
PHYSICAL REVIEW A 106, 053514 (2022)

Cherenkov radiation and scattering of external dispersive waves by two-color solitons
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For waveguides with two separate regions of anomalous dispersion, it is possible to create a quasistable two-
color solitary wave. In this paper, we consider how those waves interact with dispersive radiation, i.e., both
the generation of Cherenkov radiation and the scattering of incident dispersive waves. We derive the analytic
resonance conditions and verify them through numeric experiments. We also report incident radiation driving
the internal oscillations of the soliton during the scattering process in the case of an intense incident radiation.
We generalize the resonance conditions for the case of an oscillating soliton and demonstrate how one can use
the scattering process to probe and excite an internal mode of two-color soliton molecules.
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I. INTRODUCTION

Solitary waves or solitons are localized nonlinear exci-
tations that preserve their shapes during evolution. In the
systems close to integrable ones, solitons are proven to be
robust and, in many cases, different interactions result only
in the variation of the soliton parameters, such as its intensity
or frequency. In a certain sense, solitons can be called “eigen-
modes of the nonlinear problem,” meaning that the dynamics
of the system can be considered as a set of solitons interacting
with quasilinear dispersive waves. Due to their robustness,
solitons are of fundamental as well as practical importance,
for example, in the context of optical supercontinuum genera-
tion [1–3] or soliton fiber lasers [4–7].

The mutual interaction of optical solitons in fibers can en-
able the formation of bound states, often referred to as soliton
molecules. They can be realized via dispersion engineer-
ing in the framework of the standard nonlinear Schrödinger
equation (NLS) and consist of two pulses that maintain a
fixed separation in time [8,9]. Further, optical soliton clus-
ters have been discovered and studied in a large variety of
physical systems described by different equations, such as
the generalized nonlinear Schrödinger equation [10–12], cou-
pled NLSs [13,14], the Ginzburg-Landau equation [15,16],
Lugiato-Lefever equation [17], and many others [18–28]. The
aforementioned bound states of solitons have a single central
frequency and the whole spectrum is localized around this
frequency.

Another possibility to observe soliton molecules is to
provide interaction between solitons having their carrier
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frequencies well detuned from each other. To make the in-
teraction efficient, the velocities of the solitons must be
close. In the case of scalar solitons, this means that we need
higher-order dispersion with two different frequency ranges
where the solitons can be accommodated. These solitons were
recently reported in [29–32] for pulses propagating in con-
servative fibers with higher-order dispersion. Similar solitons
were also discovered in mode-locked cavity lasers [33] and in
coherently pumped ring resonators [34,35].

In the case of nonintegrable systems, solitons can interact
with dispersive waves (DWs) of low intensity and this inter-
action leads to interesting physical phenomena, such as the
efficient generation of new frequencies [36–40]. It should be
noted that this effect is closely related to the optical push-
broom effect [41]. Such resonant scattering can be cascaded,
enriching optical supercontinuum spectra significantly [42].
Similar effects were studied in Refs. [43–45], where the term
“optical event horizon” was coined. It was also established
that resonant dispersive waves affect the parameters of the
solitons and can lead to dispersive wave mediated acceleration
of solitons [37,43,46–50]. It should be mentioned that the
resonant scattering of dispersive waves is also studied for dark
solitons [51–54] and oscillating solitons [55–60].

The present paper aims to study in detail the interaction of
dispersive waves with two-color soliton molecules, consisting
of two bound solitons having well-separated frequencies. In
the prior work [29], we have demonstrated how to create
quasistable configurations of two tightly coupled pulses in a
dispersion landscape β(ω) with two regions of anomalous dis-
persion, separated by a region of normal dispersion. Each of
these subpulses propagates on its own carrier frequency. This
coupled state, especially in the process of initial evolution,
sheds dispersive waves that resemble Cherenkov radiation that
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is observed for other types of solitary waves in a vast variety
of settings [56–58,60–62]. Let us remark that there is a well-
established tradition in the community to draw the analogy
between the resonant radiation of solitons and Cherenkov
radiation of charged particles. However, the Cherenkov effect
is just one example of the very general phenomenon of the
emission of the phase-matched wave by a moving object.

Since DW generation is demonstrated, it is reasonable
to anticipate that two-color soliton molecules colliding with
DWs will produce resonant emission in the same way as it
occurs in the case of conventional solitons. Thanks to a more
complex structure of the two-color solitons, one can expect
the scattering dynamics to be much richer compared to the
conventional single soliton case. For instance, it is possible
that the internal degrees of freedom can be excited due to
the interaction with a DW and this should strongly affect the
dynamics of the system. Subsequently, we confirm this influ-
ence, providing a combined analytical and numerical view of
the process.

The paper is structured as follows. In Sec. II, we introduce
a mathematical model for the light propagating in a nonlinear
fiber with higher-order dispersion and derive the condition
of resonant four-wave mixing of the soliton molecules with
DWs. In Sec. III, we report the results of the numerical sim-
ulations of the different propagation regimes of bichromatic
soliton molecules. The results of the simulations are compared
against analytical resonance conditions. Section IV discusses
the weakly nonlinear case where the intensity of the dispersive
waves is sufficiently large to modify the interaction between
the soliton molecules and the waves. The excitation of the
internal mode is also discussed in this section. The paper
concludes with a summary in Sec. V.

II. ANALYTICAL MODEL

In this section, we derive a perturbation theory that ex-
plains the resonance conditions that were proposed in [29],
demonstrate additional Cherenkov radiation mechanisms due
to four-wave mixing (FWM) between the frequency compo-
nents of the soliton, and then extend this theory to describe
the process of scattering of external waves on the soliton.

We start by considering a nonenvelope version of a nonlin-
ear Schrödinger equation [63],

i∂zũ + β(ω)ũ + γ (ω)F{|u|2u}(ω>0) = 0. (1)

Here and further, ũ ≡ ũ(z, ω) indicates the Fourier image of
the field u ≡ u(z, t ), and F{· · · }(ω>0) is the explicit Fourier
transform taken for the positive frequencies only.

To build the perturbation theory, let us introduce an ansatz
that represents the solution as a sum of two single-frequency
solitary waves U1,2(z, t ) and a small residue radiation ψ (z, t ),

u(z, t ) = U1(z, t ) + U2(z, t ) + ψ (z, t ), |ψ | � |U1| ∼ |U2|.
(2)

For the solitary waves U1,2(z, t ), we assume that they satisfy a
pair of coupled nonlinear Schrödinger equations below,

i∂zUn + βn(i∂t )Un(z, t ) + γ (ωn)
(|Un|2Un + 2|Um|2Un

) = 0,

(3)

where n = 1, 2 and m = 2, 1 �= n. Essentially, this is an as-
sumption that the two-color soliton molecule consists of
two pulses, which are incoherently coupled by inducing a
refractive-index potential on each other [64]. Each subpulse
exists in some sort of truncated dispersion landscape, de-
fined by the operator βn(i∂t ). Under specific conditions, the
subpulses are given by fundamental solitons of a modified
NLS [31]. A reasonable guess for the truncated operator is
a parabolic approximation close to the carrier frequency,

βn(i∂t ) = β(ωn) + iβ ′(ωn)∂t − 1
2 β ′′(ωn)∂2

t . (4)

Let us remark that this simple approximation of the dispersion
is absolutely relevant physically. We acknowledge that the
high-order terms can modify the shape of the soliton but, apart
from the special cases that require separate consideration, the
influence of these terms is only quantitative.

We additionally suppose that in the soliton’s frame of refer-
ence, the envelope evolves with wave number kn(ω), which we
approximate by the wave number of the fundamental soliton
in the ordinary nonlinear Schrödinger equation and a correc-
tion from a secondary soliton as

kn(ω) ≈ γ (ωn)A2
n

2
+ β(ωn) + β ′(ωn)(ω − ωn) + γ (ωn)A2

m,

(5)
where n = 1, 2, m = 2, 1 �= n, and An is the soliton amplitude.

By substituting ansatz (2) into Eq. (1), linearizing with
respect to perturbation ψ (z, ω), and discarding the terms
corresponding to the soliton given by Eqs. (3), we get the
equation for ψ̃ ,

i∂zψ̃ + β(ω)ψ̃ + γ (ω)F
{
2|U1

+U2|2ψ + (U1 + U2)2ψ∗}
(ω>0)

= −[β(ω) − β1(ω)]Ũ1 − [β(ω) − β2(ω)]Ũ2

− γ (ω)F
{
U 2

2 U ∗
1 + U 2

1 U ∗
2

}
(ω>0). (6)

On the right-hand side (rhs) of Eq. (6), we see two types of
driving terms and each of those terms can be in resonance
with the linear DWs that exist in the system if the particular
wave number k(ω∗) of the driving term is equal to the wave
number of a DW β(ω∗) at some frequency ω∗ [36,61]. The
first type is given by [β(ω) − βn(ω)]Ũn(z, ω), which drives
the generation of Cherenkov radiation by an individual soliton
Un if the following resonance condition is satisfied:

β(ω) = kn(ω), (7)

where the soliton wave vector is given by (5). The second
type of terms is γ (ω)F{U 2

2 U ∗
1 } and γ (ω)F{U 2

1 U ∗
2 }, which

correspond to the process of four-wave mixing that in our
case results in the generation of dispersive radiation at some
frequency where

β(ω) = 2kn(ω) − km(ω). (8)

Let us move on to the problem of external dispersive wave
scattering. For that, we split the perturbation into the incident
and the scattered parts,

ψ (z, t ) = ψinc(z, t ) + ψsc(z, t ). (9)
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We explicitly define ψinc(z, t ) as a linear wave that is propa-
gating in a soliton-free medium,

i∂zψ̃inc(z, t ) + β(ω)ψ̃inc(z, t ) = 0. (10)

Substituting Eq. (9) into (6) and eliminating the terms cor-
responding to Eq. (10), we are left with the equation for the
scattered component,

i∂zψ̃sc + β(ω)ψ̃sc + γ (ω)F
{
2|U1 + U2|2ψsc + (U1 + U2)2ψ∗

sc

}
(ω>0)

= . . . [omitted is the rhs of Eq. (6)] − γ (ω)F
{
2(|U1|2 + U1U

∗
2 + U2U

∗
1 + |U2|2)ψinc + (

U 2
1 + 2U1U2 + U 2

2

)
ψ∗

inc

}
(ω>0).

(11)

In addition to the resonance terms already discussed in
Eq. (6), we see terms that arise due to the interaction between
the incident radiation and the soliton. Here, six new types of
resonance behavior are possible. The first one is due to terms
|U1|2ψinc and |U2|2ψinc, both with the resonance condition

β(ωsc) = β(ωinc). (12)

The next two are due to mixed terms U1U ∗
2 ψinc and U2U ∗

1 ψinc,
with the corresponding resonance condition being

β(ωsc) = ±k1 ∓ k2 + β(ωinc). (13)

Another two are due to U 2
n ψ∗

inc and the resonance condition is

β(ωsc) = 2kn(ωsc) − β(ωinc), n = 1, 2. (14)

The final one is due to 2U1U2ψ
∗
inc, with the resonances at

β(ωsc) = k1(ωsc) + k2(ωsc) − β(ωinc). (15)

To verify the predictions given by resonance conditions (7),
(8), and (12)–(15), we proceed to numerical experiments.

III. NUMERICAL EXPERIMENTS

To numerically integrate Eq. (1), we use the integrating
factor method and transform the equation into a nonstiff ver-
sion for a modified spectrum [3]. The modified equation can
be handled by any standard Ordinary Differential Equation
(ODE) solver; we use a SCIPY interface to ZVODE solver from
ODEPACK [65,66] (the code necessary to reproduce the results
in the paper can be found in [67]). All the computations are
performed in a frame of reference co-moving with the soliton,
which is achieved by a transformation

t → t − β ′(ω1)z,

which, in turn, results in

β(ω) → β(ω) − β(ω1) − β ′(ω1)(ω − ω1),

k1(ω) → γ (ω1)A2
1

2
+ γ (ω1)A2

2,

k2(ω) → γ (ω2)A2
2

2
+ γ (ω1)A2

1 + β(ω2) − β(ω1).

A description of the specific dispersion profile model β(ω)
used in the simulations can be found in Appendix A.

To study Cherenkov radiation of two-color solitons, we
chain two separate simulations. First, following the prior work
[29], we produce a two-color soliton by integrating an initial
condition that is given by a sum of two fundamental solitons

of the standard NLS,

u0(t ) = A1sech(t/T1)e−iω1t + A2sech(t/T2)e−iω2t , (16)

where frequencies ω1 and ω2 are both lying in the regions of
anomalous dispersion. Frequency ω1 is otherwise arbitrary;
ω2 is chosen so that the group velocities of both the frequency
components match,

β ′(ω1) = β ′(ω2).

In most of the simulations presented subsequently, we fix
T1 = T2 = 20 fs and the amplitudes A1 and A2 are chosen
as the fundamental soliton amplitudes at the corresponding
frequencies. This configuration sheds a significant amount
of radiation and relaxes to a quasistable solitary wave. We
propagate up to z = 10 cm, take the output field of this seed
simulation, and suppress the radiation tails by multiplying it
by a super-Gaussian temporal window, centered on the peak
of the soliton molecule. This isolated soliton molecule serves
as an input to the second simulation that is carried with the
same parameters as the original one.

Once we suppress the radiation that is shed by the seed
solitons during the initial relaxation process, the isolated
two-color soliton molecule propagates generating only a
narrow-spectrum Cherenkov radiation. An example is shown
in Fig. 1. Figure 1(b) shows the normalized spectral densities
at the input and output, i.e., z = 0 cm and 10 cm, respectively.
For clarity, the difference between both spectra is shown on
a logarithmic scale in Fig. 1(c). It is clearly evident that on
top of the input spectrum [thin black line in Fig. 1(b)], two
additional spectral lines appear in the output spectrum [gray
line in Fig. 1(b)]. To clarify the origin of these pronounced
spectral lines, Fig. 2(d) demonstrates resonance conditions (7)
and (8): the black curve corresponds to β(ω), i.e., the left-
hand side of both equations; the horizontal lines correspond
to the right-hand sides. Intersections between the dispersive
curve and the horizontal lines that contribute to Cherenkov
radiation are marked separately: 1© labels radiation due to the
second component of the soliton, as predicted by Eq. (7);
2© labels the location of frequencies due to FWM between

the frequency components, resulting in radiation with wave
number 2k2 − k1, as predicted by Eq. (8).

To study the scattering processes, we perform the seed
simulation and isolate the two-color soliton. To accomplish
that, we add an incident DW in the form of a Gaussian pulse,

ψinc(t ) = Ainc exp

[
− (t − t0)2

T 2
inc

− iωinct

]
.
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FIG. 1. Cherenkov radiation of an isolated two-color soliton
molecule, produced by an initial condition with first-component car-
rier frequency ω1 = 1.010 rad/fs. (a) Time-domain view, (b) input
and output spectra, (c) difference between both spectra on a logarith-
mic scale, and (d) diagram of the resonance conditions.

Below we set Ainc to 1% of the maximum amplitude of the
isolated soliton and fix the width to Tinc = 300 fs. The initial
pulse delay t0 is chosen as ±1000 fs from the soliton center,
with the sign depending on the relative group velocity between
the soliton and the DW and chosen so that both pulses engage
in a collision. Upon propagation, the incident radiation inter-
acts with the two-color soliton to produce scattered radiation.
This process can evolve in several different ways depending
on the frequencies of the soliton and the incident radiation.
Below we consider three concrete examples. In each of them,
the incident radiation is split between three different compo-
nents.

The first configuration, shown in Fig. 2, is very close to
the degenerate case where the wave numbers of the individ-
ual soliton components k1 and k2 coincide. Equation (13)
then turns into Eq. (12). This case resembles the case of
fundamental single-component solitons [36]; however, due to
the shape of the dispersive curve β(ω), there is now more
than one nontrivial solution to Eq. (12) and a single incident
frequency yields up to four possible resonances. In practice,
only some of them contribute to the scattered radiation. Those
solutions are separately marked on a diagram in Fig. 2(d): i©
corresponds both to the incident and the partially transmitted
radiation, 1© is the reflected component, and 2© is the addi-
tional transmitted component.

The second configuration, shown in Fig. 3, is a case with
a significant difference between k1 and k2. Since Eq. (13) is
no longer degenerate, the resonance diagram in Fig. 3(d) is
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FIG. 2. Scattering of a weak DW with carrier frequency ωinc =
1.650 rad/fs on a two-color soliton with first-component carrier
frequency ω1 = 1.070 rad/fs. (a) Time-domain view, (b) input and
output spectra, (c) difference between both spectra on a logarithmic
scale, and (d) diagram of the resonance conditions.

more complex. However, as one can notice, in that case only
the solution marked with 2©, corresponding to the upper (i.e.,
“−,+”) branch of Eq. (13), contributes to the scattered radia-
tion. Component 1©, corresponding to the scattered radiation,
comes from resonance condition (12). The unmarked spectral
line close to ω ≈ 2.4 rad/fs is the Cherenkov radiation of the
soliton itself.

The third configuration, shown in Fig. 4, is in a sense sym-
metric to the previous case. Again, the difference between k1

and k2 is significant and Eq. (13) is far from being degenerate,
but now the resonances from the lower (i.e., “+,−”) branch
of the resonance condition (13) play a significant role. This
is achieved by choosing the incident frequency greater than
the carrier frequency of the second soliton component and
enhanced by using an asymmetric seed soliton with T1 = 30
fs and T2 = 10 fs. This creates a solitary wave with the ampli-
tude of the second component almost equal to the amplitude
of the first one.

Overall, in all of our experiments, only the scattered com-
ponents corresponding to Eqs. (12) and (13) turn out to be
significant, while the components predicted by Eqs. (14) and
(15) do not seem to contribute to the resulting radiation. In
other words, the terms proportional to ψ̃∗

inc on the rhs of
Eq. (11) can be safely neglected.

IV. NONLINEAR EFFECTS

When deriving resonance conditions (12)–(15), we as-
sumed that the parameters of the solitons themselves stay
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|ũ
(ω

)|1
/
2

(a
rb

.
un

it
s)

1 2i
(b)in out

10
−3

(c)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Frequency ω (rad/fs)

−0.05

0.00

0.05

k
(r

ad
/
μ
m

)

(d)

1

2

i

β(ωi) ±k2 ∓ k1 + β(ωi)

FIG. 3. Scattering of a weak DW with carrier frequency ωinc =
1.500 rad/fs on a two-color soliton with first-component carrier
frequency ω1 = 1.150 rad/fs. (a) Time-domain view, (b) input and
output spectra, (c) difference between both spectra on a logarithmic
scale, and (d) diagram of the resonance conditions.

constant throughout the propagation and scattering processes.
This can be considered a reasonable approximation when the
amplitude of the incident wave is negligible compared to the
amplitudes of the individual soliton components. However,
in the general case of more intensive incident radiation, this
assumption does not hold. In this section, we will briefly
discuss two specific examples, where the process of scattering
noticeably affects the parameters of the soliton. The general
setup of the numerical experiments remains as in the preced-
ing section, i.e., we consider scattering of a Gaussian pulse
on an isolated two-color soliton, but this time we increase
the amplitude of the DW to 5% of the soliton’s maximum
amplitude. This change might seem subtle, but it is sufficient
to make the scattering dynamics much more involved.

In the first example, shown in Fig. 5, we consider scattering
of a DW with incident frequency ωi = 2.100 rad/fs on a
two-color soliton with ω1 = 1.010 rad/fs. From Fig. 5(a), we
can immediately notice that interaction with the DW signifi-
cantly decelerates the two-color soliton. This is connected to
the change of the soliton’s carrier frequency, as demonstrated
in Fig. 5(b.2). This effect has been demonstrated before for
the conventional solitons of a nonlinear Schrödinger equa-
tion [46,68]. What is remarkable about this interaction in the
case of a two-color soliton is the fact that the soliton appears
to be stable during this process. Granted, the frequency offset
gained by the soliton during the scattering is not especially
prominent [Fig. 5(b.2)], but at the same time, the amplitude
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FIG. 4. Scattering of a weak DW with carrier frequency ωinc =
3.500 rad/fs on a two-color soliton with first-component carrier
frequency ω1 = 1.150 rad/fs. (a) Time-domain view, (b) input and
output spectra, (c) difference between both spectra on a logarithmic
scale, and (d) diagram of the resonance conditions.
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FIG. 5. Scattering of an intensive DW with carrier frequency
ωinc = 2.100 rad/fs on a two-color soliton with first-component
carrier frequency ω1 = 1.010 rad/fs. (a) Time-domain view. (b.1)
Oscillation of the two-color soliton subpulse amplitudes. (b.2) Oscil-
lation of the corresponding center frequencies. (c) Output spectrum.
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FIG. 6. Scattering of an intensive DW with carrier frequency
ωinc = 1.100 rad/fs on a two-color soliton with first-component
carrier frequency ω1 = 1.010 rad/fs. (a) Time-domain view. (b.1)
Oscillation of the two-color soliton subpulse amplitudes. (b.2) Oscil-
lation of the corresponding center frequencies. (c) Output spectrum.
(d) Diagram of the resonance conditions.

difference in both of the frequency components stays under
1% [Fig. 5(b.1)], so almost no power loss occurs.

In the second example, shown in Fig. 6, we consider
the scattering of a DW with the incident frequency ωi =
1.100 rad/fs on a two-color soliton with ω1 = 1.010 rad/fs.
In the plots in Figs. 6(b.1) and 6(b.2), one can notice how the
interaction with the DW generates oscillations in the soliton
parameters; this is especially prominent in Fig. 6(b.2) that dis-
plays the absolute change of the soliton’s central frequencies
ω1 and ω2. From the latter plot, the period of those oscillations
can be estimated as Z0 = 2 mm. The interaction of freely os-
cillating nonlinear waves, including both the radiation and the
scattering processes, is a well-studied problem [56–58,60,69]
and the common trait in this setting, independent of the nature
of the soliton oscillations, is that the dispersive radiation pro-
duced (generated or scattered) by the soliton is polychromatic,
i.e., it consists of several isolated spectral components. This is
indeed what we see in the output spectrum in Fig. 6(c).

To explain this behavior, let us return to Eqs. (6) and (11).
In the oscillating case, the individual solitons U1 and U2 are
no longer represented by a single spatial frequency ∝ eik1z and

∝ eik2z, instead they correspond to a Fourier series,

Un(z, t ) =
∑
N∈Z

CnN (t ) exp

(
ik1z + i

2πN

Z0
z

)
,

where Z0 is the oscillation period. This leads to a split in
the resonance conditions, and for the oscillating case equa-
tions (7), (8), (12), and (13) read

β(ω) = kn(ω) + 2πN

Z0
, (7*)

β(ω) = 2kn(ω) − km(ω) + 2πN

Z0
, (8*)

β(ωsc) = β(ωinc) + 2πN

Z0
, (12*)

β(ωsc) = ±k1 ∓ k2 + β(ωinc) + 2πN

Z0
, (13*)

with N ∈ Z being the spatial harmonic number.
The resonance conditions for the scattering process in the

last simulation are displayed in Fig. 6(d). In this process, only
the last two equations, i.e., Eqs. (12*) and (13*), are relevant.
The solid black lines correspond to Eq. (12) with harmonics
N = −3, . . . , 0. This harmonic split not only leads to the
reflected part of the radiation 1© becoming polychromatic, but
also has the same effect on the incident component i©. Reso-
nance condition (13) is represented by the gray dashed lines
for harmonics N = −3, . . . ,+3. It contributes to the scattered
radiation twice: with a wide band 2© that otherwise would
degenerate into a sharp spectral line in a nonoscillating case,
and with three wide spectral lines in the vicinity of 3© which
is the contribution of the lower harmonics N = −3,−2,−1.
One can notice that there are only two vertical lines corre-
sponding to the numeric solution of Eq. (13) displayed around
3©. This is merely due to a small numeric error in estimating

the soliton wave number k2 in the plotting procedure, which
causes harmonic N = −1 to touch the dispersive rather than
intersect it.

The specific oscillation mode we see in Fig. 6 appears to
be heavily damped since launching the initial soliton with an
additional frequency detuning does not lead to free frequency
oscillations during the propagation. Such internal dynamics,
reminiscent of molecular vibrations, were also reported pre-
viously [29,32], and the emission of DWs by the two-color
soliton was found to explain the dampening of the oscillation
mode [70]. Here, the incident radiation drives this oscillation
and one could expect to observe a resonance behavior with
respect to the frequency of the incident DW. And, indeed,
as demonstrated by the parameter sweep in Fig. 7(a), by
adjusting the incident frequency ωi one can affect, to a certain
degree, the amplitude of the frequency oscillations of the
second component �ω2. For this specific mode, where the
frequency oscillations dominate, it is straightforward to get an
estimate for the period Z0 of the mode and the corresponding
wave number K0 in terms of a variational approach (see Ap-
pendix B). As shown in Fig. 7(b), superimposing the resulting
resonance wave number K0 on the dispersion curve allows
one to graphically estimate the frequency of the incident DW
that corresponds to the internal oscillation mode. The vertical
dashed lines in Figs. 7(a) and 7(b) indicate this resonance fre-
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FIG. 7. Resonance behavior of the internal mode of the two-color
soliton molecule during intensive scattering. (a) Oscillation of the
center frequency of the second component of the two-color soliton
as a function of the frequency of the incident DW. (b) Diagram of the
resonance condition for the internal mode.

quency, confirming the excellent agreement of the numerical
simulations and the approximate analytic estimate.

V. CONCLUSION

In this paper, we considered the resonant interaction of
two-color soliton molecules with DWs. The resonance con-
dition for Cherenkov radiation is derived and analyzed. The
comparison with the results of numerical simulations shows
that these conditions correctly predict the positions of the
Cherenkov radiation. We also study the process of the col-
lision of the two-color solitons with the incident DWs.
The resonance conditions predict well all the generated fre-
quencies observed in the numerical experiments. Some of
the predicted resonances are not seen in the numerically
calculated radiation spectra. This can be explained by the
low efficiency of the corresponding scattering processes.
The theory developed for a simpler case [37], involving a
(single-pulse) soliton and a DW, shows that indeed for some
parameters the generated radiation can be extremely weak.
In the presented work, our focus was on deriving resonance
conditions that allow one to estimate the location of reso-
nant waves emitted by a two-color soliton in the presence of
higher-order dispersion [Eq. (7)], as well as for further FWM
processes internal to the two-color soliton molecule [Eq. (8)],
and involving a two-color soliton molecule and an external
DW [Eqs. (12)–(15)]. Although a theoretical framework for
estimating the amplitudes of the resonant radiation could be
established by extending the approach of Ref. [37] to the
present case, this is out of the scope of the present study.
Beyond deriving the above resonance conditions, we studied
how the intensity of the incident dispersive waves affects
the scattering. In particular, it is shown that the scattering
can affect the soliton trajectory without affecting its integrity.
Another important finding is that in the nonlinear case, the

DWs can resonantly excite internal oscillations of the soliton.
This results in polychromatic emission of DWs by oscillating
two-color solitons. In this context, the resonant radiation due
to Eqs. (7*) and (8*), caused by periodic amplitude and width
variations of two-color soliton molecules, has been studied
recently [71].

We believe that the results reported in this paper can pos-
sibly be used for optical supercontinuum generation. Another
possible application is the spectroscopy of soliton molecules
when some properties of the bound solitons can be extracted
from the scattering data of the cw waves interacting with
the solitons. Finally, we remark that similar effects can be
anticipated to occur in molecules consisting of dark solitons.
However, this constitutes an interesting problem of its own,
which requires a separate consideration and will be addressed
elsewhere.
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APPENDIX A: DISPERSION PROFILE MODEL

We model dispersion coefficient β(ω) with the following
rational expression:

β(ω) = 1

c

∑3
n=0 Cnω

n+1∑3
m=0 Dmωm

, (A1)

where. c = 0.29 979 245 8 μm/fs is the speed of light, and the
coefficient sequences C and D are defined by

C = (9.654,−39.739 fs, 16.885 fs2,−2.746 fs3), (A2)

D = (1,−9.496 fs, 4.221 fs2,−0.703 fs3). (A3)

Here and throughout the paper, we assume fs as a unit of
time and μm as a unit of distance. Figure 8 displays group
velocity vg(ω) = 1/β ′(ω) and second-order dispersion coeffi-
cient β ′′(ω) as functions of frequency. Frequencies ω1 and ω2

correspond to the central frequencies of the soliton’s spectral
components as chosen in the simulation corresponding to
Fig. 1 of the paper.

APPENDIX B: SMALL INTERNAL
OSCILLATIONS OF THE SOLITON

When analyzing the nonlinear scattering near an oscillatory
mode, we used an expression for the oscillation frequency. In
this section, we will derive this expression.
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Let us return to Eq. (3) for coupled solitons. We can
renormalize the equations by performing the following trans-
formation:

Un → γ 1/2
n eiβnzUn,

which will make the equations symmetric,

i∂zUn − 1
2β ′′

n ∂2
t Un + γ 2

n |Un|2Un + 2γnγm|Um|2Un = 0.

This in turn allows us to recognize the modified couple of
equations as Euler-Lagrange equations for Lagrangian∫ +∞

−∞
L(U1, ∂zU1, ∂tU1, . . .) dt,

where Lagrangian density L is defined as a sum of three com-
ponents, L = L1 + L2 + Lint, with Ln being a single-soliton
Lagrangian density,

Ln = i

2
(∂zUnU

∗
n − ∂zU

∗
n Un) + 1

2
β ′′

n ∂tUn∂tU
∗
n + 1

2
γ 2

n |Un|4,
(B1)

and Lint being the interaction term,

Lint = 2γ1γ2|U1|2|U2|2. (B2)

Let us assume that the soliton components Un can be described
by the following generic ansatz:

Un(z, t ) = An(z)S

(
t − tn(z)

σn(z)

)
exp[−i
n(z)t + iφn(z)].

(B3)
Here, An is the amplitude of the pulse, tn is the central position,
σn is the pulse width, 
n is the frequency detuning, φn is the
phase, and S(x) is a function that defines the envelope shape.
At the moment, we will not specify the concrete form of S(x),
but will assume that it is an even function.

Before we continue, let us stress one important thing: this
ansatz cannot express all the possible internal oscillations of
the soliton. One obvious example, as was noted above, is the
case of the pulse-width oscillation. In order to capture this
dynamics, we need to add frequency chirp to the ansatz.

Substituting (B3) into (B1) and (B2) and integrating over
t , we arrive at the expressions for the averaged Lagrangians,

Ln = I1 tnσnA2
n

d
n

dz
+ I1 σnA2

n

dφn

dz
+ I2

β ′′
n

2

A2
n

σn

+ I1
β ′′

n

2
σnA2

n

2
n + I3

γ 2
n

2
σnA4

n, (B4)

Lint = 2 γ1γ2 A2
1A2

2 Iint(σ1, σ2, t1, t2), (B5)

where the following integrals have been defined:

I1 =
∫ +∞

−∞
S2(x) dx, I2 =

∫ +∞

−∞
[S′(x)]2 dx,

I3 =
∫ +∞

−∞
S4(x) dx, Iint =

∫ +∞

−∞
S2

(
t − t1
σ1

)
S2

(
t − t2
σ2

)
dt .

Due to the time invariance in the problem, Iint depends only
on the difference between t1 and t2,

Iint = Iint(t1 − t2, σ1, σ2),

and it is an even function of that difference.
The averaged Lagrangian L = L1 + L2 + Lint is now a

function defined in terms of only the soliton parameters {An,
σn, tn, 
n, φn}. Therefore, the Euler-Lagrange equations for
the new Lagrangian have to be defined in terms of variations
over the soliton parameters,

δL

δPn
= ∂L

∂Pn
− d

dz

∂L

∂Ṗn
= 0,

where Pn stands for either An, σn, tn, 
n, or φn. The latter
case—variation with respect to the phase φn—immediately
yields the conservation of mass,

Nn = σn(z)A2
n(z) = const. (B6)

Variation with respect to the detuning 
n fixes the group
velocity of individual solitons,

dtn
dz

= β ′′
n 
n(z). (B7)

Variation with respect to the soliton position tn gives us an
equation for the frequency,

d
n

dz
= 2

Nmγ1γ2

I1σ1(z)σ2(z)

∂Iint

∂tn
. (B8)

The symmetry in the overlap integral Iint with respect to the
soliton positions t1 and t2 leads to conservation of momentum,

N1
1(z) + N2
2(z) = const. (B9)

Finally, the difference between the variations with respect
to An and σn gives us

I2β
′′
n + I3γn

2
Nnσn(z) + 2Nmγ1γ2

σn(z)

σm(z)

(
Iint + σn

∂Iint

σn

)
= 0.

(B10)
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The very last equation—omitted here—is the evolution equa-
tion for the phase φn. The right-hand side of the equation is
quite complicated, but since the phase does not occur any-
where in (B7), (B8), or (B10), it is not important for the
remaining analysis.

Let us switch from the the individual soliton positions to
the mean position and the relative delay instead,

t0 = 1
2 (t1 + t2), �t = t1 − t2.

The equation for the relative delay �t ,

d�t

dz
= β ′′

1 
1(z) + β ′′
2 
2(z), (B11)

and Eqs. (B8) and (B10) form a closed system, with equa-
tions for d�t/dz, d
n/dz acting as equations of motion and
Eq. (B10) fixing the widths σn(z) as functions of �t . By
differentiating (B11) one more time and using (B8), we get

d2�t

dz2
+ 2

γ1γ2(β ′′
1 N1 + β ′′

2 N2)

I1σ1(�t )σ2(�t )

∂

∂�t
Iint(�t, σ1, σ2) = 0.

To transform this into a harmonic oscillator equation, we need
to linearize the second term around the equilibrium point
�t = 0. Since Iint is an even function, the derivative ∂Iint/∂�t

is odd and it vanishes at �t = 0. This means we can ignore
�t dependency in σ1 and σ2—only the term proportional to
∂2Iint/∂�t2 will survive. Thus we finally arrive at

d2�t

dz2
+ K2

0 �t = 0,

where the resonance frequency K0 is

K2
0 = 2

γ1γ2(β ′′
1 N1 + β ′′

2 N2)

I1σ1(0)σ2(0)
I ′′
int[0; σ1(0), σ2(0)]. (B12)

For a more concrete estimate, let us finally consider a
Gaussian envelope, i.e., let us set S(x) = exp(−x2). Such a
choice of the envelope shape fixes the integrals I1 = √

π/2
and

Iint(�t, σ1, σ2) =
√

π

2

σ1σ2√(
σ 2

1 + σ 2
2

) exp

( −2�t2

σ 2
1 + σ 2

2

)
,

which, finally, gives us the following expression for the reso-
nance frequency:

K2
0 = −8 γ (ω1)γ (ω2)(

σ 2
1 + σ 2

2

)3/2

[
β ′′(ω1)σ1A2

1 + β ′′(ω2)σ2A2
2

]
. (B13)
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