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Dissipative soliton Kerr frequency combs in microresonators have recently been demonstrated with the self-
injection locking process. In addition to turnkey deterministic comb generation, this mode of operation simplifies
dark pulse generation in the normal dispersion regime. Here, the formation process of dark pulses triggered by
self-injection locking is studied by regarding them as a pair of switching waves that connect domains having
different intracavity powers. The self-injection locking mechanism allows the switching waves to self-regulate
their position so that a wide range of comb states can be accessed, and the duty cycle is controlled by the
feedback phase. The dark pulse shape is also imaged using the linear optical sampling technique. The results
provide physical insights as well as an operational modality for this important class of nonlinear waves.
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I. INTRODUCTION

Soliton microcombs [1] offer a path towards miniatur-
ization of optical frequency comb technologies [2] onto
photonic chips. Their integration with III-V pump lasers
without the need for optical isolation [3–6] is an important
step towards fully integrated chip-based soliton microcombs.
Critical to operation without isolation is the self-injection
locking process [7], which was originally used to reduce
laser linewidth [8–11]. More recently, it has been shown to
create a “turnkey” operating point [5] that eliminates com-
plex startup and feedback protocols used to trigger solitons
[12]. Overall, this combination of features makes possible
single-chip soliton microcomb devices with heterogeneously
integrated III-V/Si pump lasers [13]. The self-injection-
locked “turnkey” operation also simplifies access to dark pulse
states [6,14]. Specifically, dark pulses exist under conditions
of normal group velocity dispersion (GVD) [15–19] and their
formation normally requires special spectral-design consid-
erations (e.g., mode-crossing-induced anomalous dispersion
[16]). Self-injection locking makes it possible to turnkey-
trigger dark pulses without these requirements, and instead
relies on the intrinsic Rayleigh backscattering ubiquitous in
resonators [6,14]. Despite these benefits, a theory describ-
ing the normal dispersion microcomb generation process
under conditions of self-injection locking has not yet been
established.

Here we analyze the formation process of such dark pulses
in the self-injection locking regime. It is shown that injec-
tion locking not only eliminates the soliton startup protocols
[5,6], but also leads to a self-regulation feature that breaks the
dark pulse duty cycle and asymptotic efficiency limitations
imposed by interlocked switching waves [20,21] in con-
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ventional pumping schemes. Viewing the dark pulses as
two oppositely oriented switching waves [20–24], the self-
regulation equilibrates their separation and stabilizes the
laser-cavity detuning to the energy-balanced Maxwell point
[20,21]. Moreover, the set point in this self-regulation is con-
trolled by the feedback phase so that the duty cycle can be
adjusted to vary comb spectra and optimize comb power ef-
ficiency. In optics, polarization domain walls and novel types
of vector dark domain wall solitons have been theoretically
predicted [25] and observed in a fiber ring laser [26,27]. We
will reveal the similarities between the structure studied here
and the previous optical domain walls. A model is developed
and dark pulses are measured by taking “snapshots” via the
linear optical sampling technique [28–32]. As detailed below,
these results illustrate possibilities in the normal dispersion
system that have not been expanded upon in previous similar
models of microcombs [5].

This paper is organized as follows. In Sec. II we begin
with a model for nonlinear injection locking and arrive at
the Lugiato-Lefever equation (LLE) [33] augmented with a
locking condition. Some general properties of these equa-
tions are also summarized here. In Sec. III we introduce
the mechanism for domain and switching wave formation
by considering the zero-dispersion case, and use these re-
sults to demonstrate the physical idea behind switching wave
generation. In Sec. IV we move on to the case of normal
dispersion, where the energy balance of the switching wave
leads to the concept of the Maxwell point. In Sec. V we
demonstrate how the switching waves self-regulate around the
Maxwell point. In Sec. VI the effects of feedback phase on
pulse numbers and duty cycle are studied, and the dependence
is utilized for comb efficiency calculations. In Sec. VII we
present some preliminary experimental results validating the
model. Finally in Sec. VIII we discuss possible improvements
to the model. Various technical derivations are collected in the
Appendices.
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FIG. 1. Laser-resonator system with nonlinear injection locking. (a) Schematic of the system, where an on-chip laser is coupled to an
on-chip microresonator without optical isolation, thereby allowing signals from the resonator to be fed back to the laser. Within the resonator,
light circulates in both the clockwise (CW) and counterclockwise (CCW) directions. (b) Blue curve shows the nonlinear resonator pumping
curve for | f |2 = 4, and the dashed blue line marks the section that is dynamically unstable. The yellow region (marked with “Dynamical
instability”) gives the DI region when the pump power varies. The bold blue sections give the three branches of the multivalued part of the
curve, and the powers correspond to |ρH|2, |ρM|2, and |ρL|2. Black lines show the laser locking curve in the presence of injection locking.
The feedback phases are taken as −π/2, 0, and π/2 (from left to right), where the φ = 0 curve is solid and others are dashed. Arrows show
the evolution direction of the system. The black dots mark continuous-wave operating points of the system associated with these phases.
(c) Schematic of intracavity field evolution in the absence of dispersion. Left: After the intracavity field reaches ρM at the continuous-wave
operating point, fluctuations of the field cause the field evolving towards the upper and lower equilibria. Arrows show the evolution direction
of the respective fields. Right: High- and low-field domains appear in the resonator, and a switching wave forms to connect the two domains.
(d) Schematic of intracavity field evolution in the presence of normal dispersion. First panel: Similar to the dispersionless case, the field evolves
towards the upper and lower equilibria after reaching the continuous-wave operating point. Second panel: After switching waves form in the
resonator, they adjust their position through the regulation process. Third panel: The field reaches steady state at the Maxwell point. Fourth
panel: The region marked in the third panel is enlarged, showing the switching wave solution. The red and blue areas mark the high-field and
low-field domains, respectively.

II. THE NONLINEAR INJECTION LOCKING MODEL

We consider a self-injection system consisting of a nonlin-
ear ring-type resonator and a laser as shown in Fig. 1(a). The
laser and resonator are directly coupled without optical isola-
tion, allowing the backscattered light from the resonator to be
fed back to the laser and alter its dynamics. The equation of
motion for the forward field in the resonator reads

∂EF

∂t
= −

(κ

2
+ iδω

)
EF + i

D2

2

∂2EF

∂θ2

+ igNL

(
|EF|2 + 2

∫ 2π

0
|EB|2 dθ

2π

)
EF

+ ig∗
L 
 EB + i

√
κexFin, (1)

where EF (EB) is the forward (backward) slowly varying field
amplitude normalized to energy, κ is the energy loss rate
for the modes (assumed to be the same for each spectral
mode), δω is the instantaneous detuning defined as the dif-
ference between the cold resonance being pumped and the
instantaneous frequency of light injected into the microres-
onator, D2 is the second-order dispersion parameter, gNL is
the nonlinear coefficient, gL is the distributed linear scatter-
ing strength that may depend on resonator defects and their
spatial distribution, κex is the external coupling rate to the
waveguide, Fin is the input amplitude on the waveguide nor-
malized to power, θ is the comoving resonator coordinate
(proportional to the fast time), and t is the slow time. The non-
linearity from |EF| is localized, while the nonlinearity from
|EB| is averaged over the entire cavity as these fields propa-
gate in opposite directions and do not phase match with EF.
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The convolution form of the linear scattering, [g∗
L 
 EB](θ ) =∫ 2π

0 g∗
L(θ ′)EB(θ − θ ′)dθ ′, represents general elastic scattering

that may contain both continuous (e.g., surface roughness) and
discrete sources (e.g., individual particles). The equation here
only includes those effects that are necessary for soliton
generation, i.e., detuning, dispersion, nonlinearity, loss, and
pumping. Other effects can be readily accommodated, such as
high-order dispersion, Raman effects, and different losses on
each spectral mode, by adding or modifying the corresponding
terms in the equation. A similar equation holds for the back-
ward amplitude EB except there is no external pumping term.
The laser dynamics includes both gain and loss, and reads

∂EL

∂t
= i(δωL − δω)EL + (1 + iαG)

(
−γ

2
+ G

)
EL

+ i
√

γ FL,in, (2)

where EL is the slowly varying amplitude in the laser cavity,
δωL is the detuning of the cold cavity resonance compared to
the free-running laser, G is the laser gain that depends on |EL|2
through gain saturation [e.g., G = G0/(1 + |EL|2/|EL,sat|2),
where G0 denotes the small signal gain and |EL,sat|2 is
the saturation power], γ is the laser cavity loss, αG is the
amplitude-phase coupling factor, and we replaced outcoupling
loss with γ by assuming that this is the dominant loss source
of the cavity. Unlike EF and EB, EL can be treated as a complex
number rather than a spatially dependent field. This is possible
because the pump laser used is single mode and also because
the dominant source of resonator feedback is considered to be
from backscattering of the pump wave. Carrier dynamics are
also ignored as these dynamics are generally much faster than
the time scale of power change (i.e., 1/κ) associated with the
pumping field in the high-Q cavity. Typical carrier relaxation
rates for semiconductor lasers can be as large as a several gi-
gahertz [34], while state-of-the-art integrated resonators could
reach a resonance linewidth of a megahertz or less [6].

The external (in the waveguide) pumping for the resonator
and laser are related to the internal fields through the input-
output relations

Fin = i
√

γ
√

T exp(iφB)EL, (3)

FL,in = i
√

κex

√
T exp(iφB)EB, (4)

where T is the power transmission on the feedback waveg-
uide, including all waveguide loss and facet coupling loss
accumulated along the waveguide. φB is the phase accumu-
lated on the feedback waveguide, and EB = (2π )−1

∫ 2π

0 EBdθ

is the average field amplitude (the amplitude on the zeroth
mode) for EB. We assume that φB is a constant over the
bandwidth being considered, which requires that the feedback
length is short. The approximation of using the spatial average
of the backscattered field is partially justified because the
pumping field intensity is typically larger than that of all comb
lines and the single-mode laser resonator will tend to reject
inputs at other frequencies (i.e., they are nonresonant).

For each of the above equations, we do not require δω to
be a constant over time as the laser frequency can shift around
while tracking the resonance. The equations are always refer-
enced to the instantaneous detuning δω, such that the external
pumping for the resonator Fin has a constant phase and no

longer contains any explicit frequency terms. In effect, this
ensures that the pumping term i

√
κexFin can be taken as a

positive real number for later convenience.
The above equations for resonators and lasers, while use-

ful in numerical simulations, are not suitable for studying
the dynamics from a theoretical perspective. To simplify the
model and reveal the underlying physics, some necessary ap-
proximations are made such that terms that do not contribute
significantly to the pulse formation and stabilization process
are discarded. Relaxation of some of these approximations is
addressed in the discussion section. The principal assumption
used here is that the backscattering is weak, i.e., gL � κ ,
which is often the case in current experiments. As frequency
shifts of the cavity resonance caused by nonlinear effects are
also on the order of κ when the comb forms, this allows us to
drop nonlinearity terms induced by |EB|2. We will also neglect
the g∗

L 
 EB term in ∂t EF that scales as |gL|2 in this weak-
scattering approximation. As a result, all mode amplitudes of
EB will be decoupled from the system except the zeroth mode,
which is determined by the pumping field, and we can replace
the field EB by its zeroth mode amplitude EB (the inclusion
of the comb lines will be numerically considered below). The
resonator equations then simplify to

∂EF

∂t
= −

(κ

2
+ iδω

)
EF + i

D2

2

∂2EF

∂θ2

+ igNL|EF|2EF −
√

κexγ T EL exp(iφB), (5)

dEB

dt
= −

(κ

2
+ iδω

)
EB + 2igNLEB

∫ 2π

0
|EF|2 dθ

2π

+ igLEF, (6)

where gL = ∫ 2π

0 gL(θ ′)dθ ′ is the backscattering strength for
the zeroth mode.

The laser dynamics for EL ≡ |EL| exp(iφL) can be split into
amplitude and phase parts:

1

|EL|
d|EL|

dt
= −γ

2
+ G − Re

[√
κexγ T eiφB

EB

EL

]
, (7)

dφL

dt
= δωL − δω +

(
−γ

2
+ G

)
αG − Im

[√
κexγ T eiφB

EB

EL

]
.

(8)

In accordance with the earlier discussion, we assume that
the laser relaxation dynamics are fast enough such that
the laser power adiabatically tracks the external input from
backscattering (d|EL|/dt ≈ 0). With these assumptions, the
instantaneous gain can be solved from amplitude equation (7)
and eliminated from phase equation (8). This results in

0 = δωL − δω

− Im

[
(1 − iαG)

√
κexγ T eiφB

EB

EL

]
, (9)

so that EL is now reduced from a dynamical variable to a
parameter (i.e., the laser power is almost unchanging).

We now normalize all variables in the equations. The
normalization scheme is based on κ/2 → 1 and gNL → 1.
Phase changes in different variables are also merged to-
gether. We define the normalized detunings α = 2δω/κ
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and αL = 2δωL/κ , normalized time τ = κt/2, normal-
ized field ψ = EF

√
2gNL/κ , normalized average of in-

tracavity fields, ρ = EF
√

2gNL/κ and ρB = EB
√

2gNL/κ ,
normalized dispersion β2 = −2D2/κ (the negative sign
here follows the sign convention for the GVD), nor-
malized backscattering β = 2gL/κ , normalized pump f =
−(2/κ )3/2√gNLκexγ T EL exp(iφB) (we will take f as a posi-
tive real number without loss of generality from here on), and
average power for the forward mode, P = ∫ 2π

0 |ψ |2dθ/(2π ).
After normalizing all the variables, we arrive at the following
set of equations:

∂ψ

∂τ
= −(1 + iα)ψ − i

β2

2

∂2ψ

∂θ2
+ i|ψ |2ψ + f , (10)

dρB

dτ
= −(1 + iα − 2iP)ρB + iβρ, (11)

α = αL + KIm

[
eiφ ρB

iβ f

]
, (12)

where we introduced two additional parameters: the (normal-
ized) locking bandwidth,

K = 4κexγ

κ2

√
1 + α2

G|β|T, (13)

and the feedback phase,

φ = 2φB + Arg[β] − arctan(αG) + π

2
, (14)

where Arg[·] is the argument function. The feedback phase
φ consists of three parts: optical phase accumulated on the
waveguide, backscattering, and amplitude-phase coupling.
The extra π/2 is added to the definition of φ for later con-
venience. The first equation is identical to the normalized
LLE as we have neglected all terms that do not contribute
significantly to the comb formation process. The second and
last equations resemble the Lang-Kobayashi equation [35]
and augment the LLE to describe the nonlinear self-injection
locking process.

For the following analyses we will work with the limiting
case that K → ∞, such that the locking process completely
overrides the free-running laser detuning αL, and the laser
is always locked to the detuning determined by the implicit
equation Im[eiφρB/(iβ f )] = 0. This can be justified as most
semiconductor laser resonators possess a much lower Q (typ-
ically 104 to 105) compared to that of the resonator used for
comb generation (typically around 108), and K can reach 102

even with relatively weak backscattering (β ≈ 10−2). If we
further assume steady-state conditions for the backward field
ρB, the locking condition can be expressed as

Im

[
eiφ

1 + iα − 2iP

ρ

f

]
= 0. (15)

This will be referred to as the “locking curve” equation. For
the resonator, the steady-state continuous-wave power under
external pumping can be found through

f 2 = [1 + (α − |ρ|2)2]|ρ|2, (16)

which is referred to as the “pumping curve” equation. The
pumping curve and the locking curves (with different feed-
back phases) are plotted in Fig. 1(b). The resonator pumping

curve may have three branches with respect to the detuning
α, and the field solutions are denoted as ρH, ρM, and ρL,
ordered by their absolute value from highest to lowest. Solu-
tions on the upper (ρH) and lower (ρL) branches are readily
shown to be stable while the middle branch solution (ρM)
is dynamically unstable under homogeneous perturbations in
the temporal domain in the absence of injection locking. The
dynamical instability (DI) region is indicated in Fig. 1(b), the
boundaries of which can be found through ∂α/∂|ρ|2 = 0 and
solved as [36]

|ρ|2 = 2α

3
±

√
α2 − 3

3
, α �

√
3. (17)

We note that the DI region marks the existence of op-
tical bistability [37] which enables the formation of dark
pulses consisting of ρH and ρL continuous-wave components,
and plays a special role in dark pulse generation in the
injection-locking scheme. It also falls within the modulational
instability (MI) region (which is unstable under inhomo-
geneous perturbations, a prerequisite of comb generation),
which explains the onset of dark pulse generation from a
frequency-domain perspective. The connection between DI
and MI is further explored in Sec. VI.

For continuous-wave conditions, we can replace ψ with ρ

and P with |ρ|2. The locking then results in

Im

[
eiφ

(1 + iα − i|ρ|2)(1 + iα − 2i|ρ|2)

]
= 0. (18)

This is a quadratic equation in α and can be solved as

α± = 3

2
|ρ|2 − cot φ ±

√
4 + |ρ|4 sin2 φ

2 sin φ
(19)

with the understanding that for the case φ = 0, the equa-
tion becomes linear, and taking the φ → 0 limit of the above
relation results in α+ = 3|ρ|2/2, and a diverging α−. This
equation with the positive sign will be referred to as the
“continuous-wave locking curve” equation, which describes
the laser locking characteristics prior to comb generation as a
function of |ρ|2. A simple stability analysis shows that the
root α+ describes stable locking (the other root α− pushes
the system away from the equilibrium). The continuous-wave
locking curve [Eq. (19)] intersects the resonator pumping
curve [Eq. (16)] exactly once at the “continuous-wave oper-
ating point” under all φ and f , eliminating the possibility of
multiple continuous-wave steady states in the system. If the
continuous-wave operating point falls within the DI region,
the injection-locking process also makes the system dynam-
ically stable (but still modulationally unstable). In this case,
when pumping an initially unpumped resonator, the system is
quickly pulled to the continuous-wave operating point on the
middle unstable branch, after which dark pulses are generated
[Figs. 1(c) and 1(d)], causing the system state to move further
along the general laser locking curve [Eq. (15)]. The detailed
injection-locking dynamics accompanied with dark pulse gen-
eration will be thoroughly discussed in Secs. III and IV.

We note that there are out-of-lock states for the resonator
if the laser is tuned sufficiently far away from the resonance.
However, these do not show up in the current analysis as we
are working with the K → ∞ limit, and mainly concerned
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with the system behavior within the mode rather than the
locking bandwidth. In the above derivation, we also made
other assumptions, such as that the intensity of comb lines are
much weaker than that of the pump, the relaxation rate of the
laser is much larger than that of the resonator, the feedback
length is small, the backscattering is weak, and steady-state
operation, which are all valid for dark pulse generation under
current experimental conditions.

III. NONLINEAR INJECTION LOCKING WITH ZERO
DISPERSION

To understand the system behavior, we first study the
special case of zero dispersion (i.e., β2 = 0). This simpli-
fies the physical picture while not qualitatively impacting the
results, and the inclusion of dispersion will be considered
later. Zero dispersion removes the field derivative term from
the LLE, which allows step discontinuities in the field. Such
non-continuous-wave solutions will be shown to exist and
are stable in the absence of dispersion. Since the continuous-
wave operating point lies within the DI regime, fluctuations
cause the field to destabilize away from the operating point.
Fields in about half of the resonator will increase to the upper
equilibrium while fields in the other parts decrease to the
lower equilibrium, forming single or multiple square-wave-
like pulses in the microresonator (the propensity of generating
single and multiple pulse states will be discussed later in
Sec. VI). However, these local changes must still satisfy the
laser locking condition. With respect to the pumping field,
this occurs in a spatially averaged sense wherein the aver-
age intracavity field and power determine the operating point
[Eq. (15)]. The whole process is illustrated in Fig. 1(c). As an
aside, the average field will change in response to the power
changes, but such changes cannot flip the upper equilibrium
to the lower equilibrium or vice versa, as such a spontaneous
flipping of the field requires large fluctuations that are expo-
nentially unlikely.

In summary, beginning from the unstable branch
continuous-wave operating point, the waveform evolves to
single or multiple square-wave-like waveforms that consist of
sections of upper and lower equilibria. We will refer to these
sections as high-field and low-field domains, respectively
[Fig. 1(c)]. Between these domains, a field discontinuity
occurs. Such discontinuities are known as switching waves
[22–24] [Fig. 1(c)], analogous to the domain walls that
separate magnetic domains in ferromagnetic materials [38].
Here, similar to the optical domain walls in other systems
[25,39,40], the concept of the switching wave also links to
its topological origin as an object that continuously connects
the high- and low-field domains (see Appendix A). As an
aside, we avoid using the terminology “dark soliton” to
describe the resulting waveform in the current system, as
one may argue that the squarelike wave does not occupy a
localized region within the resonator, unlike the switching
waves. For the special dispersionless case initially studied
here, the switching waves have zero width due to absence of
the derivative terms in the LLE. The width becomes finite for
the normal GVD regimes as discussed below.

IV. NONLINEAR INJECTION LOCKING WITH NORMAL
DISPERSION

For the normal dispersion case where β2 > 0, the domain
formation process is qualitatively similar to the dispersionless
case. The system still reaches the continuous-wave operat-
ing point followed by the emergence of high- and low-field
domains. However, the switching waves at the boundary of
the domains now have finite widths due to the dispersion
term ∂2

θ ψ which imposes a continuity condition on the field.
The spatial width of the switching wave is assumed to be
much shorter than 2π (cavity round trip) such that boundary
effects can be ignored. This will be discussed later in terms of
switching wave interactions.

Typical switching wave solutions to the LLE (normal dis-
persion) are plotted in Fig. 1(d) (see also [22–24]). The
switching wave can be roughly divided into two parts. The
portion close to the high-field domain has the form of a con-
stant term minus an exponential that increases to the upper
equilibrium, while the portion close to the low-field domain
is either exponentially or oscillatorily decaying to the lower
field equilibrium. These behaviors are controlled by the eigen-
values of the field equation at the corresponding equilibria
[41,42]. At the upper and lower equilibria, the energy gain
of the field equals the energy loss. For the upper (lower) part
of the switching wave, the optical gain (cavity loss) term is
more prominent, and the field has the tendency to converge
to ρH (ρL), expanding the high-field (low-field) domain. A
stationary switching wave thus requires that these two effects
balance each other. Quantitatively,∫

(−2|ψ |2 + 2Re[ f ψ∗])dθ = 0, (20)

where the first term represents loss to the environment and the
second term represents gain from the pump (see also [43]).
If these tendencies are unbalanced, the switching wave will
move as a whole in the direction determined by the dominant
tendency. The overall speed of the switching wave can be
calculated from the rate of energy change, and reads

D1 = ∓ 1

|ρH|2 − |ρL|2
∫ ∞

−∞
(−2|ψ |2 + 2Re[ f ψ∗])dθ, (21)

where the ∓ sign depends on which way the switching wave
is oriented. Assuming the wave propagates to the right in the
laboratory frame, the minus sign is taken if the high-field
domain is also on the right of the switching wave, and vice
versa. This expression can be interpreted as follows: After the
switching wave moves in a unit time, the net effect is to pump
the field in a unit length from low-field domain to high-field
domain, and the energy difference is provided by the overall
power absorbed by the switching wave. Despite the infinite in-
tegration limits, the integral converges due to the equilibrium
state maintaining energy balance by itself, and the integrand
converges to zero exponentially (or oscillating exponentially)
at both sides. The velocity of switching wave as a function of
cavity detuning has been experimentally measured in a fiber
ring resonator [21].

With strong pumping, the switching wave converts pump
energy to expand the high-field domain, while for weak
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(a)

(b)

FIG. 2. Maxwell point and the self-regulation mechanism.
(a) The Maxwell point (black solid curve) as a function of detuning.
Gray curves mark the DI region, which is the approximate boundary
of dark-pulse generation. Equation (23) is plotted as the black dashed
line. Inset: Top panel shows the switching wave solution for α = 15,
f ≈ 6.23, and bottom panel shows the corresponding net field gain
calculated as −2|ψ |2 + 2Re[ f ψ∗]. The total areas of blue regions
(positive gain) and gray regions (negative gain) are equal, indicating
energy balance. (b) Block diagram illustrating the switching wave
self-regulation process in the self-injection-locking regime.

pumping, loss causes the high-field domain to shrink. This dy-
namic process is also illustrated in movies in the Supplemental
Material [44]. For steady-state operation, a critical f value ex-
ists for a fixed detuning where the switching wave is in energy
balance between pumping and loss. This value is known as
the Maxwell point (MP) [20], denoted as fMP, and plotted in
Fig. 2(a). It can be determined by various analytical or varia-
tional methods. Near the critical point α = √

3, above which
multiple equilibria can be found in the resonator, the MP can
be obtained by asymptotic expansion (see Appendix A):

f 2 = 8

3
√

3

[
1 +

√
3

2
(α −

√
3) − 3

20
(α −

√
3)2

+ 999
√

3

3500
(α −

√
3)3 + O((α −

√
3)4)

]
. (22)

For intermediate α values, the MP can be estimated using
variational methods based on the energy balance condition

derived above (see Appendix B):

fMP ≈ 4

π2
α. (23)

V. SELF-REGULATION OF SWITCHING WAVE

Normally, it is challenging to tune a pumping laser exactly
to the MP so as to stop the switching wave from moving.
However, because the self-injection locking process relates α

to the intracavity field, it provides a feedback loop necessary
to maintain laser lock to the MP. For example, suppose that the
intracavity field has split into single low-field and high-field
domains under constant pumping. Therefore, two oppositely
oriented switching waves appear in the system. If the pumping
field is stronger than fMP at the initial detuning, the expansion
of the high-field domain will increase both the average field
norm and average power in the resonator, which, in turn,
increases the detuning according to the nonlinear locking
relation. This brings the detuning closer to the MP, and the
movement of switching waves slows down. Eventually the
detuning converges to the MP, and the switching waves stop
moving where the combination of average field and power
maintain the appropriate detuning. The opposite situation of
an initial pump field that is too low works in a similar way. To
quantify the proportion of the high-field domain, we introduce
the duty cycle variable, w%, defined as the portion of the
resonator with intracavity power higher than |ρM|2, which
is analogous to the duty cycle describing square waves. The
regulation process is summarized in Fig. 2(b). If other system
parameters change, such as feedback phase and pump power,
the above process is also capable of pulling the system to the
Maxwell point defined by the new pump power.

As an aside, for the multiple-pulse case the width for each
individual dark pulse cannot vary independently but instead
increases together with increasing pump power or vice versa.
This behavior is determined by the movement of individual
switching waves. For example, if pump power increases, then
all switching waves with high-field domain to the left will shift
right while all those with the opposite orientation will shift
left, leading to an increase in all high-field domain lengths.
It is therefore not possible to have complementary domain
width changes, as this would require inconsistent switching
wave movements for the same external pumping. As a result,
the overall duty cycle of multiple pulses still follows the
regulation process outlined in Fig. 2(b).

Switching waves are always generated in pairs with al-
ternating orientations within a resonator subject to periodic
boundary conditions. If a pair of switching waves is close
enough, their exponential tails will overlap, leading to inter-
actions between the switching waves. For the normal GVD
case, switching waves attract each other when the high-field
portions overlap, as the overlap integral leads to extra en-
ergy loss from the system (see Appendix C). This leads to
collision and annihilation of the waves, and indicates that a
brightlike pulse with w% close to 0% is unstable in a normal
GVD system. We point out that the presence of extra energy
input channels can stabilize such brightlike pulses, known
as “platicons” (e.g., the pump mode eigenfrequency can be
redshifted compared to the parabolic dispersion [18] such that
pumping becomes more efficient). For switching waves with
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overlapping oscillatory tails near the low-field domain, the in-
teraction will be alternating between attraction and repulsion
depending on the relative position of the tails. This results in
multiple equilibrium positions of the two switching waves,
and has been studied previously using bifurcation theory [20].
In the case of pumping the resonator with a fixed-detuning
laser, if the pumping power is higher than f 2

MP, the two switch-
ing waves will move towards each other until their low-field
portions overlap, at which point they start to interact and settle
into equilibrium, forming a localized structure. This struc-
ture is sometimes referred to as a “dark soliton” [18,45,46],
even though it represents a different form compared to the
more conventional tanh solution in optical fibers [47]. If the
pumping is too high, the maximum repulsion is not capable
of holding the switching waves apart, leading to pair annihi-
lation of the waves. Since the interaction between switching
waves is limited before annihilation, dark solitons exist only
within a very narrow region in the detuning-pump phase
space [48]. From this point of view, the stability of conven-
tional dark solitons and platicons requires the switching wave
interactions to be strong enough to counteract the relative
motion of the two switching waves under perturbation, which
makes their duty cycles asymptotically close to 100% and
0%, respectively. These interactions unify the switching wave
picture with conventional, dissipative dark pulses as well as
platicons generated with a fixed-detuning laser. On the other
hand, switching waves in the nonlinear self-injection-locked
resonator can be free from pairwise interactions, since the
detuning is instead determined by the duty cycle and locked to
the MP. As a result, the duty cycle can reach an intermediate
value close to 50%.

VI. FEEDBACK PHASE AND COMB EFFICIENCY

We now investigate the effects of the feedback phase,
which will be shown to influence the number of dark pulses
as well as the combined duty cycle of dark pulses. As shown
previously, dark pulses form from fluctuations on the unstable
branch. The growth of such fluctuations can be described by
amplification of sidebands using the framework of MI. For
a specific pair of sidebands with mode number ±m (relative
to the pump mode), the MI region (where the parametric
gain exceeds the cavity loss) has the same shape as that of
the DI region for the pump mode in the α-ρ2 phase space,
except that the detuning α is effectively redshifted by β2m2/2
(see Appendix D) [49]. As the mode number of the emergent
sideband pair determines the number of intensity peaks within
the resonator, the number of switching wave pairs generated
in the resonator will be close to the mode number of the
sideband pair having the largest MI gain. This in turn de-
pends on the α and ρ coordinates of the continuous-wave
operating point. Therefore the pulse number can be estimated
given the continuous-wave operating point parameters (see
Appendix D). We note that the exact pulse number is subject
to switching wave collisions and other transient processes, and
still has a certain degree of randomness.

In some cases, single-pulse operation is desirable due to
its smooth spectrum and the lack of uncertainty of the dis-
tance between different pulses. This requires the MI gain
to monotonically decrease with m, such that the m = 1 pair

of modes experiences the largest gain. This happens when
the continuous-wave operating point is blue detuned com-
pared to the cross-phase modulation line |ρ|2 = α/2 (see
Appendix D). As such, the regions for the continuous-wave
operating point favoring direct single- and multiple-pulse
generation can be plotted [Fig. 3(a)]. We note that the
continuous-wave operating point is implicitly dependent on
the combinations of pumping strength and feedback phase.
For each specific pumping strength, different segments of
the pumping curve within each region can be converted to a
specific range of the feedback phase [illustrated in Fig. 3(b)].
It is worth noting that dark pulses may also emerge after
Turing rolls have formed through MI inside the resonator if
the continuous-wave operating point is red detuned compared
to the DI region. Here the pulse number no longer depends
on the mode number of the sideband pair with the largest MI
gain, but on fluctuations of the Turing roll pattern envelope.
A comparison of dark pulse generation in different regimes is
given in Appendix E.

Although the final detuning after pulse formation will
be locked at the MP, the difference between the MP and
the initial continuous-wave detuning will determine the duty
cycle that is needed to adapt to this difference. If the
width of the switching wave is negligible compared to the
scale of the resonator, ρ and P can be approximated as
the weighted average of the high- and low-field domain
contributions. The duty cycle can thus be related to the
feedback phase via the locking condition (see Appendix F)
and, in principle, be solved numerically [Fig. 3(b)]. The
duty cycle curve extends beyond the single-pulse-generation
region, as the feedback phase can be tuned after the ini-
tial pulse formation to access single-pulse operation for
smaller feedback phase. Similarly, single-pulse states can be
achieved via phase tuning even if the direct formation process
prefers multiple pulses at larger feedback phase. Increasing
the pump power has the effect of extending the feedback
phase ranges for initiating both single- and multiple-pulse
generation. We note that w% becomes independent of the
pulse number within the approximation of thin switching
waves.

A practical application of controlling the duty cycle is to
optimize the overall comb power efficiency. Neglecting the
switching wave widths, the output comb efficiency can be
computed as

Pcomb

Pin
= κex(|EF|2 − |EF|2)

|Fin|2

= w%(1 − w%)
|ρH − ρL|2

| f |2
4κ2

ex

κ2
, (24)

which is maximized at w% = 50% at fixed | f | [Fig. 3(c)].
Efficiencies calculated using the waveforms from the Fig. 3(b)
inset differ from the analytical results by less than 1%. We
note that for sufficiently small β2, the comb power is mainly
contributed by the domains and their associated power swings,
therefore making it reasonable to ignore the switching wave
contributions to the comb power.
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(a) (b) (c)

FIG. 3. Control of pulse duty cycle and efficiency using feedback phase. (a) Phase diagram for the continuous-wave operating point with
respect to normalized detuning α and normalized pump power f 2, showing regions corresponding to different pulse-generation regimes.
Single- or multiple-pulse-generation processes will be preferred when the continuous-wave operating point is located in the corresponding
colored region. The resonator pumping curve for | f |2 = 4 (blue) is shown for comparison. Parameters within the MI region but outside the
DI region lead to Turing rolls, where dark pulses can be generated but pulse number no longer depends on the mode number of the mode
having the largest parametric gain. (b) Duty cycle of the generated dark pulse as a function of feedback phase for pump strength | f |2 = 4,
assuming the switching wave width is negligible compared to the resonator circumference. Smaller feedback phase relative to φ = 0 leads to
larger duty cycles, and vice versa. The range of feedback phase for this specific pump power that initiates single- or multiple-pulse generation
is indicated at the bottom of the plot. The colored dots correspond to numerical data shown in the inset, and shows reasonable agreement
with theoretical calculations. Inset: Simulated pulse profiles for different feedback phases, with φ = −0.4π (red, outermost), φ = 0 (black,
middle), and φ = 0.4π (blue, innermost), at pumping strength | f |2 = 4. Duty cycles obtained from the waveforms are 73%, 43%, and 26%,
respectively, and shown as dots in the main figure. (c) Dependence of output comb efficiency (false color) on normalized pump power and duty
cycle, assuming an overcoupling condition [κex = (4/5)κ]. White dashed line indicates | f |2 = 8/(3

√
3), the lower boundary for generating

dark pulses.

VII. IMAGING OF DOMAINS

We use the linear optical sampling technique [32] to ex-
perimentally obtain images of the domains and to verify some
of the above theoretical predictions. A commercial InGaAsP
distributed-feedback (DFB) laser around 1556 nm is end-
fire coupled without optical isolation to an integrated silicon
nitride/silica resonator (free spectral range 10.85 GHz with
no mode splittings observed in the vicinity of the pump mode)
[6]. The field is collected from the drop port of the resonator
with a fiber lens to avoid the pumping field showing up
in the results. The optical waveguide facets and lens fiber
port are aligned by fine-tuning a micropositioner. The laser
stage is equipped with piezoelectric position controls for all
three translation degrees of freedom. For measurements with
varied feedback phase, the gap between laser and resonator
chip is tuned by applying a triangular voltage signal to the
piezoelectric controller of the laser stage. The transduction
factor is measured as 0.42 μm V−1, equivalent to about 1.1π

feedback phase change per volt at 1556 nm. Changing the
gap also weakly affects the coupling efficiency between the
laser and resonator, which is estimated to be <0.5 dB for the
tuning range used. It is noted that implementation of a heater
section on the waveguide can enable on-chip thermal control
of feedback phase [13].

Pulse snapshot images are obtained by mixing at a pho-
todetector the dark pulse train with an electro-optically (EO)
generated comb having a slightly different repetition rate. The
linear optical sampling measurement is illustrated in Fig. 4.
An electro-optical sampling pulse stream is generated by two
phase modulators and one amplitude modulator followed by
amplification using an erbium-doped fiber amplifier (EDFA).

The output is then conditioned by a waveshaper to form the
sampling pulse stream. The corresponding electro-optic comb
spectrum is measured by an optical spectrum analyzer (OSA).
Individual comb line amplitudes are then adjusted using the
waveshaper to tailor the comb spectrum. The resulting comb

FIG. 4. Schematic of the linear optical sampling measurement
system: SG, analog radio-frequency signal generator; DC, direct
current voltage source; Amp, electrical amplifier; PS, electrical phase
shifter; EDFA, erbium-doped fiber amplifier; PM, phase modulator;
AM, amplitude modulator; OSA, optical spectrum analyzer; ACorr,
autocorrelator; PD, photodetector. See [32] for additional details.
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(a)

(c)

(e)

(f)

(d)

(b)

FIG. 5. Measured switching wave images. (a) Left: Time-evolution plot for the intracavity field amplitude (false color) as a function of
time with fixed feedback phase. The data are obtained by linear optical sampling (Fig. 4). In the plot, the vertical axis represents the angular
coordinate for one round trip (0 to 2π ) around the resonator. The horizontal axis is the evolution time, and each pixel column corresponds to one
resonator round-trip time. Slow drifts of the pulse have been removed for clarity. Right: Averaged power profile for the measured waveform.
(b) Same as (a) but pumping a different longitudinal mode. (c) Left: Time-evolution plot for the intracavity field amplitude (false color) as a
function of time with fixed feedback phase. Another longitudinal mode is pumped compared to (a) and (b). Right: Three-dimensional (3D)
representation of the averaged power profile on a racetrack resonator. The estimated duty cycle is also indicated below. (d) Same as panel (c),
using the same longitudinal mode for pumping but with a slightly smaller feedback phase. (e) Evolution plot for the intracavity field amplitude
(false color) as a function of time and resonator coordinate measured while the feedback phase is decreasing. The estimated relative phase
is derived from the applied piezoelectric voltage (1.1π per volt). The single-pulse section has been bounded by a blue box, within which the
rising and falling edges of the pulse have been marked with white dashed lines. (f) Same as (e) but the phase is decreasing for the first half of
the scan and then increasing for the second half. The asymmetry of the phase ranges occupied by the single pulse is apparent.

has around 40 lines with equal intensity (variation <1 dB).
The comb is also characterized by an autocorrelator in the
time domain, and the result is used to adjust the dispersion
applied using the waveshaper. The dark pulse collected via
the fiber lens is mixed with the electro-optic sampling pulses
on a photodetector (1 GHz bandwidth). The radio frequency
signal is then collected by the oscilloscope, digitally demodu-
lated, and segmented. The segmentation length is variable and
determined from the waveform to maintain the periodicity of

the pulse and to correct for repetition rate drifting. Each piece
of waveform is then down-sampled to 128 points for plotting
and averaging.

By pumping different longitudinal modes, different pulse
states can be observed in the resonator [Figs. 5(a) and 5(b)].
The squarelike waveform is apparent from the time-evolution
plot and its 3D representation [Figs. 5(c) and 5(d)]. The
variations of the field in both the high-field and low-field
domains are believed to result from resonator inhomogeneity
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along the propagating direction (see Appendix G) as well
as inaccuracies in the sampling process. As ρM cannot be
accurately retrieved from the experiment, the pulse width here
is determined instead as the portion with an optical power
greater than the average of the 87.5% and 12.5% quantiles
of the round-trip waveform. For different feedback phases,
we are able to observe pulse states with different duty cy-
cles [Figs. 5(c) and 5(d)]. In strong contrast to previously
demonstrated bright solitons, dark solitons, or platicons, the
measured pulse width occupies a significant portion of the
resonator.

We have also swept the feedback phase by adjusting the
coupling gap between the laser and resonator, and moni-
tored the evolving field in the resonator during the scanning
process [Fig. 5(e)]. When the feedback phase is decreasing,
Turing rolls, breathing states, and dark pulse states can be
observed during the single scan. Notably, the pulse width for
a single-pulse state near the end of the scan visibly widens
[highlighted in Fig. 5(e)]. For the central region of Fig. 5(e)
which consists of four dark pulses, the increase of field inten-
sities also indicates that the duty cycle is increasing. These
observations are in qualitative agreement with Figs. 3(a) and
3(b) and consistent with MP predictions. Deviations of these
measured results from the ideal switching wave behavior are
believed to be related to the distributed backscattering in
the resonator (see Appendix G). The existence of the drop
port for the resonator makes efficiency calculations and direct
comparisons with Fig. 3(c) difficult. Instead, the fraction of
comb powers within the drop port signal have been calcu-
lated, and increase from 33% to 36% in the single-dark-pulse
region.

As the phase decreases during the scan, the phase range for
multiple pulses appears longer than that of the single pulse.
This happens because it is possible for multiple pulses, once
formed, to exist in the single-pulse initiation range. Addi-
tional measurements including both phase scanning directions
have been performed [Fig. 5(f)], where the asymmetry of
the states with respect to the scan direction indicates such
hysteresis behavior of the pulses. We note that the duty
cycle change of the single pulse is not obvious from the
plot. A large modal dispersion β2, as for the test resonator
used here, will significantly increase the interaction between
switching waves and create regions of phase tuning where the
domain variation is reduced (see Appendix G). The switch-
ing wave interactions partially explain the weak dependence
of duty cycle on feedback phase observed for the single
pulse in Fig. 5(f). We note that other effects like the inho-
mogeneity of the distributed backscattering may also affect
the domain dynamics and contribute to such a flat varia-
tion.

Noise spectra of the pulse repetition rate signal have
also been measured, and a representative noise spectrum is
shown in Fig. 6. At 10 MHz offset frequencies, typical val-
ues of phase noise observed are −140 to −145 dBc/Hz and
are comparable with previous bright soliton systems with
10-GHz-scale repetition rates [50]. We note that a “quiet” op-
eration point [51], where repetition rate noise is significantly
compressed compared with normal operations, should also be
possible in the present systems.
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FIG. 6. Representative microwave phase noise spectrum of the
dark pulse repetition rate signal. Inset shows the measured repetition
rate electrical spectrum with a resolution bandwidth of 1 kHz.

VIII. SUMMARY AND DISCUSSION

In summary, the formation dynamics of dark pulses in
microresonators via the self-injection-locking process have
been analyzed in terms of switching waves. The resulting
system has a new physical property associated with self-
regulation of the switching waves. The nonlinear waves
were also imaged using an electro-optic sampling system,
and the measurements verified predictions of the model.
Self-regulation allows operation of the normal dispersion
microcomb at previously difficult-to-access duty cycles that
offer high power efficiency for comb states [19] as well
as for microwave generation [6]. The duty cycle is con-
trolled by the feedback phase, which in future designs
could be electrically varied using, for example, an on-chip
heater [13] or a phase control section added to the III-V
laser.

There are many other effects that can be included in the
model and these may lead to new phenomena in the system.
For example, normalized backscattering of the resonator is
heavily dependent on the geometry and fabrication details and
may range from 10−3 to 101. Strong backscattering causes
mode splitting and, when combined with optical nonlinear-
ity, can lead to new modal dynamics. There have also been
numerical efforts to generalize the backscattering to each
pair of longitudinal modes [52]. For Rayleigh scattering, the
actual behavior of backscattering becomes more complex,
where large amplitude and phase variations across differ-
ent pairs of modes may be observed [6]. For controllable
coupling strength and frequency location of the split reso-
nance, gratings can be introduced to the resonator structure
[53]. High-order dispersion can also be added to the model,
and becomes important as the second-order dispersion ap-
proaches zero, Here, similar switching-wave-like behavior of
the pulse has also been shown in the numerical simulations
[54].
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APPENDIX A: CALCULATION OF THE MAXWELL POINT
(ASYMPTOTIC APPROACH)

Here we calculate the Maxwell point analytically by ex-
pressing the switching wave solution and the corresponding
pump as an asymptotic series around the critical point α =√

3. The method is based on the multiple-scale analysis [24]
previously applied to fiber systems. Starting from the station-
ary LLE,

0 = −(1 + iα)ψ − i
β2

2

∂2ψ

∂θ2
+ i|ψ |2ψ + f , (A1)

we substitute α = √
3 + ε2, where ε will be used as the formal

expansion parameter. The appearance of ε2 in α takes account
of the pitchfork bifurcation near the critical point and we can
restrict the expansion to integer powers of ε. The pump term
can be expanded as

f =
√

8
4
√

27

(
1 + 1

2!

ε2

4
+ 1

4!
f4ε

4 + 1

6!
f6ε

6 + O(ε8)

)
, (A2)

where only even-order terms have been retained as f should
be a single-valued function with respect to α, and f2 = 1/4
has been calculated directly as the Maxwell point line must
be tangent with the DI boundaries on the phase diagram. The
f4 and f6 terms will be calculated using the expansion of the
switching wave solution:

ψ = u + iv, (A3)

u = 3

4

√
8

4
√

27

(
1 + u1ε + 1

2!
u2ε

2 + 1

3!
u3ε

3 + 1

4!
u4ε

4

)

+ O
(
ε5

)
, (A4)

v = −
√

3

4

√
8

4
√

27

(
1 + v1ε + 1

2!
v2ε

2 + 1

3!
v3ε

3 + 1

4!
v4ε

4

)

+ O
(
ε5

)
, (A5)

where u and v are the real and imaginary parts of ψ , and
u j and v j ( j = 1, 2, 3, 4) are real functions that represent
the expanded field at various orders. We also define a scaled
position parameter:

x = |ε|θ
4
√

3
√

2β2

. (A6)

The scaling contains ε and takes account of the expansion
of switching wave width near the critical point. Using the
scaled position, we separate the real and imaginary parts of

the equations:

f − u − v(u2 + v2 − α) + ε2

4
√

3

d2v

dx2
= 0, (A7)

−v + u(u2 + v2 − α) − ε2

4
√

3

d2u

dx2
= 0. (A8)

The structure of the equation pair leads to a staggered expan-
sion scheme. To determine u j and v j , the imaginary part of
LLE needs to be expanded to ε j , while the real part should be
expanded to ε j+2. Calculating u j and v j also leads to the value
of the f j+2 coefficients.

At ε1 order of the imaginary part, we obtain

u1 + v1 = 0 → u1 = −v1. (A9)

Substituting into the ε3 order of the real part, we obtain

−2v1 + 8v3
1 − v′′

1 = 0, (A10)

where the prime denotes derivative with respect to x. This
equation resembles the LLE but with loss and pump terms
removed. Its fundamental dark solution can be found as

v1 = 1

2
tanh x ≡ η

2
, (A11)

where we introduced the shorthand notation η ≡ tanh x.
We proceed to the ε2 order of the imaginary part:

−1 + 2η2 + 2u2 + 2v2 = 0 → u2 = 1

2
(1 − 2η2 − 2v2).

(A12)
Substituting into the ε4 order of the real part, we obtain

4 f4 + 13

4
− 27

2
η2 + 18η4 + 6(3η2 − 1)v2 − 3v′′

2 = 0.

(A13)
This is a Legendre differential equation in η after substituting
d/dx → (1 − η2)d/dη, and its general solution is the as-
sociated Legendre polynomial P2

2 (η) = 3(1 − η2) = 3sech2x.
The appearance of this term with undetermined coefficients is
not surprising as the switching wave has translational invari-
ance, and adding the term sech2x = (tanh x)′ simply shifts the
switching wave up to ε2 order. Here we will choose v2(x =
0) = u2(x = 0) = 1/4 to fix the coefficient. The f4 appears
as an eigenvalue of the differential equation that prevents
the special solution to be divergent as η → ±1 (equivalently
x → ±∞). With these considerations, the special solution can
be solved as

v2 = − 9

20
+ 7

10
(1 − η2) − 3

5
(1 − η2) ln(1 − η2), (A14)

and we find that f4 = −47/80.
We summarize the rest of the expansion results below

without detailed calculation procedures:

u3 = 1

10
(−15η + 18η3 − 36η(1 − η2) ln(1 − η2) − 10v3),

(A15)

v3 = 151

200
η + 111

50
η(1 − η2) − 77

50
(1 − η2)x − 9

25
η(1 − η2) ln(1 − η2) + 27

25
η(1 − η2) ln2(1 − η2), (A16)
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(a) (b)

FIG. 7. Stable switching wave solution for α = 15. (a) The solution represented in the spatial domain. (b) The solution represented in the
complex ψ plane, connecting ρL to ρH (blue). The three black dots mark the equilibrium values, ρH (top), ρM (bottom), and ρL (left). They are
all on the energy balance circle (black dashed curve), described by −2|ψ |2 + 2Re[ f ψ∗] = 0. Within the circle the field experiences net gain,
and outside the circle the field experiences net loss.

u4 = 1

200
(−715 + 10220η2 − 9048η4 − 2464η(1 − η2)x − 720(1 − η2) ln(1 − η2) + 6048η2(1 − η2) ln(1 − η2)

− 864(1 − η2) ln2(1 − η2) + 2592η2(1 − η2) ln2(1 − η2) − 200w4), (A17)

w4 = 18027

14000
− 46133

7000
(1 − η2) + 6204

875
(1 − η2)2 − 16008

875
(1 − η2) ln(1 − η2) + 1782

125
(1 − η2)2 ln(1 − η2)

− 108

25
(1 − η2) ln2(1 − η2) + 486

125
(1 − η2)2 ln2(1 − η2) − 216

125
(1 − η2) ln3(1 − η2) + 324

125
(1 − η2)2 ln3(1 − η2)

− 154

125
(1 − η2)ηx + 924

125
(1 − η2)ηx ln(1 − η2), (A18)

f6 = 95027

11200
. (A19)

These results can be verified with the help of computer algebra
systems. Collecting the f j coefficients and expressing them
using α leads to our final result:

f 2 = 8

3
√

3

[
1 +

√
3

2
(α −

√
3) − 3

20
(α −

√
3)2

+ 999
√

3

3500
(α −

√
3)3 + O((α −

√
3)4)

]
. (A20)

Although the procedure can be used to calculate arbitrarily
high-order terms, its usefulness for calculation of the Maxwell
point away from the critical point is limited. Just above α = 2
the second-order term becomes smaller than the third-order
term, indicating a truncation error of about 1%, and larger
detunings further increase the error. It is not known if the
above series has a finite radius of convergence.

APPENDIX B: CALCULATION OF THE MAXWELL POINT
(VARIATIONAL APPROACH)

Here we estimate the Maxwell point for intermediate
detuning levels based on the spatial characteristics of the

switching wave solutions. The switching wave solution for
α = 15 is represented in Fig. 7. In the complex ψ plane, the
low-field section coils around ρL and spirals outwards, while
the high-field section converges towards ρH exponentially.
The energy balance condition, −2|ψ |2 + 2Re[ f ψ∗] = 0, has
the shape of a circle on the complex ψ plot and indicates if
the local field is gaining or losing energy. For the low-field
section, the field alternates between net gain and net loss,
but the average effect is loss; for the high-field section, the
entire field has net gain that balances the loss from low-field
sections.

We first approximate the spiral section with an exponential
function. We will start from the origin and ignore the non-
linear term. We will also drop the pump term as gain is not
important here compared to loss. The LLE is now approxi-
mated as

0 = −(1 + iα)ψ − i
β2

2

∂2ψ

∂θ2
. (B1)

Solving the linearized equation, ψ for the low-field sec-
tion can be approximated as

ψ ≈ c0 exp

(
i

√
2α

β2
θ + θ√

2αβ2

)
, (B2)
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where we approximated
√

1 − i/α with 1 − i/(2α). We take
θ = 0 to be the point where |ψ | reaches the middle equilib-
rium |ρM|. |ρM| is approximated to be

√
α, which is the power

required for the Kerr effect to compensate for the detuning,
and we have |c0| ≈ √

α. Now the loss on the low-field sec-
tion can be calculated as∫

2|ψ |2dθ ≈ 2
∫ 0

−∞
α exp

(
2θ√
2αβ2

)
dθ

= 2

√
2αβ2

2
α =

√
2β2α

3/2. (B3)

For the connecting part, we again approximate it as an
exponential by including the nonlinear effects and ignore
the loss. The overall effect is to replace

√
2α/β2 with√

2(α − ρ)/β2. We approximate α − ρ ≈ 1 at the start of the
connecting region, with

ψ ≈ √
α exp

(
i

√
2

β2
θ

)
. (B4)

This part connects to the high-field section, where Arg[ψ]
approaches Arg[ρH] ≈ π/2 exponentially while |ψ | is ap-
proximately constant. We therefore approximate ψ as

ψ ≈ √
α exp

[
i
π

2

(
1 − exp

(
− 2

π

√
2

β2
θ

))]
, (B5)

where the inner exponent is chosen to continuously match the
connecting part. Although this exponent does not match the
eigenvalue near ρH, and the resulting asymptotic behavior is
different, the energy gain is concentrated near the |ψ | ≈ |ρM|
section instead of the tails, and we estimate the overall gain
using the approximated shape as

∫
2Re[ f ψ∗]dθ ≈ 2 f

√
α

∫
sin

[
π

2
exp

(
− 2

π

√
2

β2
θ

)]
dθ

≈ 2 f
√

α × π

2

√
β2

2

∫ ∞

0

sin(πz/2)

z
dz

= π2

4
f
√

2β2
√

α, (B6)

where the substitution of z = exp[−(2/π )
√

2/β2θ ] is used
and we have extended the integration limit to infinity. As the
switching wave requires that gain equals loss so as to remain
stationary, we can equate the gain and loss approximately:

√
2β2α

3/2 = π2

4
f
√

2β2
√

α. (B7)

The β2 cancels out as expected, and we are left with

f ≈ 4

π2
α. (B8)

Although the estimation used various approximations, the
overall agreement to the numerically obtained result is rather
satisfactory, achieving a minimum pump amplitude error of
2.4% (pump power error 4.8%) at α ≈ 16, and maintaining
amplitude error less than 10% within the range 10 < α < 50.

We note that the Maxwell point is not well defined for arbi-
trarily large α, as the switching wave starts to breathe for the
expected energy balance condition after around α > 85.

APPENDIX C: INTERACTIONS OF THE SWITCHING
WAVE

Here we consider the switching wave interactions by study-
ing the energy balance of two switching waves that are within
proximity of each other. Assume first that a bright pulse is
formed consisting of two switching waves with its high-field
section facing the center and low-field section extending to
infinity. If the switching wave solution is denoted as ψSW(θ )
(with its low-field section on the left), then the bright pulse
can be approximated as

ψ = ρH + [ψSW(θ + θSW) − ρH] + [ψSW(−θ + θSW)

− ρH] = ψSW(θ + θSW) + ψSW(−θ + θSW) − ρH,

(C1)

where the first (second) bracket describes the left (right)
switching wave and θSW describes the position of the switch-
ing wave.

Each term in the expanded expression of ψ (two switching
waves, one equilibrium background) can maintain its own
energy balance when the other terms are absent. However,
their coexistence leads to cross terms and breaks the energy
balance:

∂

∂τ

∫ ∞

−∞
|ψ |2dθ =

∫ ∞

−∞
(−2|ψ |2 + 2Re[ f ψ∗])dθ

= −4
∫ ∞

−∞
Re{[ψSW(θ + θSW) − ρH]∗

× [ψSW(−θ + θSW) − ρH]}dθ. (C2)

For switching waves that are separated by a sufficiently
long distance, the main contribution of the integral comes
from the overlapping high-field tails. Since the two switching
waves share the same shape, the overlap integral is positive,
indicating the composite system will lose energy and shrinks
the high-field domain. This can also be interpreted as an
attracting force between the two walls.

The analysis is similar for a dark pulse with the low-field
section of the two switching waves facing the center, except
that the low-field tail of the wall may become oscillatory.
In this case the overlap integral may be positive or negative
depending on the relative position of the tails. Accordingly,
the switching wave interactions with overlapping low-field
portions are either attractive or repulsive.

APPENDIX D: EQUIVALENCE OF DI AND MI, AND THE
NUMBER OF DARK PULSES

In the main text, the formation of switching waves has
been described in the spatial domain using DI; i.e., fields
on the unstable branch evolve to the higher or lower stable
branches. However, the process of comb formation has been
better understood in the frequency domain in terms of MI,
where signal and idler sidebands experience net positive gain
when the pump mode power is above a certain threshold
[48,49]. We will first reconcile the DI and MI concepts, which
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will be helpful for constructing a geometrical representation
of the effects from the feedback phase, and then proceed to
estimate the number of dark pulses.

For the zero-dispersion case, the parametric gain for the
continuous-wave state can be found from a standard pertur-
bation analysis. Define δψ as the perturbation of the field.
Linearizing around the equilibrium ψ = ρ, we arrive at the
coupled equations for the perturbation:

∂

∂τ

(
δψ

δψ∗

)
=

(−(1 + iα − 2i|ρ|2) iρ2

−i(ρ∗)2 −(1 − iα + 2i|ρ|2)

)

×
(

δψ

δψ∗

)
. (D1)

The parametric gain is then the larger eigenvalue of the coef-
ficient matrix:

λ = −1 +
√

|ρ|4 − (α − 2|ρ|2)2. (D2)

The gain becomes positive within the DI boundary and neg-
ative outside the boundary, consistent with the hysteresis
theory. For a fixed |ρ|2, the gain is the largest at α = 2|ρ|2
(e.g., phase matching occurs when cross-phase modulation
is compensated) and becomes smaller as the detuning moves
away from this optimal value.

For the case with dispersion, we assume the perturbation
is in the form δψ = δψ+eimθ + δψ−e−imθ , where δψ± are
mode amplitudes and m is the undetermined relative mode
number for the perturbation. As the exponential functions are
eigenfunctions in systems with translational symmetry, this
form of perturbation ensures that the small-signal gain can be
well defined. Linearizing around ψ = ρ and separating the
e±imθ components, we get

∂

∂τ

(
δψ+
δψ∗

−

)

=
(−(1 + iα − iζ − 2i|ρ|2) iρ2

−i(ρ∗)2 −(1 − iα + iζ + 2i|ρ|2)

)

×
(

δψ

δψ∗
−

)
, (D3)

where ζ = β2m2/2 is the four-wave-mixing phase mismatch.
Comparison with the DI calculations shows that perturbation
on the signal-idler waves is formally equivalent to perturba-
tions on the pump mode itself (δψ+ ↔ δψ and δψ∗

− ↔ δψ∗),
but with the detuning shifted by ζ . As a result, the parametric
gain in this case is modified as

λ = −1 +
√

|ρ|4 − (α − ζ − 2|ρ|2)2, (D4)

reproducing the previous results [48].
For a given m number, the instability criteria can be geo-

metrically represented by shifting the original DI region by ζ

horizontally on the α-ρ2 plot. If the dispersion is anomalous
(ζ < 0), the region would sweep to the blue side, including the
upper branches with |ρ| > 1, recovering the conventional MI
results. Here we are interested in normal dispersion (ζ > 0),
where the region sweeps to the red side, covering a small
portion of the lower branch where MI can also be triggered
[as shown in Fig. 3(a) in the main text]. This is discussed in
more detail in the next section.

Conversely, when the continuous-wave operating point
(i.e., α and ρ) is fixed, a range of modes will experience pos-
itive modulational gain. The largest gain happens when ζ =
α − 2|ρ|2, meaning that the cross-phase modulation compen-
sated the phase mismatch to match the given detuning. This
can happen for the regions to the red side of the α = 2|ρ|2
line, where the required ζ is positive and m number can be
solved accordingly. To the blue side of the α = 2|ρ|2 line the
condition cannot be satisfied, and making ζ smaller increases
the gain. This would make the pump mode have the largest
gain, but the gain is countered by injection locking, which
keeps the continuous-wave power at the operating point. The
neighboring modes with relative mode numbers of ±1 instead
receive the largest gain.

Domains and switching waves form from the fluctuations
of the continuous-wave solution on the unstable branch. The
initial fluctuation is dominated by the mode with the largest
gain, and divides the resonator into m sections with a slightly
higher power and m sections with a slightly lower power com-
pared to the equilibrium. Subsequent evolutions will create m
high- and low-field domains based in the initial field pattern in
the resonator. Therefore, operating points located to the blue
side of the α = 2|ρ|2 line initiate single-pulse formations,
while operating points to the red side initiate multiple-pulse
formations, in which case the pulse number can be estimated
from ζ = α − 2|ρ|2. As noted in the main text, the exact
pulse number is subject to switching wave collisions and other
transient processes, and the pulse number calculated this way
remains as an estimate. For the single-pulse regime, as the
gains on the modes with small m numbers are similar, the final
state also depends on the initial fluctuations in the equilibrium.

APPENDIX E: DARK PULSE CREATION IN DI
AND TURING ROLL REGIMES

If the continuous-wave operating point is located in the
Turing roll regime, Turing rolls will start to form in the res-
onator. However, most of these rolls are unstable as the local
power may exceed the unstable ρM branch and the field will be
pushed towards ρH [48]. While for conventional resonators the
system may converge to the ρH continuous-wave equilibrium,
this is not possible for the injection-locked system studied
here as this would pull the system off the locking curve.
Sidebands with low m numbers are still amplified, and usually
result in dark pulses in the way similar to generating pulses
from DI as studied above. Examples of the different cases are
compared in Fig. 8.

APPENDIX F: DUTY CYCLE AND FEEDBACK PHASE

Here we study the dependence of the duty cycle on
the feedback phase φ. For simplicity, we ignore the
width of the switching waves, and the field can be re-
garded as consisting of w% of high-field domain and 1 −
w% of low-field domain. We can thus approximate ρ =
w%ρH + (1 − w%)ρL and P = w%|ρH|2 + (1 − w%)|ρL|2.
We note that, as we have ignored the switching wave
widths, these averages remain independent of the number
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(a)

(b)

(d)

(c)

FIG. 8. Comparison for pulse generation in different regimes. (a) Resonator pumping curve for | f |2 = 8 (blue) and laser locking curve
for φ = −π/3 (black, left), φ = 2π/5 (black, middle), and φ = 2π/3 (black, right). These three feedback phases place the continuous-wave
operating point (black dots) in the single-pulse, multiple-pulse, and Turing roll region, respectively. They are used for simulations resulting
in panels (b)–(d), respectively. (b) Simulated waveforms for φ = −π/3. First panel: At τ = 5, the system approaches the continuous-wave
operating point. Second panel: At τ = 12, fluctuations become visible and provide seeding for the dark pulse. Third panel: At τ = 25, the
system settles to a single-pulse state. (c) Simulated waveforms for φ = 2π/5. First panel: At τ = 5, the system approaches the continuous-wave
operating point. Second panel: At τ = 17, fluctuations become visible and provide seeding for the dark pulses. Third panel: At τ = 40, the
system settles to a multiple-pulse state. (d) Simulated waveforms for φ = 2π/3. First panel: At τ = 5, the system approaches the continuous-
wave operating point. Second panel: At τ = 75, Turing rolls become visible. Third panel: At τ = 85, fluctuations with low m appear on top of
the Turing rolls and provide seeding for the dark pulse. Fourth panel: At τ = 110, the system settles to a single dark pulse state.

of domains and the number of dark pulses. The duty cycle can thus be related to the feedback phase via the locking condition:

Im

[
eiφ

1 + iα − 2iP

ρ

f

]
= 0 → φ = Arg

[
1 + iαMP − 2i(w%|ρH|2 + (1 − w%)|ρL|2)

w%ρH + (1 − w%)ρL

]
, (F1)

where f is assumed to be real and αMP is the Maxwell point
detuning corresponding to f . The duty cycle can be solved
numerically after the values of ρL and ρH are obtained at the
Maxwell point.

In the cases where switching wave widths are non-
negligible, for example, when the β2 is large, the internal
structure of the switching wave needs to be considered to
calculate the average field and power. The switching waves
may also interact with each other if their tails overlap. In
these cases the above equation provides an estimate of the

duty cycle and numerical simulations should be used for a
more accurate result. The finite switching wave width will also
make the duty cycle dependent on the number of dark pulses.

APPENDIX G: ADDITIONAL SIMULATION RESULTS

It is noted in the main text that the switching waves and the
associated dark pulses may have irregular shapes due to the
distributed backscattering in the resonator. Numerical simu-
lations have been performed with randomized backscattering

053508-15



HEMING WANG et al. PHYSICAL REVIEW A 106, 053508 (2022)

(a) (b)

FIG. 9. Numerically simulated waveforms with randomized backscattering on each mode. Pumping strength is taken as | f |2 = 8. (a) A
multiple-pulse state for φ = π/3 (solid curve) and φ = −π/3 (dashed curve). The duty cycles are 59% and 72%, respectively. (b) A single-
pulse state for φ = π/3 (solid curve) and φ = −π/3 (dashed curve). The duty cycles are 45% and 53%, respectively.

on each mode and the simulated waveforms are shown in
Fig. 9. Backscattering may cause the pair of switching waves
to become asymmetric and the domains to be weakly oscil-
lating. Although the entire field circulates along the resonator
in the laboratory frame, the backscattering does not average
out as the propagating field profiles are not homogeneous
themselves. The spatial structures will be carried over when
energy is transferred to and from the reflected field, which
leads to distortions of the domains and switching waves. How-
ever, the increase in duty cycle with respect to decreasing
feedback phase can still be observed, regardless of whether the
underlying states consist of multiple pulses or a single pulse.

Large β2 of the mode leads to wider switching wave
widths and stronger switching wave interactions, and

modifies the dependence of duty cycle on the feedback phase.
Figure 10(a) shows a typical dependence of duty cycle on
feedback phase when β2 is large. Undulations are present on
the curve, and for a certain range of feedback phase the slope
of the curve becomes smaller. This is a result of alternating
attractive or repulsive forces acting on the switching waves,
and is closely related to the snaking bifurcations describ-
ing non-injection-locked dark pulses [20]. Waveforms shown
in Figs. 10(b)–10(g) further confirm that the interactions
between switching wave tails leads to duty cycle changes.
Other effects such as dispersive waves [51] could also be
present that change the behavior of switching waves and may
lead to even weaker dependence of duty cycle on the feedback
phase.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 10. Numerically simulated waveforms with large modal dispersion (β2 = 0.16). Pumping strength is taken as | f |2 = 8. (a) Plot
of simulated duty cycle versus feedback phase. The data are obtained by starting at φ = 0 and decreasing the phase adiabatically. (b)–(g)
Intracavity power at the corresponding points in (a).
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