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A phenomenon of topological directed amplification of certain initial perturbations is revealed theoretically
to emerge in a class of asymptotically stable skin-effect lattices described by non-normal Toeplitz operators Hg

with positive “numerical ordinate” ω(Hg) > 0. Non-normal temporal evolution, even in the presence of global
dissipation, is shown to manifest a counterintuitive transient phase of edge-state amplification—a behavior,
drastically different from the asymptote, that spectral analysis of Hg fails to directly reveal. A consistent
description of the effect is provided by the general tool of “pseudospectrum,” and a quantitative estimation
of the maximum power amplification is provided by the Kreiss constant. A recipe to determine an optimal
initial condition that will attain maximum amplification power is given by singular value decomposition of the
propagator e−iHgt . It is further predicted that the interplay between non-normality and nonlinearity in a skin-effect
laser array can facilitate narrow-emission spectra with scalable stable-output power.

DOI: 10.1103/PhysRevA.106.053513

I. INTRODUCTION

Dynamical systems governed by Hamiltonians which fail
to commute with their respective adjoints are called non-
normal in mathematical sense and are in general extremely
sensitive to boundary conditions. A class of such systems
of enormous current interest is non-Hermitian topological
lattices with nonreciprocal coupling [1–3]. One of the ex-
otic features of these systems is the manifestation of the
non-Hermitian skin effect [4–7], i.e., the localization of an
arbitrary number of stationary states at one of the edges un-
der open boundary conditions (OBCs); whereas bulk states
remain extended in a closed lattices under periodic boundary
conditions (PBCs). Origin of these localized skin modes is
rooted in nontrivial topological winding of the bulk PBC
spectral contour in complex-energy plane with respect to the
interior OBC spectral points [8–12]. The interplay of topol-
ogy, non-Hermiticity, and non-normality is an active field of
research both in theory [13–45] and experiments [46–53] with
far reaching practical consequences.

An interesting question of fundamental importance, how
non-normality influences the dynamical behavior of an injected
power in a skin-effect lattice, remains largely unanswered.
Here we uncover a peculiar phenomenon of topologically
protected transient growth of initial energy directed towards
an edge of a class of non-Hermitian photonic skin-effect lat-
tices Hg. Such counterintuitive phase of directed amplification
occurs, although all modes decay monotonically, due to an in-
terplay between topological skin-effect and non-orthogonality
of the eigenbasis of a non-normal Hamiltonian governing the
dynamics. While dominant imaginary part of the correspond-
ing spectrum correctly predicts asymptotic decay dynamics,
the same fails to explain more complex transient amplification
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effect. A consistent description of the latter effect is provided
by the mathematical notion of pseudospectrum, defined by the
union of spectra of a Hamiltonian under exponentially small
perturbations. Use of pseudospectrum to deal non-normality
has a rich tradition in linear algebra [54,55], its importance
has been recognized in a variety of dynamical systems ranging
from hydrodynamics [56,57], and ecosystems [58], optical
waveguides [59], Lindblad master equation [60], non-normal
networks [61], to neuronal dynamics [62]. Due to extreme
sensitivity of a Hamiltonian with strong non-normality, a
small perturbation can shift some of the pseudomodes into the
upper half of the complex energy plane in favor of amplifica-
tion. Remarkably, the amplification is topologically protected
as long as corresponding pseudomodes, lying entirely inside
the PBC spectral curve, are characterized by the underlying
nontrivial topology of the system. Although a quantitative
estimation of the maximum power amplification can be pro-
vided by the Kreiss matrix theorem [54], a critical question is
what initial perturbations give rise to the maximum transient
growth? A systematic procedure based on singular value de-
composition (SVD) of the propagator e−iHgt is explored here
to reveal that an optimal initial condition that will attain max-
imum amplification is the principal right-singular vector. The
corresponding transient time of amplification is shown to be
approximated by the group velocity of the largest amplifying
mode. A possibility of single-mode emission with enhanced
output power is also discussed in a skin-effect laser array.

II. TOPOLOGICAL HATANO-NELSON LATTICE

To illustrate the phenomena, we consider a generic non-
normal lattice given by the one-dimensional Hatano-Nelson
model [63]. The system is described by a family of Hamilto-
nians Hg expressed in Toeplitz matrix form

[Hg]mn = e−gδm−1,n + egδm+1,n − iγ δm,n, (1)
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where e−g, eg, and γ represent dimensionless nearest-neighbor
rightward-, leftward-coupling amplitudes, and onsite loss,
respectively. Parameters g and γ are real and taken to be
non-negative for definiteness. The commutator [Hg, H†

g ] =
2 sinh 2gdiag(1, 0, . . . , 0,−1) implies that the system is non-
normal for all g �= 0, while non-normality is absent in H0. For
a finite lattice with OBC, Hg for g �= 0 and g = 0 are nonuni-

tarily equivalent by a gauge transformation
−→
� g = S

−→
� 0, with

Smn = e−gnδm,n, and
−→
� g represents eigenvector of Hg. As a

consequence, the OBC spectrum of Hg�=0 is spectrally iso-
morphic to that of H0: σ OBC = {2 cos �π/(N + 1) − iγ : � =
1, 2, . . . , N}, where N is the number of sites in a lattice.
Components of stationary states

−→
� g(E� ∈ σ OBC ) are given by

φn,� = e−gn sin �nπ/(N + 1), where n is the lattice site index,
showing the exponential localization, i.e., skin-effect, of all
states at the left edge of a lattice Hg>0. However, skin-modes
are not necessarily orthogonal as a consequence of the nonuni-
tary transformation. This has an intriguing implication, as will
be elaborated below, that the evolution dynamics of Hg for
g �= 0 is fundamentally different than that of g = 0; a transient
amplification phase exists in the former, while it never occurs
in the latter case. Topological origin of the skin-modes are
related to the nontrivial winding number of the PBC spectra
characterized by [8,10]

W (z ∈ σ OBC ) =
∫ 2π

0

dk

2π i
∂k ln[σ PBC (k) − z], (2)

where the PBC spectrum for g �= 0 lies on an ellipse σ PBC =
{2 cos(k − ig) − iγ : k ∈ [0, 2π ]} and collapses to [−2 −
iγ , 2 − iγ ] when g = 0. W = +1 for g > 0, and 0 for g = 0.
The index theorem of a Toeplitz operator correlates analytical
and topological index [64]: ind Hg = −W .

III. TRANSIENT AMPLIFICATION

The phenomenon of transient amplification is analyzed by
considering how an initial perturbation

−→
� g(t = 0) evolves in

a dissipative Hatano-Nelson lattice by the dynamical equa-
tion of motion

i
−̇→
� g(t ) = Hg

−→
� g(t ), ||−→� g(t = 0)|| = 1. (3)

The general solution of Eq. (3) is given by
−→
� g(t ) =

G(t )
−→
� g(t = 0), where G(t ) = e−iHgt is the propagator. A

physical observable of interest is the optical power determined
by the Euclidean norm of the solution P (t ) = ||−→� g(t )|| =
[
∑

n |ψn(t )|2]1/2 (square root of the actual power is considered
for the convenient description of what follows henceforth),
where ψn are modal amplitudes at site n.

Amplification in a Hatano-Nelson dimer. As an example,
we first consider a dimer amenable to analytical treatment.
The eigenvalues and corresponding normalized eigenvectors
of the dimer Hamiltonian

Hg =
[−iγ eg

e−g −iγ

]
(4)

are given by

E± = ±1 − iγ ,
−→
� g,± = 1√

e2g + 1

[
eg

±1

]
. (5)

Note that the above eigenvectors are not orthogonal (with an
exception for g = 0) and approach each other in the large-g
limit, as is evident from the angle between two eigenvectors

θ = cos−1 (tanh g) → 0 as g → ∞. (6)

Now consider time evolution of a specific initial state
−→
� g(t =

0) = [−i/
√

2, 1/
√

2]T . The solution at a later time is given by

−→
� g(t ) ∝ (eg − i)e−iE+t−→� g,+ − (eg + i)e−iE−t−→� g,−, (7)

apart from a multiplicative constant 2−3/2(e−2g + 1)1/2. Even
though the magnitude of solution eventually decays in time, it
can initially grow due to non-orthogonal superposition of two
eigenvectors that decay at different rates as time evolves. This
is clear from corresponding time-dependent power

P (t ) = e−γ t (cos2 t + cosh 2g sin2 t + sinh g sin 2t )
1
2

� 1 + (sinh g − γ )t + O(t2) as t → 0, (8)

that decays for large time, but experiences initial amplification
provided γ < sinh g and g > 0.

Amplification in a Hatano-Nelson lattice: For a larger lat-
tice, we first investigate maximum power that can be attained.
Using the inequality ||AB|| � ||A|| ||B|| and the general solu-
tion of Eq. (3), we obtain the maximum power:

Pmax(t ) = sup
||�g(t=0)||=1

||G(t )�g(t = 0)|| = ||G(t )||, (9)

given by the two-norm, i.e., maximum singular value, of G(t )
at each time t . Note that Pmax(t ) is different for different
Hamiltonian Hg. For a given Hg, Pmax[Hg](t ) represents an
envelop of all possible power curves corresponding to the evo-
lution of different initial conditions under Hg. Two particular
examples of Pmax are presented in Fig. 1(a) corresponding to
a non-normal lattice (g = 0.4) and a normal lattice (g = 0),
showing fundamentally different behavior. A remarkable ef-
fect of the short-time amplification phase, even in the presence
of loss, is observed in the non-normal lattice before the power
decays asymptotically to zero. An intensity evolution pattern
in H0.4 corresponding to an initial excitation at the right edge
favoring maximum amplification is shown in Fig. 1(b); inten-
sity evolves unidirectionally and power grows monotonically.
The power becomes maximal when the excitation reaches at
the left edge of the lattice where skin-modes are localized.
Note, however, that all skin-modes in general attenuate in a
lattice with nonzero γ . Corresponding spectrum of the lattice,
therefore, provides no information about the observed ampli-
fication. It is the emergence of pseudomodes (or quasi-edge
modes [8]) in a transient time is responsible for the observed
amplification. A complete description of this effect is given
below by the notions of “numerical range” and “pseudospec-
trum,” well known in matrix analysis [54].

Asymptotic phase, t → ∞. In this regime, the gen-
eral solution of Eq. (3) reduces to

−→
� g(t → ∞) ∼ eα(Hg)t ,

where α(Hg) is the “spectral ordinate” [65] given by α =
sup Im σ OBC = −γ , independent of the parameter g. This
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FIG. 1. (a) Magnitude of solutions of the dynamical Eq. (3) yielding maximum power is shown for a non-normal lattice H0.4 and a normal
lattice H0. The behavior of transient amplification of power can be described by the information of numerical range and pseudospectrum of
the Hamiltonian, while the asymptotic decay is approximated by the spectrum. A lower bound of the maximum power in the transient phase is
given by the Kreiss constant K(H0.4) = 2.6. (b) The transient dynamics of intensity evolution of an initial condition [shown as “v” in Fig. 3(b)]
which attains maximum power in the lattice H0.4 showing monotonic growth of power directed to the boundary where skin-modes localize.
(c) The OBC spectrum, PBC spectrum, and ε pseudospectrum of H0.4 are shown for ε ≈ 0.15. Some pseudomodes shown in red dots in the
gain region, Im σε > 0, originates from the center of unperturbed spectrum. (d) Pseudospectrum lies entirely in the lossy region, Im σε < 0, in
the absence of non-normality in H0. Here N = 25 and γ = 0.55. All quantities are plotted in dimensionless units.

implies that solution and hence power decays to zero asymp-
totically whenever γ �= 0, ∀ g.

Initial phase, t → 0. According to the Hille-Yoshida theo-
rem [54], the behavior of Pmax is given by

lim
t→0

d

dt
Pmax[Hg](t ) = ω(Hg), (10)

where ω(Hg) is the “numerical ordinate” [65] defined by the
maximum among imaginary parts of numerical range of Hg

[54,58,61] and determined analytically by

ω = sup σ OBC
[Hg − H†

g ]

2i
= 2 sinh |g| cos

π

N + 1
− γ . (11)

According to Eq. (10), ω(Hg) is the slope of the curve ≈eω(Hg)t

which approximately fits Pmax(t → 0). The result obtained in
Eq. (11) is, therefore, key to predict the transient growth at
the outset; ω > 0 implies the onset of energy growth with
growth rate is given by ω and a negative value of ω implies
an opposite behavior. For H0, ω(H0) = −γ < 0 implies that
amplification is not possible in a dissipative lattice in the
absence of non-normality. Conversely, for a given γ �= 0,
it is always possible to find critical parameters (g, N ) for
which ω(Hg) > 0, indicating the possibility of amplification
in a non-normal lattice Hg�=0. For the example in Fig. 1(a),
ω(H0.4) = 0.27.

In an amplifying phase, Eq. (11) further indicates that
the larger the values of g, N , and hence ω, the steeper the
initial amplification rate. This is a direct consequence of
the fact that deviation of Hg from the normality, measured
by the Henrici’s departure from normality [54,61]: d(Hg) =
[tr(Hg

†Hg − H0
†H0)]1/2 = 2

√
N − 1 sinh g, increases with ei-

ther the nonreciprocal coupling parameter g, or/and the
geometric dimension N of the lattice.

Intermediate phase, t → finite. Having obtained the initial
trend for the maximum power curve, we now describe the ac-
tual physics behind the amplification. Note that a non-normal
system is highly sensitive to perturbation. A convenient tool
to investigate perturbed system is the method of pseudospec-
trum. For ε > 0, the ε pseudospectrum of Hg under OBC
is defined by [54] σ OBC

ε = {z ∈ C : ||(z − Hg)−1|| > ε−1}. For
efficient computation of pseudospectrum we consider collec-
tion of spectra of a perturbed Hamiltonian such that

σ OBC
ε (Hg) = {z ∈ C : z ∈ σ (Hg + H ′), ||H ′|| � ε}. (12)

It has the properties that σ OBC ⊆ σ OBC
ε , limε→0 σ OBC

ε = σ OBC ,
and limε→0,N→∞ σ OBC

ε = σ PBC . Contrary to the normal sys-
tem H0, which is less sensitive to the perturbations and the
corresponding ε pseudospectrum lies within the ε neighbor-
hood of the spectrum, perturbation to a non-normal system
Hg�=0 yields drastic change in the spectrum. For Hg with
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FIG. 2. (a) Pseudospectral ordinates αε (H0.4) are determined
from the level curves ||(z − H0.4)−1|| = 1/ε shown here for different
small perturbations ε = 10β , number on each contour represents a
value of β. (b) Kreiss constant K(H0.4) � 2.6 is the maximum of
αε/ε ∀ ε � 1.

sufficiently strong non-normality, the corresponding unper-
turbed spectrum initially belongs to negative imaginary plane
can protrude to the positive imaginary plane under small
perturbation. This has the remarkable consequence that the
dynamical evolution which, according to spectrum, must
decay but actually can grow upon perturbation by the pseu-
domodes with positive imaginary pseudo-eigenvalues. Refer
to Fig. 1(c) for a particular example of pseudospectrum corre-
sponding to the amplification shown in Fig. 1(a).

Two important observations follow: First, pseudo-edge-
modes which belong to the center of unperturbed OBC
spectrum become amplifying first. These modes have largest
group velocity (discussed in Sec. V) and are perturbed most.
On the other hand, because of the negligibly small group
velocity, modes at the edge of the unperturbed spectrum are
least affected by the perturbation. Second, ε-pseudospectrum
resides entirely inside the PBC spectrum for small enough ε.
According to Eq. (2), all the pseudomodes, therefore, satisfy
W (z ∈ σ OBC

ε ) = +1. This implies that the effect of non-
normality-induced transient growth is topologically protected.

The size of a maximum transient growth can be quan-
titatively estimated by the Kreiss matrix theorem [54]. In
particular, K(Hg) � supt Pmax[Hg](t ) � eNK(Hg), where the
Kreiss constant K is defined in terms of ε-pseudospectral
ordinate αε such that

K(Hg) = sup
ε>0

αε (Hg)/ε. (13)

K > 1 indicates that there must be amplification in the system.
For the example in Fig. 1(a), K(H0.4) = 2.6 obtained from the
pseudospectral level curves (see Fig. 2).

IV. OPTIMAL INITIAL CONDITION
FOR MAXIMUM AMPLIFICATION

Above analysis of Pmax indicates that the transient growth
of energy is possible in a non-normal system. In practice,
however, the size of amplification depends on particular form
of an initial condition. Optimal initial perturbation that will
reach maximum amplification Pmax(t ) at time t can be ob-
tained by the method of singular value decomposition (SVD)
of the propagator: G = U�V †, where diagonal entries �nn

are singular values, and corresponding left- and right-singular
vectors are given by the columns of the matrices U and

FIG. 3. (a) Transient dynamics of different initial conditions
shown in panel (b) for a lattice H0.4. “i,” “ii,” and “iii” in panel
(b) are single-site excitations, while ‘iv’ and ‘v’ are obtained by
SVD of the propagator e−iH0.4t at time t = 6, and t = 11, respectively.
Solid line in (a) representing the envelop of Pmax[H0.4]. Optimal
initial perturbation, marked as ‘v’ and ‘iv’, touches the envelope
curve acquire maximum power amplifications shown by black dots
at t = 11 and t = 6, respectively.

V , respectively. If �11 denotes the largest singular value of
G(t ), then SVD G−→

v 1 = �11
−→u 1 describes that G maps an

initial vector −→
v 1 to an output vector −→u 1 amplified by �11 =

Pmax(t ) [by Eq. (9)]. It is therefore appropriate to consider −→
v 1

as the initial condition for the Eq. (3) to achieve maximum
amplification power at time t .

The general idea above is exemplified in Fig. 3 for Hg

with g = 0.4. The initial conditions [marked “iv” and “v” in
Fig. 3(b)] obtained by the SVD of G(t ) at time t = 6 and
t = 11 respectively, yields maximum amplification at
respective times. For comparison, single site excitation at
three different locations of the lattice are also considered as
initial conditions. It is seen that single site excitation away
from the skin-mode localization center provides in general
pretty good amplification. However, the excitation one at
the left edge [marked “i” in Fig. 3(b)] does not amplify.
Strictly speaking, non-normality of a lattice is not sufficient
for observing transient amplification, shape of initial profile
is crucially important.

V. GROUP VELOCITY AND TRANSIENT TIME

Here, we discuss how to estimate transient time τ at which
maximum amplification primarily occurs at the edge where
skin modes are localized. τ is determined by the time elapses
when a localized wave-packet propagates unidirectionally
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to the skin-edge starting from the site of initial excitation,
usually at the opposite edge, thus traversing a distance pro-
portional to the lattice length (N − 1). Transient time has
previously shown to be related to Lieb-Robinson bound and
time-energy uncertainty relation [8,60]. Here we follow an al-
ternative route and show that the same can be computed by the
knowledge of group velocity of Floquet-Bloch modes. Group
velocity of a wave packet with wave number k is obtained
from the energy-momentum relation under PBC [39]:

v(k, g) = Re

(
dσ PBC

dk

)
= −2 cosh g sin k. (14)

It is worth mentioning the implications of the group veloc-
ity. We first consider g > 0 and γ = 0. In this case, waves
with 0 < k < π (belong to upper semi-ellipse of PBC spec-
tra) have negative group velocity as well as Im σ PBC > 0.
These waves therefore propagate to the leftward direction and
are amplified. On the other hand, waves with π < k < 2π

(belong to lower semi-ellipse) have positive group velocity
and Im σ PBC < 0, implying that rightward propagating waves
are attenuated and eventually not observable. This asymme-
try between left- and rightward propagating waves explains
the unidirectional energy flow in a skin-effect lattice. In the
presence of loss (γ �= 0 and γ < 2 sinh g), however, leftward
amplifying waves belong to much narrower interval centered
at k ≈ π/2, and the interval for attenuating modes (which
now includes all rightward, and some leftward waves as
well) broadens compared with γ = 0 case, as exemplified
in Fig. 1(c). Thus unidirectional propagation persists in the
presence of moderate nonzero loss [Fig. 1(b)].

To determine the time of maximum amplification by left-
ward propagating pseudomodes, we note that a wave with
k = π/2 (which belongs to center of the unperturbed spec-
trum) has the largest group velocity i.e., |v(π/2, g)| =
2 cosh |g| = vmax. This has physical implication that the cor-
responding pseudomodes lying at the center of the spectrum
amplifies the most under perturbation [Fig. 1(c)]. (Note that
the group velocity is maximal for another central mode at
k = 3π/2, but this mode suffers maximum loss and is not rel-
evant in transient amplification.) The transient time therefore
approximately given by

τ � N − 1

vmax
= N − 1

2 cosh |g| . (15)

For the example in Fig. 1(b), τ � 11. For a bulk excitation,
however, traveling distance and hence the value of τ reduces
compared with an edge excitation (e.g., ii and iv in Fig. 3).
Equation (15) implies that transient time can be exponentially
lowered by increasing the left- or right-hopping imbalance
parameter, i.e., |g|.

VI. NON-NORMAL LASER ARRAY

Finally, we briefly report the interplay between non-
normality and nonlinearity in a nonreciprocally coupled

microring laser array. Laser dynamics is determined by i
−̇→
� =

(Hg + HNL )
−→
� , where

[HNL]mn = i�n

1 + |ψn|2 δm,n, (16)

FIG. 4. (a) Emission powers of an array consisting N = 7 cou-
pled lasers are shown for a non-normal system g = 0.4 and a normal
lattice g = 0. In both cases, γ = 0.1 and single site at the right edge
is pumped with �n = 0.5δn,7. Absence of oscillation in power curve
after an initial transient period implies that the system is dynam-
ically stable. Relative intensity distribution in individual lasers at
time t = 1000 are shown by filled disks. (b) Ratio of time-averaged
emission powers between a non-normal and normal lattices vs the
coupling parameter g shows the exponential increment of power in
the non-normal array.

with �n represents site-dependent saturable gain [66]. In the
absence of gain, passive skin-modes are localized at the left
edge of a lattice with g > 0 and only clockwise circulation
in each of the rings is assumed. When gain is switched on
by pumping only a single laser at the right edge �n = �δn,N

[corresponds to the initial condition iii for a linear lattice, refer
to Fig. 3(b)], lasing emission mainly occurs from the left edge
of the array [Fig. 4(a)]. This implies that linear skin effect sus-
tains under nonlinearity. The “nonlocal” pumping strategy i.e.,
away from the lasing output, not only convenient for practical
implementation in experiment, but is also numerically verified
to provide temporally stable emission (which is challenging to
achieve in a large-scale laser array [67]). Total output power
is seen to scale exponentially, compared with a conventional
array with reciprocally coupled lasers, when degree of non-
normality is increased by tuning the nonreciprocal coupling
parameter g (elaborated in Fig. 4 with example).

A natural question arises here regarding the role of linear
transient amplification in the lasing behavior. Note that lin-
ear amplification is not necessary for lasing to occur under
nonlinear gain. However, maximally growing linear pseudo-
mode (emerging from the center of unperturbed spectrum)
in the transient period possesses least lasing threshold and
thus favorable for lasing action when nonlinear gain saturation
sets in. Linear amplification therefore leverages reduction of
nonlinear mode competition and hence helps narrow-spectral
emission necessary for laser stability [68]. This principle re-
mains intact in a higher-dimensional skin-effect laser array,
and qualitatively explains anomalous single-mode lasing pre-
viously predicted in Refs. [23,44].

VII. CONCLUSION AND OUTLOOK

It is demonstrated that non-normal nature of a class of re-
cently discovered non-Hermitian skin-effect lattices can give
rise to a fundamentally new effect of topologically protected
one-way transient amplification of injected energy. Condition
of amplification is analytically derived, bounds of maximum
amplification, and optimal initial condition to attain it are
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determined by the pseudospectrum of the Hamiltonian, and
SVD of the propagator, respectively. Time of transient am-
plification is shown to be approximated by the maximum
group velocity of Floquet-Bloch waves. Potential of expo-
nential enhancement of stable-emission power is revealed in
a non-normal laser array. Reported results can be extended
to higher-dimensional lattice models and can be tested in
quantum and classical topological devices with engineered
non-normality, particularly for directed transport or sensing of
weak signals, and large-scale high-power laser applications.

A few important remarks are in order here.
A reciprocal lattice with passive parity-time (PT) symme-

try,

[HPT ]mn = κδm−1,n + κδm+1,n − iγ [1 + (−1)n]δm,n,

is a special class of asymptotically stable non-normal system
where skin effect as well as dynamical transient amplification
are absent in both broken and unbroken regimes. Absence of

the latter effect can be justified by vanishing numerical ordi-
nate ω(HPT ) = sup{0,−2γ } = 0 [see Eq. (11) and discussion
therewith] for all values of system parameters. Maximum
power corresponding to the Hamiltonian defined above is
bounded below and above by eα(HPT )t � Pmax � eω(HPT )t = 1,
where α(HPT ) < 0. Non-normal lattices with skin-effect thus
represent a novel class of materials with fundamentally differ-
ent amplification property absent in PT-symmetric systems.

The skin effect assisted amplification has previously been
pointed out for noninteracting electrons [8,60]. Photonic
lattices, however, present some inherent and unavoidable fea-
tures distinct with respect to their matter wave counterparts,
like dissipation (due to radiation, or material absorption) and
nonlinearity. The analysis, presented here, on the interplay
between global dissipation, nonlinearity, and non-normal dy-
namics not only offers an unconventional route to faithful
information or energy transmission even in a dissipative en-
vironment but also sheds light on the possibility of anomalous
single-mode lasing in these systems.
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