similarities with that in which emitters are
embedded in the bulk of certain NH topological systems. For
example, the emitter dynamics at the edge of a 2D quantum
Hall (Chern) insulator should be comparable to that in the bulk
of the Hatano-Nelson model, as studied in this paper.
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APPENDIX A: EXPONENTIAL LOCALIZATION
OF THE PHOTON PROFILE

We have shown in the main text that for a bound state, ¢
can be related to ¢, via Eq. (23) and then ¢, = [C,S]ATE, can be
obtained by Eq. (25). Combining these two equations allows
us to express ¢, explicitly as ¢, = Zilvzl ¢, Where

ddk eik<(r—rn)
n/BZ Qr) E — Iy

Provided that E is outside the spectrum of i Vk € BZ, there
should exist K € Rﬂ such that (E — )~ is analytic on D =
{k : Rk € BZ, |3k| < K}, no matter whether /4 is Hermitian
or not [147]. Deforming the integral contour, we can express
Crp @S

(AL)

T
Crn = C [gns]sep

dp  itk+iK')-(r—r,
. _ce/ dkez(z)(rr)
rn —
"Joz Qr) E — hypixe

lgnslis, (A2)
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as long as |K'| < K. In particular, we can choose K’ such that
|K’| = K while the sign of each spatial component is the same
as that of r — r,,. In this case, we can bound the vector norm
of ¢,, from above by

el < Cpe X7, (A3)

where C, = [cIM /Y, &% Wwith M = maxkep |[(E —
hi)~'|| does not depend on r. It is now clear from Eq. (A3)

that the photon profile should be exponentially localized near
the atoms.

We note that the idea of analytically extending k dates back
to the demonstration of Wannier localization in 1D Hermitian
lattices over 60 years ago [148]. Here we emphasize that this
idea applies equally to NH systems. Moreover, unlike the
Wannier state, which may not be exponentially localizable
in two and higher dimensions due to, e.g., a nontrivial Chern
number [149], the bound state is always exponentially local-
ized, just like the correlation in the ground state of a gapped
phase with local interactions [150]. For free-fermion systems,
this difference can be understood from the fact that, even if the
Bloch projector onto the Fermi sea is continuous in k [151],
one may not be able to find a set of (filled) Bloch states that
are also continuous in k due to a topological obstruction such
as a nontrivial Chern number.

APPENDIX B: RESOLVENT METHOD

We consider lossy dynamics generated by a NH Hamilto-
nian A with no eigenvalue above the real axis in the complex
energy plane. Suppose that the initial state |v) is inside a
subspace onto which the projector is P, i.., 15|1/f0) = |Yo),

we can decompose |,) = e"H’WO) into P|1ﬁ,) + QW,) 0=
1 — P is the complement of P). The component P|1,) can be
evaluated by

Plyn) = Pe ™ Plyp)

=L / dGp(+i0%)e ™ |yg), (B
27 J_o
where Gp(z) is the constrained propagator defined as
Gr(2) =Pz —A)"'P. (B2)

Likewise, the component O|y,) can be evaluated by

Oly) = i/ dwGop(w +i0H)e ™ |yp),  (B3)

where GQF (z) is another constrained propagator defined as

Gor(2) = 0z — H)'P. (B4)
One can check that
Gr(z) = GV () + G () HpoGor(2),

Gor(2) =

where I-7PQ = PI-?Q, I-?QP = QI—?IS, and

Gy (HorGp(2), (BS)

G () =Pz — Hp)'P,
Gy'(2)= 0@ — Hy)™' 0. (B6)

with Hp = PHP and Hy = QH Q. Combining the two equa-
tions in Eq. (B5) by eliminating GQP(Z), we obtain

Gr2) =[G - £@)]
$(2) = HpoGYy (2)Hgp, (B7)

which in turn implies [due to the second line in Eq. (B5)] that
GAQP (z) can be expressed in terms of Gg))(z), GS) (2), ﬁpQ, and
Hop.

While the above formulas are formally the same as the
well-known results for Hermitian systems [152], we empha-
size that they apply equally to NH (lossy) systems and even
NH projectors. As for the photon-emission problem discussed
in the main text, however, the projector onto the atomic-
excitation subspace is still Hermitian while both Hp and Hy
are NH in general. Concretely, we have

Hp = Z A6,

Hy =" iy,

keBZ
Hor = Hy, Z > 6fag,.  (BY)
n=1 keBZ

where all the notations follow those in Eq. (15). We focus
on the single- ex01tat10n sector and choose the basis to be
{6:51g)}_, and {akslvac)}keBz scl, Which constitute the sub-
spaces of the projectors P and Q, respectively. By substituting
Eq. (B8) into Egs. (B7) and (B5), we obtain Gp(z) = G.(z)
and Gop(z) = |A|7"2 @yepz Gk (2), where G,(z) and Gy(z)
are given in Egs. (27) and (29) in the main text, respectively.

APPENDIX C: VANISHING SELF-ENERGY AT
MAXIMALLY WINDING REGIONS

We start detailing the calculation of the self-energy for the
general Hatano-Nelson model,

1 T ikx
—/dke
T J_x z—hy

1 yh

dy— 2>
2mi yay2+by+c

~ 1 %d ( Y Y )
=————— Qdy -
2ria(y+ —y-) Y=Y+ Y—y-

1
et - —yted —y-pl. €
where we assume a # 0. To go from the first line to the
second, we performed a change of variable y = ¢™12"®k guch
that the integral becomes a contour integral along the unit
circumference in the complex plane (counter-clockwise). The
denominator of the integrand is a second-order polynomial in
the new variable y with coefficients:

¢(z,x) =

a= sign(x)g —J, b=z+ix, c= —sign(x)g _J. (C2)

Then, we split the integral using partial fractions; § = b> —
dac = z* + 2ikz — 4J?* denotes the discriminant of the second
order polynomial and y. = (—b & +/8)/(2a) denote its roots.
Last, we use residue integration—only the poles inside the
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unit circle contribute to the integral, so we express the result
with the Heaviside’s step function ®(y). Equation (C1) is not
valid when the denominator of the integrand is a first-order
polynomial, which may happen if there is hopping only in
one direction, e.g., when J = « /2. In that case, we obtain the
following result: For x > 0,

(a%) iflz+ic] >«
— ) z+ik \z+ik )
¢(z, x) {6 ifletic] <k,
whereas for x < 0
0, if |z 4 ik| >«
= X . . 4
¢(Zy.7C) {_%(HLI-,()“L’ lf|Z+lK|<K' (C )

As we show next, some features of the self-energy are
intimately related with the topology of the bath, as determined
by the spectral winding number. Let us remind the reader
of the following theorem (known as the argument principle
[81]): For any analytic function f : C — C, the number of
zeros counted with multiplicity inside the region delimited
by the curve y : [a,b] — C, y(a) = y(b), is equal to the
winding number ind(f(y)) [cf. Eq. (36)] of the curve f(y)
around the origin. Thus, for the polynomial p(y) = ay* +
by + ¢, with coefficients specified by Eq. (C2), the number
of roots inside the unit circle, which are the ones that con-
tribute to the integral in Eq. (C1), is the same as the index of
the curve p(e*) for k € [—m, w]. If x > 0, p(e*) = e*(z —
h), which implies that ind(p(e’*)) = 1 + ind(z — hy). For
x <0, p(e*) = e*(z — h_y), thus, ind(p(e*)) = 1 + ind(z —
h_x)=1—1ind(z — ht). Now we can clearly see that for
points z inside the loop defined by the bath’s complex dis-
persion relation Ay, a situation that we will denote by z € £,
the self-energy strictly vanishes, ¢(z € €,x) = 0,if x > 0 and
J>0,orifx<<0andJ <O.

In the following, we generalize this result to arbitrary 1D
single-band NH lattices with finite range hopping. Denot-
ing the largest leftward (rightward) hopping ranges as g (p),
the Bloch Hamiltonian (band dispersion) takes the following
form:

q
he =Y Jue™, (C5)

n=-p

where the hopping amplitudes J,,’s are complex in general.
For the multiemitter self-energy matrix, if the distance x >
0, the matrix element is proportional to the integral

. x) 7§ dy oy (C6)
Z,X) = — .
Iyl=1 2mi P — ZZ:g ‘Infpyn

If ind(hy — z) = —p # 0, which implies that no zeros of
zy? — 3 P8, ,y" are within the unit circle (according to the

argument principle [81]), the above integral (C6) vanishes.
Similarly, if x < 0, the matrix element is proportional to

d —x+q—1
6z x) = 7l§ oY L@

: ptq
yi=1 2izyd — Y P gy

If ind(hy — z) = g # 0, which implies that no zeros of zy? —
S P 4qy" are within the unit circle, the above integral
vanishes.

Note that {z : ind(hx — z) = —p}and {z : ind(hx — 2) = q}
are the maximally winding regions, since the spectral winding

| + A
] XEb
2t

<

m -3

o
_5t

-3 -2-10 1 2 3
ReE/k

-3 -2-10 1 2 3
ReE/k

FIG. 15. For the NH lattice described by Eq. (C8) with ' = 2«,
there are both maximally (ind = —2) and nonmaximally (ind =
—1) winding regions in the complex energy plane (left). While the
eigenenergy FE,, of the hidden bound state in the maximally winding
region is always pinned at the complex detuning A, such a relation
generally breaks down in the nonmaximally winding region (right).

number of A in Eq. (C5) can only take on integers among
[—p, q]. For the Hatano-Nelson model (p = 1 and/or g = 1),
the maximally winding region is simply the interior of the
spectral loop.

Let us provide another simple example showing that a
nonzero winding number alone (i.e., not maximal in general)
is not sufficient for pinning the eigenenergy of the (hidden)
bound state at the complex detuning. Consider a 1D NH lattice
with both NN and next-to-NN unidirectional right hopping.
The Bloch Hamiltonian reads

he = k(e — 1)+ k'(e7 ¥k = 1). (C8)

The corresponding self-energy can be analytically obtained
to be

X(z) = %()’+@+ —y-0.), (€9)
where y. is the roots of (z + ix + ik’ )y> —ky — k' =0, 8 =
k2 + 4k’ (z + ix + ik’) is the discriminant and ©, = O(1 —
[y+]). By choosing, e.g., ' = 2«, we find that there is a non-
maximally winding region (ind = —1) on top of a maximally
winding region (ind = —2), as shown in Fig. 15. One can
check that the self-energy (C9) identically vanishes in the
maximally winding region, but otherwise has a nontrivial z
dependence. As a result, if a complex detuning A lies in a
nonmaximally winding region, we do not have a bound state
with eigenenergy being exactly A in general (cf. Fig. 15).

APPENDIX D: BRANCH-CUT SINGULARITIES FOR THE
ALTERNATINGLY LOSSY LATTICE (56)

We provide quantitative explanations on the various ex-
ponents of algebraic atom decay observed in the passive
PT-symmetric lattice (56) with alternating loss. Since we are
only interested in |c.(¢)|?, it suffices to know the absolute
value of F. Accordingly, we do not need to exactly identify
%1, but only have to know the amount of sudden jump in the
self-energy. Noting that y,y_ = 1 for y, in Eq. (59), we know
that the self-energy right before/after the jump is nothing but
the coefficient before ®_ /O_ (or vice versa).

For a single emitter in sublattice A, the self-energy is given
by Eq. (61). Therefore, the lhs of Eq. (51) (up to a sign, as is
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always the case in this Appendix) reads

1 1 28%23/8

- A— oA+ - AP g
where 8 = z(z + ik (22 + ikz — 4J%) ~ —4ikJ*z for small z
(i.e., z close to 0, which is the branch point). If A =0, the
denominator of the rhs of Eq. (D1) is dominated by —g*z? for
small z, leading to v = —1/2 and |F| = 4J \/k /g*. Otherwise,
the denominator is dominated by § A2, leading to v = 1/2 and
IF| = &/(J/EIAP).

Similarly, for a single-emitter in sublattice B, the self-
energy is given by Eq. (62). The lhs of Eq. (51) thus reads

(D1)

1 1
A 2 2 tiK)
z—A =5 =z A+ =5
284z + ik )V/8

8(z— A2 — gz +ik)?’ D2)
where 6 follows that in Eq. (D1) (same applies hereafter).
Unlike the previous case, now the denominator of the rhs of
Eq. (D2) is always dominated by g*«? for small z regardless
of A, leading to v = 1/2 and |F| = 4J/(g*\/k). The results
so far have already been mentioned in the main text.

We move on to the case of two emitters located in sublattice
A. The initial state is assumed to be in a symmetric superposi-
tion, so the self-energy reads

(@) = =) + 34 @),

where 22/2 (z) is given in Eq. (59). If the two emitters are in

the NN unit cells, we have |x1;| = 1 in Eq. (59) and the lhs of

(D3)

Eq. (51) turns out to be

1 1
A4y - A+ S 4y
PV (2 + iK)

= . D4
TG AY — @8- A —goG i) Y

The numerator of the rhs of Eq. (D4) is always of O(z%/?)
for small z. If A = 0, the denominator is of O(z%), leading to
v = —1/2. However, the corresponding ¢t ~! decay is invisible
due to the (accidentally) stable bound states. Otherwise, the
denominator is of O(z), leading to v = 3/2. The correspond-
ing 17> decay is visible (at least in the long-time limit) since
now the bound state has a nonzero imaginary energy.

If the emitters are located in two next-to-NN unit cells, we
have |xj2| = 2 in Eq. (59) and the lhs of Eq. (51) turns out to
be

1 1
oAy - At EE(14)2)
V3 pas g NG y_

_ P L:
T4 (z— A)? — @2bdz(z — A) — ¢’

(D5)

where b = —2J? + z(z + ix) =~ —2J? for small z. The numer-
ator of the rhs of Eq. (D5) is always of O(z*/?). If A = 0, the
denominator is of O(z2), leading to v = —1/2 and a corre-
sponding ¢! decay. Otherwise, the denominator is of O(z?),
leading to v = 1/2 and a corresponding ¢ ~3 decay. All of these
results have been numerically demonstrated in Fig. 8(a).
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