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Elliptical solitons in the dissipative Lugiato-Lefever equation
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The formation and stability of dissipative solitons in the vector Lugiato-Lefever model are considered for
the case when only one of the field components (polarization) is excited by the external coherent pump. It is
shown that linearly polarized solitons can be destabilized because of the growth of the excitations belonging to
the orthogonal polarization. Vector (elliptically polarized) solitons bifurcating from linearly polarized ones are
found, and the stability and dynamics of the vector solitons are studied.
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I. INTRODUCTION

The Lugiato-Lefever equation provides a quite general
framework for studying rich and complex dynamics in dissi-
pative nonlinear optical systems [1]. One prominent example
of such systems is dielectric optical microresonators [2]. To
date, most of the theoretical works have concentrated on the
scalar Lugiato-Lefever equation. A large number of diversi-
form regimes can be observed even in steady state [3]. The
scalar equation supports linearly polarized dissipative Kerr
solitons, which represent a very important and sufficiently
well-studied class of solutions [4]. Scalar Kerr solitons have
been demonstrated in many experiments. In the frequency do-
main they are optical frequency combs with excellent coherent
and low-noise properties desirable for manifold applications
[4]. From the point of view of frequency comb generation
the aforementioned dissipative solitons propagating in driven-
dissipative microring waveguides can be seen as a promising
alternative to other generation methods including conservative
solitons in optical fibers [5–7], broadband radiation generated
in vertical external-cavity surface-emitting lasers [8,9], and
time delayed systems [10,11].

Moreover, spatial multiplexed (noninteracting) solitons
driven by a continuous wave (CW) laser can be generated in
different spatial (or polarization) mode families of a microres-
onator [12]. Under certain conditions, solitons generated in
different mode families can interact through the Kerr nonlin-
earity. To analyze this problem theoretically, a vector model
can be constructed based on two coupled Lugiato-Lefever
equations. More generally, in systems described by two cou-
pled Lugiato-Lefever equations nonlinear dynamics becomes
very complicated and nontrivial. Very interesting and some-
times unexpected vector structures can be observed in them
[13–19].

Interest in vector solitons and other vector dissipative
structures in the Lugiato-Lefever model has arisen in recent
years. Note that earlier vector solitons were investigated in

the framework of the nonlinear Schrödinger equation [20–23].
In addition to the significance for basic science, vector struc-
tures described by the Lugiato-Lefever equation have great
prospects for the development of advanced light control tech-
nologies. An important motivating and stimulating factor
for investigating such optical problems is the tremendous
progress in the development of technologies and experimental
methods that make it possible to implement proper systems,
perform reliable measurements, and check theoretical pre-
dictions in experiments. Different types of microresonators,
millimeter-sized resonators, or macroscopic fiber loop res-
onators can be used to observe and study the rich nonlinear
dynamics of vector dissipative solitons or other vector struc-
tures with different polarization states described by two
coupled Lugiato-Lefever equations. Important parameters of
microresonators including eigenfrequencies, mode profiles,
and dispersion can be tailored in a wide range [24] using
currently developed fabrication techniques such as polishing,
cutting, and laser processing, and so on [25–28].

Recently, Averlant et al. theoretically found the coexis-
tence of two stable temporally separated vector solitons with
different peak powers and Stokes parameters in a slightly
birefringent fiber loop resonator described by incoherently
coupled Lugiato-Lefever equations and constructed a bifur-
cation diagram demonstrating the large complexity of the
system [13]. Suzuki et al. theoretically studied incoher-
ently trapped microresonator solitons belonging to orthogonal
mode families and excited by dual orthogonally polarized
pumping [14]. The area of parameters of realistic silica
rod microresonators corresponding to existence of trapped
solitons was also discussed [14]. Nielsen et al. experimen-
tally demonstrated the coexistence and interactions between
nonlinear states including solitonic ones with different po-
larizations in a macroscopic fiber loop resonator [15]. Xu
et al. experimentally demonstrated and theoretically explained
the formation of spontaneously symmetry-broken tempo-
rally separated coexisting dissipative vector solitons having
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asymmetric polarization states [16]. The deterministic switch-
ing between these states was also reported [16]. Spontaneous
symmetry breaking and complex polarization dynamics of
dissipative cavity solitons were recently reported [29]. Note
that in these works [13–16], both solitonic components were
driven by a CW pump.

Here we theoretically (numerically) study peculiarities of
nonlinear dynamics of vector dissipative solitons pumped
only in one polarization in the framework of the coherently
coupled Lugiato-Lefever equations. First of all, we have found
that under certain conditions a scalar (linearly polarized) soli-
ton can spontaneously break into a two-component vector
soliton with an elliptical polarization, which differs from the
previously reported regimes using pumping into both po-
larizations. We have also found that there is a region of a
bistability where the system can support at least two dif-
ferent stable vector solitons with different peak power and
polarization states. Further, we have demonstrated oscillating
(breather) behavior of elliptically polarized solitons having a
well-known scalar analog [30,31]. Finally, we have examined
the case of moving vector solitons (when the group veloc-
ity detuning of solitonic components is not equal to zero in
contrast to the previously analyzed cases). The corresponding
bifurcation diagrams have been discussed.

To describe nonlinear dynamics of intracavity radiation in
a single spatial mode family of a microresonator, one can
use a widespread mean-field model in the framework of the
Lugiato-Lefever equation [4,32–36]. This model allows one
to study optical frequency comb generation including dissipa-
tive soliton formation [4,32–36]. In microresonators, temporal
waveforms have duration which is comparable with round-trip
time. So, one should solve a periodic problem [36]. Here, to
describe the dynamics of the light in the CW pumped mi-
croring with allowance for two orthogonally polarized mode
families, we adopt the Lugiato-Lefever model and extend it
to a vector case. Then in the basis of linear polarizations the
equation reads

∂t Ax,y = Vx,y∂zAx,y + iDx,y∂
2
z Ax,y

+ i[(α + β )|Ax,y|2 + α|Ay,x|2]Ax,y + iβA2
y,xA∗

x,y

+ (iδx,y − γx,y)Ax,y + fx,y (1)

where t is time, z is the spatial coordinate, Ax,y are the coher-
ently coupled amplitudes of x and y polarizations, γx,y are the
losses in the polarizations, δx,y are the detunings of the reso-
nant frequencies of x and y polarizations from the frequency of
the pump, vx,y are the group velocities of the modes, Dx,y are
the dispersion of the modes, and fx,y are the pump amplitude
for the x and y polarizations. To pose the problem we need
to specify the boundary conditions that are periodic for the
microring waveguides Ax,y(z) = Ax,y(z + L) where L is the
length of the ring. We set nonlinearity coefficients α = 2/3
and β = 1/3, which is a natural choice if the nonlinearity
dispersion can be neglected (see details in [37]). Note that in
Eq. (1) not only incoherent (as, for example, in [29]) but also
coherent interaction between the polarizations is taken into
account.

Let us make a remark that Eq. (1) is often written in dif-
ferent coordinates using a slow time or a propagation distance
instead of t and the fast retarded time instead of the spatial

coordinate (see for instance [29]). Within the framework of
the slow varying amplitude approach all these equations are
completely equivalent.

In this paper we focus on the case when the pump goes
to only one of the polarizations, fy = 0. Let us remark that
choosing the appropriate moving reference system we can
always provide that Vx = 0. Rescaling the time and the spatial
coordinate allows us to set γx = 1 and Dx = 1. Then Eq. (1)
can be written as

∂t Ax = i∂2
z Ax + (iδx − 1)Ax

+ i

(
|Ax|2 + 2

3
|Ay|2

)
Ax + i

3
A2

yA∗
x + f , (2a)

∂t Ay = V ∂zAy + iD∂2
z Ay + (iδy − γ )Ay

+ i

(
|Ay|2 + 2

3
|Ax|2

)
Ay + i

3
A2

xA∗
y . (2b)

Here for the sake of brevity we omitted the unnecessary in-
dices denoting V = Vy, D = Dy, γ = γy, and f = fx.

Let us remark that in the annular system the spatial spec-
trum is equidistant due to periodic boundary conditions. The
“cold eigenmodes” (i.e., eigenmodes of an unloaded res-
onator) are the plane waves characterized by their wave vector
kn = 2π/L where L is the resonator length and n is an integer.
The frequency of the nth eigenmode is ωn = vphkn where vph

is the phase velocity of the mode. First, the phase velocity
depends on the frequency and thus the temporal spectrum of
the eigenmodes is not equidistant. If in a certain range of
frequencies the variation of the phase velocity is small then
the temporal spectrum can be called equidistant. Secondly,
the phase velocities of x and y polarizations are, in general,
different. This means that the resonant frequencies of the po-
larizations do not coincide. However, the temporal spectra of
optical solitons in microrings are equidistant [36]. This makes
it possible to use optical solitons in microrings for frequency
comb generation.

II. STABILITY OF LINEARLY POLARIZED SOLITONS

Equations (2) admit one component (x-polarized) solu-
tions Ax �= 0 and Ay = 0. In this case the dynamics of Ax

is described by the scalar Lugiato-Lefever model. It is well
known that for negative δx there may exist a bistability of
spatially uniform solutions. Dissipative scalar Kerr solitons
can nestle on these backgrounds, and the bifurcation diagram
of the solitons emerges from the bifurcation diagram of the
spatially uniform state. The bifurcation diagram can be calcu-
lated by finding the time-independent soliton solutions of (2).
In this paper we did this by solving the corresponding ordi-
nary differential equation by the well-known Newton iteration
method. Let us also mention here that to study the dynamics
of the fields we perform numerical simulations of (2). The
simulations are done by the split-step method proven to be
reliable and efficient for this kind of equations.

The solitons can be destabilized by growing perturbations
belonging to the soliton polarization. Let us briefly describe
the analysis of the dynamical stability of the soliton solutions.
For the purpose of the paper it is convenient to do this for
the vector case. To study the linear stability we look for the
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solution in the form Ax,y = As x,y + ax,y where As x,y are the
x and y components of the time independent soliton solution
and ax,y are the small corrections for both of the components.
Then the linearized equations for ax,y take the form

∂t ax = i∂2
z ax + (iδx − 1)ax

+ 2i

(
|As x|2 + 1

3
|As y|2

)
ax + i

(
A2

s x + 1

3
A2

s y

)
a∗

x

+ 2i

3
(As xA∗

s y + As yA∗
s x )ay + 2i

3
As yAs xa∗

y , (3a)

∂t ay = V ∂zay + iD∂2
z ay + (iδy − γ )ay

+ 2i

(
|As y|2 + 1

3
|As x|2

)
ay + i

(
A2

s y + 1

3
A2

s x

)
a∗

y

+ 2i

3
(As xA∗

s y + As yA∗
s x )ax + 2i

3
As yAs xa∗

x . (3b)

The dynamics of the small corrections is governed by the
eigenvalues of the corresponding spectral problem which can
be solved numerically.

Equations (3) get uncoupled in the case of linearly polar-
ized solitons with only one (Ax) nonzero component:

∂t ax = i∂2
z ax + (iδx − 1)ax + 2i|As x|2ax + iA2

s xa∗
x , (4a)

∂t ay = V ∂zay + iD∂2
z ay + (iδy − γ )ay

+ 2i

3
|As x|2ay + i

3
A2

s xa∗
y . (4b)

So the eigenmodes of the linear excisions are linearly polar-
ized.

It is obvious that in the scalar case the small perturbations
are governed by Eq. (4 a) and thus we refer the instability
of a linearly polarized soliton against the perturbations of the
same polarization as a scalar instability. It is known that for
the detunings δ large enough the solitons in the scalar model
can become unstable via Andronov-Hopf bifurcation, which
gives birth to oscillating localized states. The information on
the scalar soliton stability is summarized in Figs. 1(a) and
1(b) showing the bifurcation diagrams for δ = −3 (without
Andronov-Hopf bifurcation) and δ = −5 (with Andronov-
Hopf bifurcation). Calculating the bifurcation diagrams we
detect the offset of the Andronov-Hopf instabilities by finding
the pump value when a pair of complex conjugated eigenval-
ues crosses the imaginary axis.

It is important that in the vector model a linearly polarized
soliton can be unstable against the perturbations belonging
to another polarization. We refer to this instability described
by Eq. (4 b) as a polarization instability. The polarization
instability depends on the detuning δy, the velocity V , and
the dispersion D. The area of the polarization instability in
parameter plane f -δy is shown in Figs. 1(c) and 1(d) for D = 1
and v = 0.

The development of the polarization instability can result
either in the destruction of the soliton or in the formation
of a vector soliton. For some parameters small random per-
turbations of the initial state affect the development of the
instability so that different vector solitons form. These vector
soliton formation processes are illustrated in Fig. 2.

FIG. 1. The bifurcation diagrams Wm = max[|Ax (z)|2] (peak
soliton intensity as a function of pump) for linearly polarized (Ax �=
0, Ay = 0) stationary solitons are shown in the lower parts of panels
(a) and (b) for δx = −3 and −5 correspondingly. The parts of the
bifurcation curve where the solitons undergo scalar instability are
shown by dashed lines. By the red dashed line we mark the region
of scalar instability of Andronov-Hopf kind. The bifurcation curve
of spatially uniform states is shown as a thin black curve. In the
upper part of the figure there are two panels showing the regions
of polarization instability of the solitons in the parameter plane f -δy.
The regions of polarization instability of the solitons belonging to
the upper part of the bifurcation diagram are shown by red color; the
regions where the solitons are stable are shown by blue color.

FIG. 2. The development of the instability of x-polarized solitons
perturbed by weak noise. Two different scenarios of the instability
development are shown in panels (a) and (b). The parameters are
δx = −5, δy = −5, D = 1, and V = 0. The initial soliton belongs to
the upper branch of the bifurcation curve and is fed by the pump
f ≈ 3.482.
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As one can see the system can support stable vector soli-
tons and, moreover, there is a region of bistability where there
may exist at least two different stable vector solitons. Let us
mention that the direct numerical simulations of (2) are done
using the split-step method which is proven to be a fast and
reliable algorithm for numerical solutions of the equations of
such a kind.

III. RESTING VECTOR SOLITONS

We study systematically the bifurcations of the vector soli-
tons starting with the case V = 0. The vector soliton solutions
are found numerically solving the corresponding ordinary dif-
ferential equations by Newton iterations and then the stability
analysis is done by finding the eigenmodes of the small per-
turbations governed by (3).

It is found that the vector solitons with two nonzero
components bifurcate from the the point where polarization
instability of the x-polarized soliton sets in. The bifurcation
diagrams are shown in Fig. 3 for different values of δy and
fixed D = 1. The stationary solutions are found by iterative
procedure allowing us to find the field distribution and the ve-
locity of the soliton. As expected, numerically found solutions
confirm that for V = 0 the velocity of the vector soliton vs is
equal to zero with the precision of the numerical simulations.
At the point where the vector solitons detach from the linearly
polarized ones their second component tends, obviously, to
zero. However, far from this point the energy in the second
component Ey = ∫ |Ay|2dz can exceed the energy of the first
(directly pumped) component Ex = ∫ |Ax|2dz.

The vector solitons exist in the range of detunings δy

where the x-polarized solitons are unstable (see Fig. 1). If
δy is in the vicinity of the lower boundary of the soliton
existence domain then the solitons exist in a narrow inter-
val of the pumps close to the right edge of the bifurcation
curve of the linearly polarized solitons (see Fig. 3). When
δy approaches the lower boundary of the domain, the inter-
val of the pumps f supporting the vector solitons shrinks to
zero.

Now let us discuss what happens when δy goes to the
upper boundary of the soliton existence domain. Then at some
threshold value of δy another merging point of the bifurca-
tion curves of the vector and the scalar solitons appears [see
Fig. 3(d), where this second merging point is clearly seen
in the inset; let us remark that all soliton branches shown
in the inset are unstable, and the linearly polarized soliton
becomes stable on the right of the bifurcation points against
the polarization instability only].

From the numerical simulations we can conclude that the
bifurcation curves of the linearly and elliptically polarized
solitons get closer to each other and the intensity of the second
polarization component of the elliptically polarized soliton
decreases when δy goes to the upper boundary of the existence
domain. With further decrease of δy the merging points go
towards each other and finally the bifurcation diagram of the
vector solitons collapses.

As one can see in Figs. 2 and 3, the vector solitons can be
bistable so that there are two stable vector solitons supported
by the same pump. In particular, Fig. 2 shows the evolution of
the unstable linearly polarized soliton marked by a magenta

FIG. 3. Bifurcation diagrams of vector solitons for δy = −6
(a), δy = −5 (b), δy = −3 (c), and δy = −1.52 (d) by the thicker
blue and red lines. The parameter Wm is the maximum of the to-
tal intensity defined as Wm = max[|Ax|2 + |Ay|2]. The stable parts
of the bifurcation curves are shown by the solid blue line, the
dashed blue lines correspond to the solitons with dominating in-
stability having pure real eigenvalue, and the dashed red lines
are the case when the dominating instability is of Andronov-
Hopf kind. The thinner magenta lines show the bifurcation curves
of the x-polarized solitons. The solid part of the magenta lines means
that the solitons do not exhibit polarization instability (but can be
unstable against the perturbations having the same polarization as
the soliton); the dashed magenta lines correspond to the polarization
unstable solitons. The vertical green ellipse marks the point where
scalar Andronov-Hopf bifurcation of linearly polarized solitons sets
in (the solitons are unstable right of this point). The thinner black
lines show the bifurcation diagrams of the spatially uniform states.
The magenta arrows in panel (b) symbolically show the transforma-
tion of an unstable x-polarized soliton to one of two possible stable
vector solitons. These arrows indicate the points on the bifurcation
curve corresponding to the vector solitons. The other parameters are
δx = −5, D = 1, and V = 0.

circle in Fig. 3(b). The pump is then within the range of
the bistability of the vector solitons and thus the final state
belongs either to the upper or to the lower branches of the
vector soliton bifurcation curve.

The structures of the fields in these solitons are shown
in Figs. 4(a) and 4(b). One can see that the intensity of
the y-polarized component can be higher than the intensity
of the x-polarized component. It is also instructive to look
at the polarization of the vector solitons. The normalized
Stokes parameters (St1 = |Ax|2 − |Ay|2, St2 = A∗

xAy + AxA∗
y ,

and St3 = iA∗
xAy − iAxA∗

y ) are shown in Figs. 4(c) and 4(d) for
the solitons belonging to the upper and to the lower parts of
the dispersion curve correspondingly. One can see that in the
center of the soliton the first Stokes parameter is close to zero
and the third one is close to 1, which means that the field in
the soliton is nearly circularly polarized (actually, of course,
elliptically polarized). We would like to notice here that the
equations are invariant with respect to Ay → −Ay transfor-
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FIG. 4. The spatial distributions of the absolute values of the
fields |Ax,y| are shown in panels (a) and (b) for the vector solitons
appearing due to the development of the polarization instabilities
shown in Fig. 2. The corresponding Stokes parameters are shown
in panels (c) and (d). Panels (a), (c) and (b), (d) are for the solitons
belonging to the lower and the upper branches.

mation and thus bifurcation curves of the vector solitons are
doubly degenerate.

We have examined the development of an oscillatory in-
stability of vector solitons. It is shown that Andronov-Hopf
bifurcation gives rise to oscillating (breather) vector solitons.
The formation of the oscillating vector soliton looks very
much like the formation of its well-known scalar counterpart
[30,31] [see Fig. 5(a), showing a typical development of the
oscillatory instability of vector solitons].

Because of the instability the intensities in both compo-
nents of the soliton start oscillating and after some transitional
phase the system reaches an oscillatory steady state [see
Fig. 5(b)]. It is interesting to note that the polarization of the
soliton is also oscillating [see Fig. 5(c), showing the temporal
evolution of the Stokes parameters in the center of the soli-
ton]. However, the oscillation of the polarization is not very
pronounced.

IV. MOVING VECTOR SOLITONS

It is also worth discussing the case when the group velocity
detuning V is not equal to zero. First, this affects the stability
of the linearly polarized soliton. Secondly, vector solitons
forming in this case have a nonzero velocity. In other words,
the velocity of the vector solitons differs from the velocity of
x-polarized solitons that move at a velocity equal to the group
velocity of the x-polarized linear waves at the frequency of
the pump. It should be also mentioned that in this case the
vector solitons are not mirror symmetric anymore; moreover,
the maxima of x- and y-polarized components do not coincide
(see Fig. 6).

The typical bifurcation diagrams of vector solitons are
shown in Fig. 6(a). Let us remark here that in this case the
field distribution and the velocity of the soliton have to be

FIG. 5. The development of the Andronov-Hopf instability of the
vector soliton is shown in panel (a). The initial state corresponding
to the point in the bifurcation diagram Fig. 3(b) is marked by the
red circle. The oscillations of the intensities maxima of the x (black
line) and y (blue line) components, Wmx = max[|Ax|2] and Wmy =
max[|Ay|2] correspondingly, as well as the total intensity maximum
Wm = max[|Ax|2 + |Ay|2] (red line) are shown in panel (b). The os-
cillations of Stokes parameters are illustrated in panel (c).

found self-consistently by solving the corresponding ordinary
differential equations and requiring that the solution is local-
ized. One can see that, as well as for V = 0, for V �= 0 the
vector solitons bifurcate from x-polarized ones. Figure 6(b)
shows that the vector soliton moves at some velocity which
depends on the intensity of the soliton. Figures 6(c), 6(d),
and 6(e) show the distribution of the intensities of the soliton
component, the spatial spectra of the soliton components, and
the Stokes parameters. It is clearly seen that the symmetry of
the soliton is broken.

It should be noted here that the displacement of the maxima
of the spatial spectra in the chosen reference frame means
the shift of a central temporal frequency in the laboratory
reference frame. This means that the central frequencies of
the x and y components of the soliton are different. How-
ever, the positions of the spectral lines in the frequency combs
are the same for both polarizations.

The moving vector solitons can form from the unstable
x-polarized (and resting) solitons (see Fig. 7). Figure 7(a)
illustrates the case when the forming vector soliton is sta-
ble. It is seen that initially the soliton has only one nonzero
component and is resting. The development of the instability
transforms the soliton into a vector one and sets it in motion.

The parameters can be chosen to prevent the formation
of a stable nonoscillating soliton. This case is illustrated in
Fig. 7(b), showing the development of the instability of the x-
polarized soliton. It is seen that at first the instability produces
the second component in the soliton and the soliton begins
moving at some velocity. Along with this, the oscillations
of the intensities of the soliton components appear and be-
come deeper with further development of the instability. The
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FIG. 6. The bifurcation diagram of vector solitons for V = 1 is
shown in panel (a); Wm = max[|Ax|2 + |Ay|2] is the maximal total
intensity of the state. The velocity of the vector soliton as a function
of its maximal intensity is shown in panel (b). The energy density
distributions in the soliton are shown in panel (c). Panel (d) shows
the normalized spatial spectra of x and y components of the soliton.
Panel (e) shows the Stokes parameters. The very narrow vertical
line belonging to the spatial spectrum for the x component, which
corresponds to the background in x polarization in panel (c), is
artificially changed for a short thick line in panel (d). The panels
(b)–(d) are for the soliton corresponding to the blue circle marked as
“(c, d, e)” in panels (a) and (b). The other parameters are δx = −5,
δy = −3, and D = 1.

oscillation decreases the velocity of the soliton motion and,
finally, a stationary state in the form of a moving oscillating
soliton forms in the system.

To show the effect of the intensity oscillations on the soli-
ton velocity and to study Andronov-Hopf bifurcation of the
vector solitons for V �= 0 we performed numerical simulations
of the dynamics of unstable vector solitons. So we took initial
conditions in the form of a vector soliton experiencing an
oscillatory instability. The typical evolution of the system is
presented in Fig. 8. Figure 8(a) shows the evolution of the field
in the reference frame moving with the velocity of the initial
unstable soliton. So at first the velocity of the soliton in this
reference frame is zero. But when the intensity oscillations
become pronounced the velocity of the soliton changes. In
Fig. 8(b) the instantaneous velocity of the soliton in the initial
reference frame is shown by the blue line. The velocity of
the soliton vs is defined as a temporal derivative of the first
moment (expectation) of the soliton intensity distribution. The
black lines shown the soliton velocity vav averaged over its

FIG. 7. The instability of x-polarized solitons and the formation
of vector solitons for nonzero group velocity detuning at the fre-
quency of the pump. Panels (a) and (b) are for the initial conditions
in the form of x-polarized solitons corresponding to magenta circles
marked as “Fig. 7(a)” and “Fig. 7(b)” in Fig. 6(a) correspondingly.
The parameters are δx = −5, δy = −3, D = 1, and V = 1.

three periods of oscillations. One can see that, indeed, the
velocity of the soliton decreases when the oscillations of the
intensity become developed.

It is also interesting to note that at long times the average
velocity vav shows very slow dynamics that looks periodic.
This means that the oscillating moving soliton forming from
the unstable moving soliton is actually quasistable and the
slow growing instability results in the appearance of spikes of
the averaged soliton velocity vav [see Fig. 8(c)]. We note that
these spikes can be of the same origin as dissipative soliton
oscillations reported in [38]. However, the detailed investiga-
tion of the dynamics of the oscillating vector solitons is out of
the scope of the present paper and will be done elsewhere.

V. CONCLUSION

In this paper we consider a coherently pumped nonlinear
microring with two modes of different polarizations. The
consideration is restricted to the scheme where the coherent
pump interacts with one of the polarization only. The simplest
solutions in this case are the ones with only one nonzero
component; these solutions can be found from the scalar
Lugiato-Lefever model. It is well known that for the appro-
priate sign of the pump frequency detuning there are solutions
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FIG. 8. The development of Andronov-Hopf instability of a vec-
tor soliton is shown in panel (a). The vertical coordinate corresponds
to a reference frame moving at the velocity of the initial soliton
v0 ≈ 0.19. The initial unstable soliton corresponds to the red circle
marked as “Fig. 8” in Fig. 6(a). The dependency of an instantaneous
soliton velocity vs is shown in panel (b) by the blue line. The black
line in this panel shows the soliton velocity averaged over three
periods of the oscillations of the soliton intensity. The behavior of
the averaged velocity over long times is presented in panel (c). The
parameters are δx = −5, δy = −3, D = 1, and V = 1.

in the form of dissipative solitons and breathers (oscillating
solitons) nestling on a background.

In this paper we examined the stability of the linearly polar-
ized solitons in the presence of the orthogonal polarized mode.
It is shown that under certain conditions small perturbations
of the second polarization get amplified. The physical mecha-
nism of the instability can be explained as follows. The linear
waves of the second polarization experience both the attract-
ing effective potential and the parametric gain created by the

soliton of the first polarization. The spatially localized states
belonging to the discrete spectrum of the effective potential
can be amplified by the effective gain provided that their
eigenfrequencies are sufficiently close to the resonance. The
growth of the localized perturbations transforms the linearly
polarized soliton into an elliptically polarized one.

In this paper we systematically study the bifurcation of
the elliptically polarized solitons from their linearly polarized
counterparts. It is shown by linear stability analysis and by
direct numerical simulations that elliptically polarized soli-
tons can be dynamically stable. It was also demonstrated
that elliptically polarized solitons can form as the result
of the instability of the linearly polarized solitons. It is found
that the velocity of the elliptically polarized soliton depends
on the group velocities of both polarizations. So the velocities
of the linearly and elliptically polarized solitons coincide only
if the polarization group velocities are the same.

Oscillating elliptically polarized solitons are also found. It
is demonstrated that elliptically polarized breathers can form
as a result of the development of Andronov-Hopf instability
of elliptically polarized solitons or directly from the decay
of unstable linearly polarized solitons. It is worth mentioning
that the oscillation of the elliptically polarized solitons can
affect their velocity strongly.

We believe that the findings reported in this paper
can contribute to a better understanding of the dynamics
of the solitons in driven-dissipative systems. We also believe
that the results of this paper can be used for the explanation
and the optimizations of experiments on frequency comb gen-
eration in high-Q microring resonators.
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