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Dynamical encircling of the exceptional point in a largely detuned multimode optomechanical system
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Dynamical encircling of the exceptional point (EP) reveals a number of intriguing physical phenomena and
their potential applications. To enrich the manipulations of optical systems in experiments, we study the dynamic
encircling of the EP, that is, the state transfer process, in a largely detuned multimode optomechanical system.
The process of state transfer has been investigated with different factors regarding the location of the start point,
orientation, and initial state of the trajectories around the EP in the parameter space. The results show that
nonreciprocal and chiral topological energy transfers between two optical modes are performed successfully
by tuning the effective optomechanical coupling into a multimode system with large detuning. Moreover, the
evolution speed of the system parameters is also discussed. Our work demonstrates the fundamental physics
of the EP in the large detuning domain of a multimode optomechanical system and provides an alternative for
manipulating optical modes in non-Hermitian systems.
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I. INTRODUCTION

Exceptional points (EPs) [1,2], that is, non-Hermitian
degeneracy points at which eigenvalues and eigenvectors
coalesce simultaneously [3], have been promoted in re-
cent years [4,5]. Significantly different from diabolic points
(DPs), whose eigenvalues coalesce while the associated eigen-
vectors can be designated as orthogonal in a Hermitian
system [6], plenty of practical applications [5,7–15] have
used EPs, such as phonon lasers [8–10] and ultrasensitive
sensors [5,7,11–14]. Systems evolving near EPs, for exam-
ple, EP-based devices [16–18], exhibit numerous physical
phenomena, including nonreciprocal topological energy trans-
fer [4,19], whereas systems evolving near DPs only result
in a geometric phase [6]. In particular, dynamically encir-
cling an EP [20] provides opportunities to realize asymmetric
mode switching [4,21], which has been exhibited in various
systems such as waveguides [22], circuits [23], and plasmon-
ics [24,25]. Owing to their ability to enhance light and matter
interactions in ultrasmall volumes, high-quality microcavities
[26,27] have been a promising platform for manipulating
EPs to approach state conversion [2,28], which has been
experimentally demonstrated [19]. Determined by the orienta-
tion, location, and initial state, dynamically encircling an EP
presents outstanding robustness [4] and chirality [29].

For the experimental realization of an EP in the microcav-
ity optical mode, the two optical cavities are typically direct
coupled [1]. According to previous research, only laser de-
tuning and optical-optical coupling strength can be employed
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to tune the entire system [30,31], whereas it is difficult to
control the coupling strength between optical modes. The
lack of control measurements limits the ability to dynami-
cally encircle the EP, and additional degrees of parameter
control are required. To solve this problem, optomechanical
systems [32–42], where an auxiliary mechanical mode can be
introduced to achieve indirect coupling between the two op-
tical modes, have recently been proposed and experimentally
realized [43–45]. Through indirect coupling, the methods of
regulating EPs become more abundant.

In this study, to enrich the manipulation potential of op-
tical systems in dynamically encircling EPs, we propose a
largely detuned multimode optomechanical system to achieve
a strong-coupling regime with the aid of an optomechanical
dark mode. The effect of the initial state, orientation, lo-
cation, and velocity on the time-dependent system dynamic
evolution is investigated and its track is a closed loop in the
parameter space. The results show that state conversion may
occur whether or not the path encloses the EP because of
the effect of non-Hermiticity-induced nonadiabatic transition
(NAT) [46,47], whereas chirality conversion will occur if the
path encloses the EP. Moreover, the nonreciprocity and chiral-
ity of the topological energy-transform efficiency depend on
the locations of the control loops in the parameter space. Our
work may inspire further experiments on photon state manipu-
lation in the detuning domains of multimode optomechanical
systems and devices based on extended non-Hermitian pho-
tonic architecture.

The remainder of this article is organized as follows: In
Sec. II, we demonstrate the basic model and Hamiltonian of
the system. We discuss the dynamic evolution of the system
in Sec. III and the topological energy transfer in Sec. IV. The
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FIG. 1. (a) Schematic of the optomechanical system composed
of two optical modes (a1 and a2) and one mechanical mode (b). The
two optical modes are coupled with the mechanical modes simulta-
neously. (b) Frequency spectrum of the two optical systems and two
strong power lasers with red detunings.

conclusions are presented in Sec. V. The Appendix presents
how to choose independent variables of the control loop.

II. MODEL AND HAMILTONIAN

A schematic representation of the proposed system is
shown in Fig. 1(a), composed of two optical modes and one
mechanical mode. The mechanical mode can be a film that
is fixed to the left and right. The two optical modes were
driven by strong lasers with central frequencies of ωl1 and
ωl2. The damping (gaining) rates of the optical modes were κ j ,
and the mechanical mode was γ . The mechanical mode was
simultaneously and dispersively coupled with the two optical
modes. The system Hamiltonian can be described by

H = Hfree + Hint + Hdrive, (1)

where

Hfree = ω1a1
†a1 + ω2a2

†a2 + ωmb†b,

Hint = g1a1
†a1(b† + b) + g2a2

†a2(b† + b),

Hdrive = i
√

κex1εl1e−iωl1t a1
† + i

√
κex2εl2e−iωl2t a2

† + H.c.,
(2)

in which ω j denotes the resonance frequency of the jth op-
tical mode and ωm describes the resonance frequency of the
mechanical mode. a j and b are the annihilations of the jth
optical mode and mechanical mode, respectively; g j and κex j

describe the single-photon optomechanical coupling rate and
coupling damping rate, respectively; and εl j is the power of
the jth laser.

In the interaction picture of the driving field, the Hamilto-
nian is changed to

H = ωmb†b −
∑
j=1,2

[� ja j
†a j − g ja j

†a j (b
† + b)]

+ i
√

κex1εl1a1
† + i

√
κex2εl2a2

†, (3)

FIG. 2. (a) Real part Re[λ±] and (b) imaginary part Im[λ±] of the
effective Hamiltonian eigenvalues as functions of the optomechani-
cal coupling strengths G1 and G2. The black dashed line describes
where the imaginary parts of the eigenvalues coalesce. (c) Real part
Re[λ±] and (d) imaginary part Im[λ±] of the effective Hamiltonian
eigenvalues as functions of the optomechanical coupling strength G2

with G1 fixing at G. Yellow dashed (blue solid) line corresponds
to the eigenvalue λ+(λ−). δ1 = δ2 = 10G = 10 MHz, κ1 = 0.3G =
0.3 MHz, and κ2 = −0.1G = −0.1 MHz are the parameters of the
effective Hamiltonian.

where � j = ωl j − ω j denotes the detuning between the opti-
cal modes and corresponding driving fields. It is convenient to
solve the nonlinear Heisenberg equations if the Hamiltonian
above is linearized. The annihilation of the optical modes can
be changed by a j → a j + δa j . The linearized Hamiltonian is
converted to

H = ωmb†b −
∑
j=1,2

[� ja j
†a j − Gj (a j

† + a j )(b
† + b)], (4)

where Gj = g ja j describes the optically driven coupling be-
tween the mechanical mode and cavity mode j, and aj =√

κex jεl j/(−i� j + κ j

2 ) is the average annihilation. In the fol-
lowing, we focus on the strong-coupling regime, that is, Gj >

(κ j, γm) and the typical limit κ j � γm.
The case in which both optical modes are driven under red

sidebands is considered. For convenience, the detuning can
be converted to δ j = −� j − ωm. Under the condition ωm �
(δ j, Gj ) and the rotating-wave approximation, the Hamil-
tonian can be written as HA = ∑

j=1,2[δ ja j
†a j + Gj (a j

†b +
a jb†)] in the interaction picture of ωm(b†b + ∑

j=1,2 a j
†a j ).

For large detuning conditions δ j � Gj , mechanical modes
can be eliminated [44] and we obtain the effective Hamilto-
nian as

H =
(

δ1 + 	1 − κ1
2 i 	

	 δ2 + 	2 − κ2
2 i

)
, (5)

where 	 j = Gj
2/δ j is the resonance ac-Stark shift of cavity

mode j, and 	 = G1G2(δ1
−1 + δ2

−1)/2 describes the effec-
tive coupling between the two optical modes [44].
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FIG. 3. (a)–(d) Instantaneous amplitudes of eigenstates during the loop evolution that encloses the EP. The blue solid line describes the
amplitude of λ+, and the red dashed line describes the amplitude of λ−. (a) and (b) are the case where the loop orientation is CCW, whereas
(c) and (d) are the case where the loop orientation is CW. Point A (B) corresponds to the case that the initial state is nearly |λ+〉 (|λ−〉). (a) and
(c) are the case where the initial state is A, whereas (b) and (d) are the case where the initial state is B. (e)–(h) The encircling path on the
real part of the eigenstates of the Hamiltonian corresponding to (a)–(d). (i)–(l) The encircling path on the imaginary part of the eigenstates of
the Hamiltonian corresponding to (a)–(d). The blue (orange) Riemann sheet is the imaginary part of λ− (λ+). The black dashed lines denote
the branch cut of the two imaginary parts of the eigenvalue Riemann sheets. The color of the path corresponds to the different stages of the
evolution. The parameters of the effective Hamiltonian are the same as those in Fig. 2(b).

The eigenvalues of the effective Hamiltonian in Eq. (5) can
be obtained as

λ± = 1

2
(A1 + A2) ±

√
(A1 − A2)2 + 4	2

2
, (6)

where Aj = δ j + 	 j − κ j

2 i. It is clear that the effective Hamil-
tonian in Eq. (5) has an EP if the conditions δ1 + 	1 = δ2 +
	2 and 	 = |κ1 − κ2|/4 are satisfied. If the conditions under
which the loss and gain of the two optical modes are balanced,
that is, κ1 = −κ2, and δ1 + 	1 = δ2 + 	2 is satisfied, the
effective Hamiltonian in Eq. (5) will exhibit PT symmetry.

The real and imaginary parts of the eigenvalues are shown
in Figs. 2(a) and 2(b). G1 and G2 were chosen as independent
variables, which could be tuned by changing the powers of
the two driving lasers. The choice of these two independent
variables is described in length in the Appendix. In short, this
set of dependent parameters is the best choice for showing the
structure of the effective Hamiltonian. It is easy to calculate
that an EP exists when G1 = G2 = G = 1 MHz since the
eigenvalues λ+ and λ− coalesce at the EP. Near the EP, the
real and imaginary parts of the eigenvalues exhibit the same
structure as the Riemann sheets of the complex square-root
function z

1
2 . On the basis of Figs. 2(a) and 2(b), G1 is fixed

at G and the only independent variable is G2. The real and
imaginary parts of the effective Hamiltonian eigenvalues as
functions of G2 are shown in Figs. 2(c) and 2(d), respectively.

In these two subgraphs, it can be seen that when G2 �= G,
the real and imaginary parts of the eigenvalues are distinct,
whereas when G2 = G, the real and imaginary parts of the
eigenvalues are identical.

III. DYNAMICALLY ENCIRCLING AN EXCEPTIONAL
POINT

The dynamic evolution of the operators depends on the
Heisenberg equation dA

dt = i
h [H, A]. Owing to the special

structure of the Riemann sheets shown in Figs. 2(a) and 2(b),
when G1 and G2 vary around a closed loop, the evolution
results differ depending on whether the loop encloses the EP.
Curiously, the evolution results depend not only on whether
the loop encloses the EP, but also on the orientation of the
loop, initial state of the loop, and velocity of the evolution.

To realize the dynamic evolution of the Hamiltonian in
parametric space, G1 and G2 were tuned by changing the
powers of the two input lasers εl1 and εl2. If we denote
|λ+(t )〉 and |λ−(t )〉 as the instantaneous eigenvectors of
the time-dependent Hamiltonian, the time-dependent state
can be expressed as |ψ (t )〉 = c+(t )|λ+(t )〉 + c−(t )|λ−(t )〉,
where c+ and c− denote the amplitudes of the instantaneous
eigenvalues and continuously follow the instantaneous basis
during the new basis. Owing to the non-Hermitian Hamil-
tonian, the instantaneous eigenvectors are not orthogonal,
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FIG. 4. (a)–(d) Instantaneous amplitudes of eigenstates during the loop evolution that do not enclose the EP. The blue solid line describes
the amplitude of λ+, whereas the red dashed line describes the amplitude of λ−. (a) and (b) are the case where the loop orientation is CCW,
whereas (c) and (d) are the case where the loop orientation is CW. Point C (D) corresponds the case that the initial state is nearly |λ+〉 (|λ−〉).
(a) and (c) are the case where the initial state is C, whereas (b) and (d) are the case where the initial state is D. (e)–(h) The encircling path on
the imaginary part of the eigenstates of the Hamiltonian corresponding to (a)–(d). The blue (orange) Riemann sheet is the imaginary part of
λ− (λ+). The color of the path corresponds to the different stages of the evolution. The parameters of the effective Hamiltonian are the same
as those in Fig. 2(b).

that is, 〈λ−|λ+〉 �= 0. Therefore, the instantaneous eigenvalue
amplitudes cannot be obtained directly. This can be ex-
pressed as c+(t ) �= 〈λ+(t )|ψ (t )〉 and c−(t ) �= 〈λ−(t )|ψ (t )〉.
To obtain the amplitudes, new vectors |l±(t )〉 = |λ±(t )〉 −
〈λ∓(t )|λ±(t )〉|λ∓(t )〉 can be established; then the amplitudes
can be determined by projecting the state after evolu-
tion onto the new vectors c+(t ) = 〈l+(t )|ψ (t )〉

1−|〈λ−(t )|λ+(t )〉|2 , c−(t ) =
〈l−(t )|ψ (t )〉

1−|〈λ−(t )|λ+(t )〉|2 [48].
It is convenient to obtain the evolution information

by observing the instantaneous amplitudes of the
eigenvalues. The simplest function of the loop is
expressed as G1(t ) = α1GEP

1 + β1GEP
1 cos(t + φ0) and

G2(t ) = α2GEP
2 + β2GEP

2 sin(t + φ0). The system obtains
an EP when Gi approaches GEP

i .  describes the velocity
of evolution and its sign describes the orientation of the
loop.  > 0 corresponds to a counterclockwise (CCW) loop,
whereas  < 0 corresponds to a clockwise (CW) loop. αi

determines the location of the loop center and βi determines
the radius of the loop. The phase of the starting point is
determined by φ0 when we determine that the time interval
is [0, 2π

|| ]. In the cases where the loop encloses the EP, the
starting point is selected where the imaginary parts of the
eigenvalues coalesce. Without loss of generality, it is assumed
that most of the energy is initially concentrated on one of
the eigenstates, that is, c+(0) � c−(0) or c−(0) � c+(0).
These conditions correspond to the initial time t = 0 in the
subgraphs in Figs. 3(a)–3(d) and Figs. 4(a)–4(d).

It is necessary to study the case in which the loop en-
closes the EP and the evolution is adiabatic. α1 = α2 = 1 and
β1 = β2 = 0.2 can make the loop enclose the EP.  = 0.1G
ensures that the evolution is adiabatic, and φ0 = π

4 causes the
starting point to be where the imaginary parts of the eigen-
values coalesce. From Figs. 3(a) to 3(d), there is a state flip
when t/(π ) = 1. This is a direct result of the topological

structure of the imaginary parts of the eigenvalues around the
EP. When the time approaches t/(π ) → 1, if the state wants
to remain unchanged, the imaginary part of the state will
change abruptly because of the branch cut, which connects
two Riemann sheets of imaginary parts of the eigenvalues.
Therefore, the path will go to another Riemann sheet from
the previous Riemann sheet via branch cut, which is shown
by the black dashed line in Figs. 3(i)–3(l). In Figs. 3(b)
and 3(c), NAT occurs and the state evolves to another sheet
adiabatically. Because of the time-dependent Hamiltonian, the
state will not precisely be the eigenstate of the instantaneous
Hamiltonian during the evolution. If the state first propagates
on the higher-loss sheet, the evolution will be unstable, and if
the evolution is adiabatic, the state will gradually propagate
to the lower-loss sheet. When c+(t1) = c−(t1), we define it as
the confirmation of the occurrence of NAT at time t = t1 [47].
The yellow part of the path, shown in Figs. 3(j) and 3(k),
exhibits the NAT during the evolution. In Fig. 3(b), the state
first propagates on the blue sheet, which is higher loss now,
and after a time delay, the state will propagate to the orange
sheet, which is lower loss now. In Fig. 3(c), although the initial
state is different from the case in Fig. 3(b), the orientation of
the loop is opposite that of Fig. 3(b) and there is also a NAT.

It is easy to see that if the loop orientation is CCW,
the final state will evolve to |λ−〉 regardless of the initial
state. If the loop orientation is CW, the final state evolves
to |λ+〉 regardless of the initial state being |λ+〉 or |λ+〉.
We can also find that whether the final state is differ-
ent from the initial state corresponds to whether NAT has
occurred.

To summarize, after the loop evolves to enclose the EP,
the results are determined by the orientation of the loop and
the initial state. Because different evolution orientations cor-
respond to different evolution results, chirality occurs in the
state conversion.
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FIG. 5. (a) Parametric space of the system. There are four different loops marked L1–L4 in this subgraph. The black dashed line G1 = G2

is the demarcation line for the less lossy region of the eigenvalues. The orange (blue) area represents the area where the damping rate of the
eigenvalue λ+(λ−) is smaller. The black dot denotes the location of the EP and the magenta dots denote the starting points location. (b),(c) The
energy transfer efficiency E as a function of the period τ on the loop L1 described in (a). The blue solid (red dashed) solid line is the transfer
efficiency E+ (E−) where the state |λ+〉 (|λ−〉) is initially driven, corresponding to the initial state at A (B). The loop orientation in (b) and (c) is
CCW and CW, respectively. (d)–(f) The energy transfer efficiency E as a function of the period τ on the loops L2–L4 described in (a). The blue
circle (red triangle) solid line is the transfer efficiency E+ (E−) where the initial state is at A (B) and the orientation is CCW, whereas the blue
circle (red triangle) dashed line is the transfer efficiency E+ (E−), which is the initial state at A (B) and orientation of CW. The parameters of
the effective Hamiltonian are the same as those in Fig. 2(b).

The case in which the loop does not enclose the EP is
required for comparison with the case above. The evolution
is also adiabatic. If α1 = 1.5, α2 = 0.5, and β1 = β2 = 0.2,
the loop will not enclose the EP.  = 0.1G ensures that the
evolution is adiabatic. Figures 4(a) and 4(c) show that there
is a state flip during the loop evolution, whereas there is no
state flip in Figs. 4(b) and 4(d). In Figs. 4(a) and 4(c), the
initial state first evolves on a higher-loss sheet and NAT will
happen after a time delay so the final state will be different
from the initial state. In Figs. 4(b) and 4(d), the state keeps
in the lower-loss sheet and NAT does not occur. Regardless
of the initial state, the final state must be the state on the
lower-loss Riemann sheet, which is |λ−〉 in this case.

To summarize, if the loop does not enclose the EP, there
will be no state flip because of the topological structure of
the Riemann sheet around the EP, and there is no chirality
in the state conversion. However, owing to the NAT effect,
state conversion may occur if the initial state is initially on the
higher-loss Riemann sheet.

IV. TOPOLOGICAL ENERGY TRANSFER

From Figs. 3 and 4, it is evident that the energy of the
system was lost or gained during the loop evolution. This
phenomenon shows that the total damping rate of the system
may be positive or negative, depending on the sign of the

imaginary parts of the instantaneous eigenvalues. We studied
the dynamic evolution under different conditions regarding
loop orientation, initial state, and whether the loop encloses
the EP. Here, we investigated the inflection of the loop ve-
locity on evolution. The evolutions in Figs. 3 and 4 are
adiabatic, such that the period of the loop τ should satisfy
τ � 1/|λ+ − λ−| [19]. Whether the loop is adiabatic deter-
mines the energy-transfer results.

To focus on the energy transfer during the loop, we exam-
ined the relative energy before and after the evolution. When
most of the energy is contributed in the state |λ+(0)〉, the
energy-transfer efficiency is defined as E+ = |c−(τ )|2

|c+(τ )|2+|c−(τ )|2 .
In contrast, when most of the energy is contributed in the
state |λ−(0)〉, the energy transfer efficiency is defined as E− =

|c+(τ )|2
|c+(τ )|2+|c−(τ )|2 .

In Fig. 5(a), L1–L4 are four different loops to be investi-
gated, whose parameters are declared in Table I. φ0 in L1 and
L2 ensured that the starting points were at the place where the
imaginary parts of the eigenvalues coalesce. In Figs. 5(b)–5(f),
when the period of the loop was sufficiently small (τ → 0),
no matter which state is initially driven and what the ori-
entation is, the transfer efficiency was negligible (E → 0).
This explains why a sudden perturbation of the system was
insufficient to cause a switch in states.

Figures 5(b)–5(d) represent the scenario where the loop
encloses the EP. As the period of the loop increased, it can be
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TABLE I. The parameters of the loops of L1–L4 as shown in
Fig. 5(a).

Parameters of loops L1 L2 L3 L4

α1 1 1.1 1.2 0.8
α2 1 0.9 0.8 1.2
β1 0.2 0.2 0.2 0.2
β2 0.2 0.2 0.2 0.2
Include EP? Yes Yes No No

seen that the transfer efficiencies E+ and E− both increased.
When the loop orientation was CCW, the transfer efficiency
E+ increased to 1 as the loop evolution was adiabatic (τ �
1 μs), whereas the transfer efficiency E− would go to zero
after a maximum was reached. When the loop orientation
was CW, the transfer efficiency E− increased to 1 as the
loop evolution was adiabatic (τ � 1 μs), whereas the transfer
efficiency E+ would go to zero after reaching a maximum.
Rapid evolution causes vanishing transfer efficiency, whereas
adiabatic evolution results in a different transfer efficiency,
which depends on the loop orientation. These phenomena
reflect the nonreciprocity of each topological operation.

Figures 5(e) and 5(f) represent the scenario where the loop
does not enclose the EP. As the period of the loop increased,
it can be seen that the transfer efficiencies E+ and E− both
increased. When the loop was L3, the transfer efficiency E+
increased to 1 as the loop evolution was adiabatic (τ � 1 μs),
whereas the transfer efficiency E− would go to zero after a
maximum is reached. When the loop was L4, the transfer ef-
ficiency E− increased to 1 as the loop evolution was adiabatic
(τ � 1 μs), whereas the transfer efficiency E+ would go to
zero after reaching a maximum. It is clear that whether the
transfer efficiency increases to 1 depends on the location of the
loop center, regardless of the loop orientation. This behavior
was different when loops did or did not enclose the EP.

In Figs. 5(b) and 5(c), the loop L1 is symmetrical around
the black dashed line, which is the demarcation line for the
less-lossy region of the eigenvalues. It can be seen that the
transfer efficiency behavior shows symmetry. The blue solid
(red dashed) line in Fig. 5(b) is the same as the red dashed
(blue solid) line in Fig. 5(c). In Fig. 5(d), the loop does not
appear symmetrical around the black dashed line. The transfer
efficiencies in the CW and CCW did not exhibit symmetry.
It is evident that the transfer efficiency E+ in L2 increased
faster than that in loop L1 when the orientation was CCW.
When the orientation was CW, the maximum value of E+ in
L2 was larger than that in the loop, which was symmetrical.
These behaviors can be explained by the fact that the time
when loop L2 goes through the region where the gain of
|λ−〉 is larger was longer than the time in the region where
|λ+〉 is less lossy. This causes asymmetry in the transfer
efficiency. In Figs. 5(e) and 5(f), the adiabatic evolution be-
havior was mainly determined by the position of the center
of the trajectory and had little to do with the orientation of
the trajectory. This can be explained by the fact that because
the loop does not contain the EP, the topological structure
does not cause state conversion; only the NAT causes state
conversion. The result of the evolution is not determined by

the orientation, but by the location and velocity of the loop.
L3 (L4) was completely in the region where λ− (λ+) was less
lossy, such that E+ (E−) approached 1 when the evolution was
adiabatic.

To summarize, if the loop encloses the EP, the behavior of
the energy-transfer efficiency depends not only on the orien-
tation of the loop, but also on the location of the loop center.
On the other hand, if the loop does not enclose the EP, the
behavior is mainly determined by the location of the loop.

V. CONCLUSION

We demonstrated an optomechanical system composed of
two optical modes and one mechanical mode. This system has
an EP if certain conditions are satisfied. We then researched
the dynamic evolution of a time-dependent system, whose
track was a closed loop in the parametric space. Whether
chirality existed in the state conversion was determined by
whether the loop enclosed the EP, which reflected the topo-
logical structure around the EP and influenced the result of
the dynamic evolution. We also found that the initial state
and orientation affected the evolution result. In addition, we
studied the impact of the evolution velocity and found that
if the evolution was not adiabatic, the transfer efficiency was
zero, regardless of the loop orientation. When the evolution
was adiabatic, the transfer efficiency depended on the loop
orientation. Furthermore, we found that the absolute loca-
tion of the loop affected the transfer efficiency. Our findings
enrich the understanding of the closed-path evolution of non-
Hermitian systems, which will be beneficial to system control
and broaden the scope of designing EP-based photonics de-
vices. Combined with the results of this study, there is great
significance in the future investigation of dynamic encircling
around high-order EPs. In addition, it is hoped that the energy-
transfer efficiency can be improved at a higher velocity in the
control loop by applying machine learning to learn the results
of the control loop around the EPs under different trajectory
parameters.
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APPENDIX: SELECTION OF INDEPENDENT VARIABLES

In Sec. II, we demonstrated the basic model and Hamilto-
nian of the system, and the dynamic evolution of the system
was studied in Sec. III. Under the large detuning condition
δ j � Gj , the mechanical modes can be eliminated such that
variables Gj , δ j , and κ j can be used as independent variables.
When the couplings between the fiber and optical modes are
fixed, κ j is not conveniently regulated as an inherent prop-
erty of the system material. If two independent variables are
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FIG. 6. (a)–(d) Real parts of the effective Hamiltonian with different independent variable sets. (e),(f) Imaginary parts of the effective
Hamiltonian with different independent variable sets corresponding to (a)–(d). The values of the determined parameters were declared in
Table II. The black dashed line describes where the imaginary parts of the eigenvalues coalesce.

required, then there are four variable combinations (δ1, G1),
(δ1, G2), (δ1, δ2), and (G1, G2). In Figs. 2–4, G1 and G2 are
chosen to be the independent variables considering the sat-
isfaction of the detuning condition and the steepness of the
imaginary parts of the eigenvalues.

Figure 6 shows the real and imaginary parts of the effective
Hamiltonian with three different independent variable sets,
where the values of determined parameters are declared in
Table II. In Figs. 6(e) and 6(f), δ1 and δ2 are chosen. It can
be observed that the imaginary part around the black dashed
line in Fig. 6(e) is steeper than that in Fig. 6(f). However,
for the other nonindependent variables shown in Fig. 6(f),
the large detuning conditions that lead to the disappearance
of the mechanical mode are more difficult to realize than
those in Fig. 6(e). By contrast, the imaginary part around
the black dashed line in Figs. 6(e) and 6(f) is steeper than
that in Figs. 6(g) and 6(h). In the last four subplots, the
independent variable set shown in Fig. 6(g) was chosen as
the optimal solution. If Fig. 2(b), whose independent variable
set is (G1, G2), is also taken into account, we find that the

TABLE II. The values of the determined parameters in Figs. 2(a)
and 2(b) and in Figs. 6(a)–6(g). In the table below, G = 1 MHz.

The tunable The values of The associated
variable set determined parameters figures

(G1, G2) δ1 = δ2 = 10G, Fig. 2(a)
κ1 = 0.3G, κ2 = −0.1G Fig. 2(b)

(δ1, δ2) G1 = G2 = G, Fig. 6(a)
κ1 = 0.3G, κ2 = 0.03G Fig. 6(e)

(δ1, δ2) G1 = G, G2 = 5G, Fig. 6(b)
κ1 = 0.3G, κ2 = 1.5G Fig. 6(f)

(δ1, G2) G1 = G, δ2 = 4G, Fig. 6(c)
κ1 = 0.6G, κ2 = 0.2G Fig. 6(g)

(δ2, G2) G1 = G, δ1 = 10G, Fig. 6(d)
κ1 = 0.7G, κ2 = 0.01G Fig. 6(h)

imaginary part around the black dashed line in Fig. 2(b) is
the flattest and the conditions are easier to realize. However,
where the black dashed line corresponds to the imaginary part
of the parameter space, the real parts of the eigenvalues are
inconsistent. In Figs. 6(a)–6(d), it is shown that the flatter it is
around the black dashed line in Figs. 6(e)–6(h), the larger the
difference of the real parts of eigenvalues in that part of the
parameter space.

To study the influence of the steepness of the imaginary
part of the effective Hamiltonian on the evolution, we de-
fined the differential of the imaginary part of the eigenvalues,
Di = Im[λ](i+1)−Im[λ](i)

dt . dt denotes the time interval between
Im[λ](i + 1) and Im[λ](i), which is a constant. Figure 7
shows the instantaneous amplitudes of eigenstates and differ-
ential of Im[λ] during the loop evolution with variable sets
(δ1, δ2) and (G1, G2). It can be seen that if Di is sufficiently
large, it can cause a state conversion. In Fig. 7(a), we can find a
state conversion when t/(π ) → 1, which corresponds to the

FIG. 7. The instantaneous amplitudes of eigenstates and differ-
ential of the imaginary part of the effective Hamiltonian Di during
the loop evolution with two different independent variable sets. The
evolution loop and other nonindependent parameters are the same as
in Fig. 5(a). The blue solid (dashed) line describes the amplitude of
the λ+ (λ−). The red dash-dotted line describes the differential of
the imaginary part of λ+ (λ−). (a) The variable set is (δ1, δ2) and the
other nonindependent parameters are the same as in Fig. 6(a). (b) The
variable set is (G1, G2) and the other nonindependent parameters are
the same as in Fig. 2(b).
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branch cut of the topological structure of the Riemann sheet
and the magnitude of Di being 107. The amplitudes of λ± tend
to approach each other when t/(π ) → 2, corresponding to
the magnitude of Di, which is 106 and sufficiently large here.
This phenomenon corresponds to the imaginary part of the
dashed black line in Fig. 6(a), which is steepest in the last

four subgraphs in Fig. 6. When t/(π ) → 2 in Fig. 7(b), it is
clearly to find that the magnitude of Di here is 103, which is
sufficiently small for a state conversion to not occur. Based on
comprehensive steepness and whether the large detuning con-
ditions are easy to satisfy, variable sets (G1, G2) are chosen as
the independent variables.
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