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Few-parameter noncylindrical paraxial optical beam described by the modified Bessel function
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A few-parameter expression for a light beam is found as a solution of the paraxial Helmholtz equation. It
is achieved by exploiting appropriately chosen complex variables which entail the separability of the equation.
Next, the expression for the beam is obtained independently by superimposing shifted Gaussian beams, whereby
the shift can be made either by a real vector (in which case the foci of the Gaussian beams are located on a
circle) or by a complex one. The solutions found depend on several parameters, the specific choice of which
allows to obtain beams with quite different properties. For several selected parameter values figures are drawn,
demonstrating the spatial distribution of the energy density and phase. In special cases, the effect of a shift of the
intensity peak from one branch to another and phase singularities are observed.
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I. INTRODUCTION

Within the scalar optics approximation a number of
monochromatic paraxial light beams of intriguing properties
have been found. From the mathematical perspective, assum-
ing the propagation along the z axis, they were described as
solutions of the so-called paraxial equation

�⊥ψ (r, z) + 2ik∂zψ (r, z) = 0, (1)

where the stationary function ψ (r, z), called the envelope, was
related to the electric field via

E(r, z, t ) = E0eik(z−ct )ψ (r, z), (2)

with E0 representing a constant vector. The Laplace operator
�⊥ in (1) is the two-dimensional one acting in the transverse
plane only (here r = [x, y]). The symbol ∂z stands for the
partial derivative ∂

∂z . The approximations leading to the form
(1) were discussed in detail elsewhere [1,2].

A commonly accepted fundamental solution of the paraxial
equation is the Gaussian beam, which in the cylindrical coor-
dinates has the form (apart from the normalization constant)

ψ (r, ϕ, z) =
(

w0

w(z)

)n+1

rneinϕ

× exp

[
− r2

w(z)2
+ i

kr2

2R(z)
− i(n + 1)ψG(z)

]

(3)

endowed (n �= 0) or not (n = 0) with orbital angular mo-
mentum with respect to the propagation axis [2–12]. The
basic parameters that characterize this beam (w0 is the waist
radius, w(z) = w0

√
1 + (z/zR)2 the radius at a distance z,

R(z) = z[1 + (zR/z)2] is the the wavefront-curvature radius,
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zR = kw2
0/2 the Rayleigh length, and ψG(z) = arctan(z/zR)

the Gouy’s phase) are well known and need no further ex-
planation. This beam, written in a slightly modified although
equivalent form, will be of use in the present work [see (18)].

Other beams of similar nature include Bessel-Gaussian
(BG) [12–15], modified BG [16–18], Laguerre-Gaussian
(LG) [2,12,15,19–23], Kummer-Gaussian (KG) (i.e.,
hypergeometric-Gaussian) [24,25], or γ beams [26], the
last of these containing no Gaussian fall-off factor. All of
them are cylindrical in the sense that the wave intensity
displays axial symmetry. Equation (1) also has solutions of
another kind, which do not manifest cylindrical symmetry. As
examples, one can mention Hermite-Gaussian (HG) beams
[2,27] of rectangular symmetry, or Airy beams [28–30].

The literature on this subject is extremely vast due to
the important and broad applications of light beams, espe-
cially those with nontrivial structure, ranging from trapping
and guiding of particles, through image processing, optical
communication, harmonics generation in nonlinear optics,
quantum cryptography, up to biology and medicine.

Some attempts to obtain a more general description and/or
derivation of various paraxial beams were undertaken in the
past [18,31–35]. In this paper, we wish to present, along
these lines a somewhat more general solution to the equa-
tion (1), which depends on several parameters remaining at
our disposal. This few-parameter solution does not exhibit
cylindrical symmetry (in the sense spoken of above), except
for some special cases. A particular choice of the parameters’
values enables, on one hand, to recover some of the above-
mentioned modes, and on the other, to obtain other modes
with equally interesting properties.

The solution in question will be obtained below in two
ways. First, in Sec. II, some specially defined substitutions
are used, which leads in two steps to the complete separation
of the paraxial equation. It is known that the Helmholtz equa-
tion in three dimensions, owing to the Robertson-Eisenhart
condition [36,37], turns out to be separable in 11 orthogonal
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coordinate systems [38]. However, to obtain new solutions, in
this work complex variables will be employed.

Then, in Sec. III, it is demonstrated that, at least for in-
teger values of the parameter l [see (14)], these solutions
are superpositions of shifted zero-order Gaussian beams [39]
with some appropriately tailored weight function. It should
be stressed that the first approach does not require l to be an
integer, thus being more general.

Section IV is devoted to certain special properties of the
so-derived beams. In particular, it is shown how a concrete
choice of parameter values (l, μ, χ ) leads to known solutions
previously obtained in the literature. Then the properties of the
waves of Sec. II in their general form are analyzed and their
spatial distributions are plotted for several selected parameter
values. Necessarily, we had to limit ourselves here to merely
a few cases since there are many possible options, especially
when considering that the parameters can also assume com-
plex values. In some cases, these spatial distributions exhibit
quite special properties, which deserve some attention and are
discussed in the following sections in detail. Here let us only
mention a transfer of the energy-density peak between two
beam-forming branches.

II. DERIVATION OF THE FEW-PARAMETER FORMULA
FOR PARAXIAL BEAMS

In place of Cartesian coordinates x, y, z let us introduce in
(1) three complex variables ξ, η, α defined in the following
way:

ξ (x, y, z) =
(

μ + 2χ

α(z)
(x + iy)

)1/2

, (4a)

η(x, y, z) =
(

μ + 2χ

α(z)
(x − iy)

)1/2

, (4b)

α(z) = w2
0 + 2iz

k
, (4c)

where quantities μ and χ are certain parameters. Their values
stay at our disposal for the moment and their role in the
structure of the beam will be determined later. The choice of
the particular branches of the complex roots in (4a) and (4b) is
inessential for the energy density represented, up to a constant,
by |ψ (r, z)|2. As regards the third variable, i.e., α, it is, in fact,
the quantity known as the “complex beam parameter,” apart
from some constant coefficient. Consequently, w0 stands for
the beam’s waist radius.

Now let us try to rewrite the paraxial equation in terms of
these new variables isolating, however, from the very begin-
ning the standard Gaussian factor. To achieve this we set

ψ (r, z) = e− r2

α ψ̃ (ξ, η, α), (5)

and derive the differential equation satisfied by ψ̃ . As can
be verified in the straightforward way, this equation takes the
form

1

ξη

∂2ψ̃

∂ξ∂η
− α2

χ2

∂ψ̃

∂α
− α

χ2
ψ̃ = 0. (6)

The solution of (6) can be looked for in the form of the product

ψ̃ (ξ, η, α) = A(ξ, η)B(α), (7)

which allows for the full separation of the variables ξ, η

from α:

1

ξηA(ξ, η)

∂2A

∂ξ∂η
= α

χ2

(
α

B(α)

∂B

∂α
+ 1

)
. (8)

Both sides of this equation have to be equal to the same
constant, which, by virtue of χ being arbitrary at this point
(real or complex), can be set equal to 1. The solution of the
first equation

∂B

∂α
= 1

α

(
χ2

α
− 1

)
B(α), (9)

can be obtained in the standard way in the form

B(α) = B0
1

α
e− χ2

α , (10)

with B0 standing for a certain constant. The second equation,
i.e.,

1

ξη

∂2A

∂ξ∂η
= A(ξ, η), (11)

can be solved as well upon first introducing two new variables

u = ξ

η
, v = ξ η, (12)

and then assuming

A(ξ, η) = Au(u)Av (v). (13)

A standard variables-separation procedure leads to two
equations

A′′
u + 1

u
A′

u − l2

u2
Au = 0, (14a)

A′′
v + 1

v
A′

v −
(

1 + l2

v2

)
Av = 0, (14b)

with l2 standing for a separation constant. It should be pointed
out here that l , despite the symbol used, need not be an integer.
It can represent a fractional, real, or even complex number,
and the separation of the variables in equation (11) proceeds
in the same manner. This fact implies that the resultant ex-
pression (17) will describe a whole wide variety of beams of
different nature, depending on the choice made for the param-
eter’s value. Several interesting examples will be provided in
Sec. IV.

Equation (14a) has the two obvious solutions

Au(u) = ul , Au(u) = u−l , (15)

but the second can be omitted as merely leading to the re-
placement y �→ −y. In turn, (14b) is the modified Bessel
equation with a general solution in the form

Av (v) = C1Il (v) + C2Kl (v), (16)

where Il (v) is the modified Bessel function and Kl (v) is the
Macdonald (Basset) function. In the present paper we set
C2 = 0 and concentrate on the solution in the form of the
modified Bessel function which exhibits certain peculiar prop-
erties. Consequently, given the formulas (5), (7), (10), and
(14), the full family of beams representing the solution of the
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paraxial equation, labeled with the value of the parameter l ,
becomes

ψl (r, z) = N

α(z)

(
ξ (x, y, z)

η(x, y, z)

)l/2

Il (ξ (x, y, z)η(x, y, z))

× e
− x2+y2+χ2

α(z) , (17)

with ξ (x, y, z), η(x, y, z), and α(z) defined in (4) and N stand-
ing for a certain normalization constant. For the case of l being
an integer, in the following section the representation in the
form of superimposed shifted Gaussian beams is given.

III. EXPANSION ONTO SHIFTED GAUSSIAN BEAMS

Consider now the zero-order Gaussian beam, which con-
stitutes the fundamental solution of the paraxial equation (1).
Apart from a certain coefficient which is not involved in this
work, it has the form

ψG(r, z) = 1

α(z)
e
− x2+y2

α(z) . (18)

Below we will try to construct the beam found in the previous
section, for the special case of l ∈ Z, and defined through
expression (17), out of fundamental Gaussian beams whose
symmetry axes are no longer the z axis, but are shifted from it
by some vector [χ cos β, χ sin β], i.e., out of

ψGβ (r, z) = 1

α(z)
e
− (x−χ cos β )2+(y−χ sin β )2

α(z) . (19)

Such an expression, however, satisfies the paraxial equa-
tion even if χ is complex, in which case the geometrical
interpretation mentioned above is modified, but the expression
(19) remains effective. Therefore, we do not restrict ourselves
to the real case. Various shifted, i.e., off-axis beams, were
dealt with in a different context [39–41].

These kinds of beams, shifted by real or complex vectors,
can be superimposed with some amplitude f (β ), which can
be tailored to one’s needs. Below it is assumed to be periodic,
with the period of 2π , i.e.,

f (β + 2π ) = f (β ). (20)

Let us then consider the following superposition of ψGβ ’s:

ψ (r, z) =
∫ 2π

0
dβ f (β )ψGβ (r, z)

= 1

α(z)

∫ 2π

0
dβ f (β ) e

− r2+χ2−2χr cos(β−ϕ)
α(z)

= 1

α(z)

∫ 2π

0
dβ f (β + ϕ) e

− r2+χ2−2χr cos β

α(z) , (21)

where polar coordinates (r, ϕ) are introduced. The last expres-
sion is owed to the periodicity of the coefficient function f (β ).

A variety of periodic functions f (β ) may be chosen at this
point, but for our purposes it is convenient to substitute

f (β ) = 1

2π
eilβeμ cos β. (22)

The requirement of periodicity entails letting l be an inte-
ger and μ is an arbitrary (possibly also complex) parameter.

If μ has a nonvanishing real part, then differently shifted
Gaussian mods (19) enter with different weights, whereby the
resultant beam no longer exhibits cylindrical symmetry. For
purely imaginary μ, there might be no symmetry either due to
different phase factors and to the interference.

Using the weight function in the form

f (β ) = 1

2π
eilβeμ cos(β − δ), (23)

we can easily rotate the beam by an angle δ.
With this choice of the coefficient function f (β ), the beam

ψ (r, z) may be given the form

ψl (r, ϕ, z) = 1

2πα(z)
eilϕe

− r2+χ2

α(z)

×
∫ 2π

0
dβ eilβe

(μ cos ϕ + 2χr
α(z) ) cos β

−μ sin ϕ sin β. (24)

The integral with respect to β can now be executed according
to the formula∫ 2π

0
dβ eilβeq cos β + p sin β

= 2π

(
q + ip

q − ip

)l/2

Il (
√

q2 + p2), (25)

which holds for arbitrary complex values of q and p. Substi-
tuting

q = μ cos ϕ + 2χr

α(z)
, (26a)

p = −μ sin ϕ, (26b)

we find that

q + ip = e−iϕ ξ, (27a)

q − ip = eiϕ η. (27b)

Finally, the following formula is obtained:

ψl (r, z) = 1

α(z)
e
− x2+y2+χ2

α(z)

(
ξ (x, y, z)

η(x, y, z)

)l/2

× Il (ξ (x, y, z)η(x, y, z)), (28)

which is identical to (17) apart from the normalization con-
stant. It is obvious that this expression does satisfy the paraxial
equation as each of the terms in the linear superposition does.

IV. BEAMS’ PROPERTIES

A. General remarks

It is clear that the energy density of the wave integrated in
any perpendicular plane z = const. and proportional to∫

d2r|ψ (r, z)|2, (29)

is finite owing to the presence of the Gaussian factor. It
ensures the convergence of (29) and dictates the asymptotic
behavior of the beam away from the optical axis despite the
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FIG. 1. The energy density of the beam (17) for l = 1, w0 = 50, χ = 50, and μ = 25i. Plot (a) is performed in the plane y = 0, and three
subsequent plots, (b), (c), and (d) show the beam in the planes x = −w0, 0, w0, respectively. The values of z are dimensionless, as they refer
to the system in which k = 1. Bright regions represent high wave intensity and dark region low one.

eventual divergence of the Bessel function (depending on the
value of χ ) for large r:

Il
(
ξη

) ∼ e
2χ

α
r
. (30)

It is also obvious that the value of the integral (29) is
constant (i.e., it does not depend on z). If z were treated as
time variable this would correspond to the conservation of the

quantum-mechanical probability in the evolution governed by
the two-dimensional Schrödinger equation.

The family of beams introduced in this paper, apart from
the beam waist w0, includes a couple of parameters, the values
of which stay at our disposal, as l , μ, and χ . According to the
results of Sec. II, there are no limitations for their values. l can
be either integer or fractional as well as real or complex. The
same refers to μ and χ . Consequently, the general structure
of (17) is potentially very rich. For a few special choices, the

FIG. 2. Same as Fig. 1, but in the perpendicular planes (a) z = −5000, (b) z = −4000, (c) z = −3000, (d) z = −2000, (e) z = 0 (i.e.,
upper row) and (f) z = 0, (g) z = 2000, (h) z = 3000, (i) z = 4000, (j) z = 5000 (i.e., lower row).
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general expression (17) gets reduced to well-known types of
beams of different properties. For instance, setting χ = 0 the
fundamental Gaussian beam (18) is obtained. We then have

ξ

η
= 1, and ξη = μ. (31)

Consequently, the Bessel function in (17) reduces to an over-
all multiplicative constant similarly as the integration with
respect to β. Only the Gaussian factor (together with 1/α)
survives. This is an obvious result since the shifting vector in
(19) becomes null in this case.

If the value of the second parameter (i.e., μ) equals zero
(surely, now with χ �= 0), the beam recovers its cylindrical
character. We then obtain

ξ

η
= eiϕ, and ξη = 2χ

α
r. (32)

In this case for the real value of the parameter χ , the so-called
modified Bessel-Gaussian beam is obtained

ψmBG(r, ϕ, z) = 1

α(z)
e
− r2+χ2

α(z) eilϕIl

( 2χr

α(z)

)
, (33)

and the imaginary value of χ leads to the ordinary Bessel-
Gaussian beam

ψBG(r, ϕ, z) = 1

α(z)
e
− r2−|χ |2

α(z) eilϕJl

(2|χ |r
α(z)

)
. (34)

In this case, parameter χ corresponds to zR sin θ , where θ is
the half-aperture angle [42,43].

In general, the parameter μ to some extent accounts for
the asymmetrical character of the beam’s intensity. As can
be seen from the expression (17) and will be shown in the
figures below, beams of the class dealt with here in general do
not exhibit the cylindrical symmetry. For Re μ �= 0 the weight
function f (β ) is nonuniformly distributed over the circle, so
differently shifted Gaussian beams enter with various weights.
Also for purely imaginary values of μ the asymmetry asso-
ciated with different phase factors and with interference of
waves does emerge. As μ approaches 0 the beam becomes
more and more axially symmetric. The same is observed for
the limit of large μ (more precisely for |μ| 	 |χ |/w0) since,
in this case, the deviations occur only far from the z axis,
i.e., in the region which is irrelevant, as it remains virtually
off-beam due to Gaussian damping.

The properties discussed above show that the conditions
of the paraxial approximation for the derived beam should
be fulfilled no worse than for standard beams: Gaussian and
Bessel-Gaussian (regular and modified) for the same values
of parameters χ and w0. A significant role is played here
by the value of the ratio γ := χ/μ, which, in some sense,
“interpolates” between the first and the second beams. In
particular, as the above analysis demonstrates, a small value
of γ yields a Gaussian beam and its large value a mBG or
a BG beam depending on whether χ is real or imaginary,
so the conditions of the paraxial approximation should be
met equally well in the present case. These conclusions are
also confirmed by the construction presented in Sec. III. It is
apparent that, for χ ∈ R, the solution (17) is a superposition of
shifted Gaussian beams with foci distributed over a circle, just
as happens for mBG beams [16]. The modification is merely

FIG. 3. The phases of the beam (17), depicted in cut planes
(a) z = 100, (b) z = 500. Other parameters are identical as in Fig. 1.
The value of the phase, modulo 2π , is represented continuously by
means of the grayscale from −π (black color) to π (white color).
The plots (c), (d) show the intersection of wavefronts with the plane
y = 0, and (e), (f) with the planes x = 0.17w0, and x = 1.9w0, re-
spectively. These last values are chosen to clearly visualize phase
singularities seen in plots (a), (b). The wavefront surfaces are drawn
for integer values of π .

the choice of a nontrivial weighting function (22). The same
thing is true for imaginary χ : in this case one has to do with
a superposition of inclined Gaussian beams with foci at the
origin of the coordinate frame, which for a constant weighting
function would lead to the formation of a regular BG beam
[16].

In the following, the intensity and phase distributions of
the beams (17) in space will be graphically represented for
chosen values of the parameter l . It should be stressed that
the illustrations presented below are merely examples since,
due to the presence of several parameters, there are a number
of possible choices of their values leading to different beams’
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FIG. 4. Same as Fig. 1, but for l = 1/2, w0 = 30, χ = 120, μ = 10i. The cut planes are (a) y = 0, (b) x = −1.5w0, (c) x = 0, and (d) y =
1.5w0.

shapes. The specific data are picked so that certain character-
istic features be clearly visible in the figures. Additionally, we
restrict ourselves in this paper to real values of χ .

B. Integer value of l

In Fig. 1 the beam’s energy density for the integer value of
l (chosen as l = 1) and imaginary value of μ is plotted. The
first diagram shows the distribution of the energy density in

the plane y = 0. The other three present the same quantity in
the planes x = −w0, x = 0, and x = w0.

For the data specified in the figure the beam is obviously
not axially symmetric. Since all the constituent Gaussian
beams located on the circle enter with identical weights, this
effect stems from the different phase factors and from the
interference between superimposed waves.

A characteristic feature visible in the figure at first glance is
the transfer of the wave-intensity peak from the left to the right
branch of the beam after crossing the z = 0 plane. The same

FIG. 5. Same as Fig. 2, but for the values of parameters of Fig. 4 and for the cut planes (a) z = −5000, (b) z = −4000, (c) z = −3000,
(d) z = −1500, (e) z = 0 (i.e., upper row) and (f) z = 0, (g) z = 1500, (h) z = 3000, (i) z = 4000, (j) z = 5000 (i.e., lower row).
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effect is also shown in Fig. 2 in the form of the sequence of
intersections with planes perpendicular to the propagation axis
z. This will be apparent also in later figures performed for a
fractional value of l . Mathematically, this effect is attributable
to the change in the sign of the imaginary part of α(z) and
to the property of the Bessel functions of complex argument,
which, so to speak, “interpolates” between Il and Jl .

Physically, the choice of relative phases in the form of
the weight function f (β ) and the values of the parameters
(particularly μ) yields a destructive interference on one side
and a constructive one on the other.

The spatial energy distribution does not exhibit axial sym-
metry, as said before, but nonetheless two symmetries can be
observed, when the following reflections are carried out:

(1) y �−→ −y;
(2) (x, z) �−→ (−x,−z).
The first is relatively easy to deduce from (17) and (4). The

product ξη is invariant under this reflection and the quotient
ξ/η is insensitive to it provided y 
 w2

0|μ|/χ = 25w0 (for
the data of Fig. 1), i.e., practically within the entire beam
whose transverse size is determined by a Gaussian damping
factor.

The second symmetry holds in the same sense: both |ξ/η|
and |ξη| become invariant under simultaneous reflection of x
and z if the above condition for y is met. This symmetry is,
however, broken for real values of μ (see Sec. IV C). In this
case the shifted Gaussian beams occur in the superposition
with significantly different weights (and not just different
phase factors), resulting in the loss of some symmetries.

Naturally, these conclusions can be deduced from the
form of f (β ) and integral (24) as well. For example, a
simple substitution β �−→ 2π − β under the integral re-
veals the aforementioned symmetry with respect to reflection
y �−→ −y.

It is clear from these formulas that switching the sign of
the parameter χ merely induces the inversion of the intensity
pattern in the plane perpendicular to the propagation axis.
There is not space here to provide further diagrams for larger
values of integer l , so just note that the beam then looks more
and more like a slanted one from paper [33].

In Fig. 3, the phases of the wave function eikzψ (r, z) are
represented in various cut planes. The first two drawings de-
pict in grayscale the distribution of the phase in perpendicular
planes (i.e., for z = const.). The subsequent four illustrate
the profiles of the constant-phase surfaces in different planes
parallel to the z axis and at different distances from the focal
plane.

In the first two and the last two diagrams, phase singu-
larities resulting from the interference of shifted Gaussian
beams are visible. Note the truncated lines of constant phase in
drawings Figs. 3(e) and 3(f) and the concomitant lines’ jump,
which correspond to the singularities seen in Figs. 3(a) and
3(b). The values x = 0.17w0 and x = 1.9w0 were tailored in
such a way that the plane of intersection passes through them.

The well-known formula for the generating function of the
modified Bessel functions [44]

e
z
2 (t + 1

t ) =
∞∑

l=−∞
t l Il (z), (35)

FIG. 6. Same as Fig. 3, but for the values of parameters of Fig. 4,
and for the cut planes (a) z = 100, (b) z = 1000, (c) y = 0, (d) y = 0,
(e) x = −4w0, (f) x = 2w0.

allows to construct arbitrary Gaussian beams out of (17). Let
us consider the sum

∞∑
l=−∞

alψl (r, z) = 1

α(z)
e
− x2+y2+χ2

α(z)

∞∑
l=−∞

al

(
ξ

η

)l

Il (ξη),

(36)
with certain constant a. Applying (35) one easily gets

∞∑
l=−∞

alψl (r, z) = 1

α(z)
e
− x2+y2+χ2

α(z) e
1
2 (aξ 2 + 1

aη2)
. (37)

A simple substitution a = e−iβ reconstructs now the shifted
Gaussian beam (19), apart from an overall constant.

C. Fractional value of l

As an example of a solution with a fractional value of
l , the value l = 1/2 was chosen, still with a real value of
the parameter χ and an imaginary value of μ. The pre-

053510-7
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FIG. 7. Same as Fig. 1, but for l = 1/2, w0 = 20, χ = 100, μ = 1. The cut planes are (a) y = 0, (b) x = −2.5w0, (c) x = 0, and (d) y =
2.5w0.

cise values of these and other parameters are again picked
out for visibility of plots and are given in the caption of
Fig. 4.

For fractional values of l , the beam displays a somewhat
more complex structure. In particular, it splits into a sys-
tem of asymmetric rings (in a perpendicular plane), or rather
ring segments. This is clearly visible in the Figs. 4 and 5.
Mathematically, for example, for l = 1/2, this follows simply
from the fact that the Bessel function I1/2(z) is proportional
to sinh(z) (for other half values cosh z occurs as well), and

therefore, for a complex z = x + iy

I1/2(x + iy) ∼ sinh x cos y + i cosh x sin y. (38)

The appearance of trigonometric components introduces an
oscillatory character to the function ψ (r, z) resulting in the
formation of bright rings. The centers of these rings follow
the two branches of the beam, similar to those of Fig. 1. Iden-
tically to the case of l = 1, the intensity peak is also shifted
from one branch to the other. The observed pattern of the
energy density distribution, which is in some aspects similar

FIG. 8. Same as Fig. 2, but for the values of parameters of Fig. 7 and for the cut planes (a) z = −5000, (b) z = −4000, (c) z = −3000,
(d) z = −2000, (e) z = 0 (i.e., upper row) and (f) z = 0, (g) z = 2000, (h) z = 3000, (i) z = 4000, (j) z = 5000 (i.e., lower row).
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FIG. 9. Same as Fig. 3, but for the values of parameters of Fig. 7,
and the for the cut planes (a) z = 100, (b) z = 500, (c) y = 0, (d) y =
0, (e) x = −4w0, (f) x = −w0.

to the “asymmetric Bessel modes” of [45,46], is also repeated
for other fractional values of l , for which graphic illustration is
not provided in this work due to limited space. Yet, it should
be noted that, contrary to Bessel or Bessel-Gaussian beams,
there are two families of ring segments here: one for the left
and the other for the right branch. However, the symmetries of
the energy density distribution found for integer l still hold.

The phase pattern depicted in Fig. 6 in various cut planes
again shows the singularities, in Figs. 6(a) and 6(b) marked
with white lines and evidenced by the discontinuities in
Figs. 6(e) and 6(f) (the right discontinuity is hardly visible,
reducing simply to a white point on the curve due to the jump
by 2π ).

As already indicated, in the case of a real value of μ

(assume that μ > 0) the weight function f (β ) does not reduce
to a phase factor. Gaussian beams ψGβ (r, z) located in a sym-
metric way with respect to the yz plane enter with different
weights (e.g., w and 1/w). The beams contributing with larger

values of the weight function are those with −π/2 < β <

π/2 for which cos β > 0. This entails the significantly higher
intensity on the right side and the observed energy-density
asymmetry. In contrast, the symmetry with respect to the xz
plane is maintained due to the invariance of the cosine func-
tion when replacing the argument β with 2π − β. As a result,
the beam is still symmetric when transforming z �−→ −z or
y �−→ −y. In turn, inverting the sign of the parameter μ (or
χ ) implies de facto the reflection of the intensity distribution
with respect to the yz plane. This is illustrated in Figs. 7
and 8.

One should still note the dark hole in the middle. It appears
for relatively large values of the parameter χ (such as that
chosen in the figures). This effect is quite easy to understand
if one remembers that superimposed shifted Gaussian beams
are localized on the circle of radius χ . Since its circumfer-
ence is proportional to χ and the amplitude of each beam
decreases with χ as exp(−χ2/w2

0 ), so roughly speaking and
disregarding interference effects, the intensity at the center is
proportional to χ2 exp(−2χ2/w2

0 ). For large values of χ it
becomes extremely low and the resulting beam has a “holey”
appearance.

Figure 9 illustrates the phase distribution for l = 1/2 and
the real values of the parameters μ and χ . It displays similar
properties to those of Fig. 6.

V. SUMMARY

A new solution of the paraxial Helmholtz equation ob-
tained by introducing three complex variables (4) is provided
in this paper. In these variables, the equation was successfully
separated. The obtained solution describes a whole spectrum
of light beams with different properties, depending on the
choice of values of several parameters.

For integer values of the parameter l , the resulting beam
was independently constructed as a superposition of shifted
Gaussian beams (with foci distributed on a circle) by appro-
priate selection of the weight function.

Apart from some specific parameter values for which pre-
viously known beams (Gaussian, Bessel-Gaussian, modified
Bessel-Gaussian) were obtained from the general formula
(17), the spatial distribution of the energy density exhibited
certain new properties. In particular, a characteristic feature
was the existence of two “branches” between which the ir-
radiance transfered in the course of wave propagation. Other
peculiarities (such as the appearance of two families of rings,
etc.) were shown in the figures. The phase distribution of the
derived waves generally presented a rather intricate pattern
that also included singularities at certain specific locations.

Due to the numerous applications of structured light, it
seems that the theoretical derivation of its interesting new
forms, which are supposed to be practically realizable (e.g.,
by appropriately illuminating a computer-generated holo-
gram or computer-controlled spatial light modulator), seems
to be of a certain value. At the same time, it should be
emphasized that (17) offers considerable scope for modi-
fication due to the presence of several parameters at the
experimentalist’s disposal. This property might be, for in-
stance, used to model the asymmetries of the real aberrated
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beams with defects caused by the experimental setup. An
attempt to account for asymmetries in the perturbative way
and to decompose the distortion in the base of cylindrical
LG modes was proposed in [47]. The beam found in this
paper has an already built-in asymmetry that can be con-
trolled through accessible parameters, so it seems that it

might be more feasible than the use of strictly cylindrical
beams.

In conclusion, it can be said that by properly choosing
the values of the parameters, this beam can be made closer
to real experimental situations than idealized beams showing
beautiful mathematical symmetries.
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