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Generation of waveform-tunable unipolar pulses in a nonlinear resonant medium
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We theoretically demonstrate the possibility to produce unipolar pulses of varying temporal profile in an
extended layer of a resonant medium with the nonlinear coupling to the driving electric field. The proposed
approach relies on the coherent control of the low-frequency medium oscillations by a sequence of ultrashort
excitation pulses as well as the collective emission of multiple resonant centers along an optically thick medium
layer. In particular, we show that creating an inhomogeneous spatial profile of the density of resonant centers
allows obtaining unipolar pulses of adjustable waveform, such as rectangular or triangular ones. Such optical
response could be realized in Raman-active media, e.g., in molecular crystals with well-resolved vibrational
terahertz resonances.

DOI: 10.1103/PhysRevA.106.053506

I. INTRODUCTION

Generation of few-cycle pulses in terahertz and especially
optical frequency ranges represents one of the major research
areas of modern optics [1–4]. The few-cycle pulses allow not
only to largely boost the performance of different ultrafast
optical systems, e.g., optical data processing and transmis-
sion, but also enable efficient control of ultrafast processes
in matter, which is inaccessible when using longer multicycle
pulses [5–9].

Unipolar pulses can be introduced as a specific case of
few-cycle pulses containing just a half of an optical cycle
and therefore having a constant sign of the electric field. In
a more general case of a sign-varying electric field, unipolar
pulses can be defined as those having the nonzero values of
the electric pulse area �SE (�r) [10,11]:

�SE (�r) =
∫ +∞

−∞
�E (�r, t )dt �= 0, (1)

where �E (�r, t ) is the electric field vector. It is worth noting that
the electric pulse area Eq. (1) obeys a fundamental conser-
vation law upon the propagation of an arbitrary pulse in any
dissipative medium in the one-dimensional (1D) case, so that
the electric pulse area stays constant in space [12,13].

Due to their nonzero electric pulse area, Eq. (1) unipo-
lar pulses transfer momentum to charged particles. As the
result, unipolar pulses represent a very useful tool for accel-
eration of charged particles or ionization of atoms [14–16].
Besides that, the nonzero electric pulse area provides an ef-
ficient ultrafast nonresonant excitation of electronic states in
different resonant media [17–20] or rovibrational levels in
polar molecules [21]. Importantly, such nonresonant excita-
tion of higher levels in quantum systems by unipolar pulses
exhibits much higher efficiency as compared to usual bipolar
pulses with zero electric area Eq. (1), given that the excita-
tion pulse duration is less than the period of the respective

transition [19–21]. Hence, production of unipolar pulses of
controllable shape or electric area turns out to be in high
demand.

A number of methods have been suggested for genera-
tion of unipolar and quasiunipolar subcycle pulses. Those
include, among others, the unipolar terahertz pulse formation
in a nonequilibrium plasma channel [22,23], excitation of a
foil target by intense femtosecond pulses [24–26], generation
of attosecond unipolar pulses through cascaded processes in
plasma [27], and formation of terahertz unipolar precursor
pulses in electro-optical crystals [28–30]. Several possible
ways to experimentally determine the unipolarity of the
pulsed terahertz radiation were presented in Ref. [31]. Also,
a number of papers have theoretically shown the possibility of
the unipolar half-cycle soliton formation in different nonlinear
media [32–37].

However, in the above papers no ways to control the shape
of the produced unipolar pulses were suggested. Still, the issue
of shaping of subcycle unipolar pulses is of crucial importance
for any applications in all-optical control of ultrafast pro-
cesses. To the best of our knowledge, just a couple of studies
so far have addressed this point. A theoretical approach for
the control of the unipolar pulse shape in a layer of a resonant
medium with the nonlinear field coupling was proposed in
Refs. [38–40], based on varying the geometrical parameters of
a thin medium layer and the excitation source. Later, this ap-
proach was improved with using diffraction optical elements
for the pulse shape control [41]. Nevertheless, the feasibility
of these methods is greatly restricted, and efficient methods
for obtaining unipolar pulses of controllable waveform are
still lacking.

In this paper we propose an efficient approach for the
generation of unipolar pulses of tunable waveform from an
extended layer of a resonant medium with the nonlinear field
coupling, such as a Raman-active medium. Our approach
enables producing unipolar pulses of a controllable temporal
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profile and duration by means of ultrashort excitation pulses.
The tunability of the unipolar pulse waveform is provided
through varying the spatial density of the resonant particles
along the layer thickness. As the result, unipolar pulses of
different unusual shapes can be readily produced, such as
rectangular and triangular ones.

This paper is organized as follows. In Sec. II we present the
model that we use and show that the response of a thin slice
of a resonant medium with the nonlinear field coupling when
driven by a pair of exciting ultrashort pulses can be tuned to be
a single cycle of a sine wave at medium resonant frequency.
In Sec. III it is shown that such response leads to generation
of half-cycle unipolar pulses from an extended medium layer
due to the constructive interference of the emitted secondary
waves from different parts of the layer. In Sec. IV we ex-
tend the consideration to optically thick medium layers with
nonuniform spatial density and demonstrate that it gives rise
to unipolar output pulses of varying shape. Finally, a paper
summary and concluding remarks are provided in Sec. V.

II. MODEL

We assume the induced dipole moment p of a single reso-
nant center to obey the following equation [40,42]:

p̈ + γ ṗ + ω2
0 p = g0E (t )2, (2)

with external driving field E (t ), medium resonant frequency
ω0 and damping rate γ , and the nonlinear coupling factor
to the driving field g0. As it was demonstrated in Ref. [42],
the simple model Eq. (2) is well suited for the description
of the low-frequency response of a Raman-active medium
upon its excitation by ultrashort pulses of subpicosecond
duration. Indeed, the optical response of a molecular Raman-
active medium can be carefully modeled when assuming
the medium consisting of two nonlinearly coupled harmonic
oscillators—a high-frequency (electronic) oscillator (HFO)
and low-frequency (nuclear) oscillator (LFO) [43,44]. If y
stands for the normal coordinate of LFO oscillations and x
stands for the normal coordinate of HFO oscillations, the dy-
namics of a Raman-active medium under a pulsed excitation is
driven by the following system of coupled equations [43,44]:

ẍ + �eẋ + �2
0x = − q

m
E (t ) − γ

m
xy, (3)

ÿ + �nẏ + ω2
0y = − γ

2M
x2. (4)

The parameters of the model are the following: M and m
are the effective masses of the LFO and HFO, �e and �n

are the damping rates of HFO and LFO, factor γ is the
strength of the nonlinear coupling between HFO and LFO,
q is the effective charge of both oscillators, ω0 = 2π/T0 is
the resonant frequency of the LFO, and �0 = 2π/T� is the
resonant frequency of the HFO. As a specific example of
a Raman-active medium governed by Eqs. (3) and (4), one
can take molecular crystals which typically possess isolated
vibrational resonances in the terahertz range [45].

The model Eq. (2) makes use of the following expansion
of the binding potential energy:

U (x, y) = m�2
0

2
x2 + Mω2

0

2
y2 + γ

2
x2y, (5)

FIG. 1. An exemplary plot of the potential energy distribu-
tion U (x, y) for a system of two nonlinearly coupled oscillators
given by Eq. (5). The model parameters are the effective masses
M = 3 × 10−26 kg and m = 9.1 × 10−31 kg, resonant frequen-
cies ω0 = 1013 s−1 and �0 = 1015 s−1, and coupling strength
γ = 109 J/m3.

where the last coupling term introduces spatial asymmetry
into the system and is eventually responsible for the nonlinear
coupling of the low-frequency induced medium polarization
to the driving electric field as described by Eq. (2). The po-
tential energy Eq. (5) for some exemplary parameter values is
plotted in Fig. 1. One can easily see the asymmetry arising due
to the nonlinear bonding term. In fact, according to Eq. (3), the
slow oscillations of LFO effectively cause the gradual change
of the HFO resonant frequency, which is also manifested in
changing the parabolic slope U (x) in the potential energy
profile for different y coordinates in Fig. 1. On the other hand,
the LFO oscillations are driven by an external force term
of the constant sign, whose frequency is mainly determined
by the frequency of the pumping electric field, namely, the
doubled pumping frequency. As a result, the induced medium
polarization,

P = Nq(y − x),

where N is the spatial density of resonant particles, primar-
ily contains the spectral contributions at the LFO and HFO
resonant frequencies as well as pumping frequency (including
nearby Stokes and anti-Stokes lines) and its second harmonic.
If the pumping frequency is much larger than LFO resonant
frequency, the LFO emission can be easily obtained using a
low-pass filter that cuts off all contributions both from the
pumping pulse and the HFO oscillations. The remaining low-
frequency part of the induced medium polarization can be then
well described by Eq. (2) [42].

Let us now proceed with the possibilities to perform
coherent control of the low-frequency medium polarization
oscillations. Following the findings in Ref. [42], we suppose
that the resonant medium Eq. (2) is excited by a pair of
ultrashort pulses:

E (t ) = E0e−t2/τ 2
p sin �pt + E0e−(t−�)2/τ 2

p sin �p(t − �), (6)
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FIG. 2. Sketch of the system under consideration: a pair of lin-
early polarized ultrashort pulses hits an extended layer of a medium
with nonlinearly coupled resonances, as provided by Eqs. (3) and (4).

with the electric field amplitude E0, excitation pulse duration
τp, carrier frequency �p, and pulse-to-pulse delay �. It is sup-
posed that the pumping frequency �p is far from both resonant
frequencies ω0 and �0, so that we can reliably neglect the
dynamics of the population inversion. The time delay between
pulses � is selected to equal

� = T0

2
= π

ω0
, (7)

i.e., half of the period of the resonant medium oscilla-
tions [42]. Such a choice ensures the efficient coherent control
of the induced low-frequency medium polarization through
the excitation pulses. Namely, as the first excitation pulse
Eq. (6) initiates the oscillations of the induced dipole mo-
ments according to Eq. (2) at the resonant frequency ω0, the
second excitation pulse stops these oscillations after a half
period, provided that the pulse-to-pulse delay obeys Eq. (7).
As a result, the induced dipole moment represents a half-sine
wave [42].

We now assume that a pair of excitation pulses Eq. (6) is
incident on a thick layer of the resonant nonlinear medium
Eq. (2) of thickness L:

L � λ0, (8)

where λ0 is the wavelength of the resonant transition, i.e.,
λ0 = cT0 = 2πc/ω0, with the speed of light c. The pulses are
taken linearly polarized. Besides that, we consider the case of
the normal incidence, as sketched in Fig. 2. Under these
assumptions the problem reduces to a 1D one and can be
described by the scalar 1D wave equation for the electric field
E (z, t ):

∂2E (z, t )

∂z2
− 1

c2

∂2E (z, t )

∂t2
= 4π

c2

∂2P(z, t )

∂t2
, (9)

which must be coupled to the equation describing the response
of the nonlinear medium Eq. (2). The one-dimensional ap-
proximation was also demonstrated to be well justified for
the few- and subcycle pulse propagation in coaxial waveg-
uides [10]. The bulk medium polarization in the right-hand
side of Eq. (9) is readily obtained from the induced dipole

FIG. 3. Optical response of a single resonant center of a nonlin-
ear medium driven by Eq. (2) together with the driving electric field
Eq. (6). All quantities are accordingly rescaled and plotted in dimen-
sionless units. The medium’s resonant frequency is ω0 = 1013 s−1,
damping rate γ = 1011 s−1, excitation pulse duration τp = 70 fs, and
carrier frequency �p = 3 × 1014 s−1.

moment of a single resonant center Eq. (2) as

P(z, t ) = N (z) p(z, t ), (10)

with the spatial density of the resonant atoms/molecules N (z),
which is in general spatially varying.

For the field emitted by a medium layer in a one-
dimensional problem, the following exact solution of Eq. (9)
can be derived [46]:

Eemit (z, t ) = −2π

c

∫ L

0

∂P
(
z′, t − |z−z′ |

c

)
∂t

dz′. (11)

According to Eq. (11), the optical response of the layer is de-
termined by the first-order temporal derivative of the induced
medium polarization, instead of the second-order temporal
derivative in a three-dimensional geometry [47].

In Fig. 3 we have plotted the results of the excitation of
a single resonant center described by Eq. (2) when driven by
the pulses of Eq. (6). Specifically, we plot the temporal de-
pendence of the induced dipole moment p(t ) and its temporal
derivative together with the driving electric field Eq. (6). It is
well seen that due to the choice of the interpulse delay Eq. (7),
the second excitation pulse indeed fully stops the resonant
oscillations of the induced dipole moment, initiated by the first
excitation pulse, after a half of the oscillation cycle. It should
be noted that the strength of the induced dipole moment p(t )
linearly depends on the product g0E2

0 according to Eq. (2),
which is why we use dimensionless values in Fig. 3 without
loss of generality.

At the same time, the temporal derivative of the induced
dipole moment ṗ(t ) in Fig. 3 makes a single oscillation cycle
and can be well approximated by one period of the sine wave.
The shape of the temporal derivative ṗ(t ) largely depends on
the duration of the excitation pulses τp. If the pulse duration
τp is much smaller than the time delay Eq. (7), the temporal
derivative ṗ(t ) would possess sharp jumps at the moments of
both pulses’ action. When increasing the pulse duration τp to
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become comparable with the time delay Eq. (7), one ends up
with a relatively smooth profile of ṗ(t ), like the one shown in
Fig. 3.

According to Eq. (11) the temporal dependence of the
derivative of the induced dipole moment ṗ(t ) in Fig. 3 also
describes the emitted field from a very thin flat layer of the
nonlinear medium Eq. (2) [42]. To be more specific, the layer
thickness in this case has to be much smaller than the wave-
length of the resonant transition, i.e., exactly opposite to the
inequality Eq. (8). Provided that the emitted field Eq. (11) is
much smaller in amplitude than the field of the incident pulses,
the temporal derivative of the induced medium polarization in
Eq. (11), i.e., the layer emission, is just the product of the
temporal derivative ṗ(t ) for a single resonant center times the
spatial density of resonant centers in the layer.

III. GENERATION OF HALF-CYCLE UNIPOLAR PULSES

Let us now consider the response of an optically thick
layer with a spatially dependent density N (z). Following the
results of the previous section, we can reliably accept that
each infinitesimal slice of the resonant medium δz emits a
single-cycle pulse at their resonant frequency ω0, i.e.,

A(z, t )|z=−D = A0(z)δz sin ω0

(
t − 2z + D

c

)
,

2z + D

c
� t � 2z + D

c
+ T0, (12)

with the respective field amplitude A0(z) and the distance D
between the left boundary of the medium layer and the detec-
tor, i.e., the detecting system is assumed located at the point
z = −D. The emitted field is therefore measured in the reflec-
tion. This choice appears suitable, since in transmission the
layer emission interferes with the excitation pulses Eq. (6),
while in reflection one only detects the layer emission. We
also suppose that the field Eq. (12) corresponds to the unity
value of the spatial density of resonant particles in the layer.

It is assumed in Eq. (12) that at the time point t = 0 the first
of the excitation pulses reaches the left boundary of the layer
in Fig. 2. Starting from this moment, it takes for the excitation
pulses the amount of time z/c to reach the resonant particle
located at the point z and then it takes for the emitted field
from this resonant particle the amount of time (z + D)/c to
reach the detector. This clarifies the boundaries of the time slot
in Eq. (12) for the detected radiation from each specific slice
of the layer. Here, for the sake of simplicity, we assume the
refractive index of the host medium to be equal to unity both
at the pump frequency and at the emission frequency, which
is justified for low enough density values. In an arbitrary case
one would have to replace the speed of light with the respec-
tive group velocities in Eq. (12), which would only change
the factor in front of z in Eq. (12) without affecting the main
findings below. Also, the contribution of the resonant centers
Eq. (2) to the refractive index must be negligible, so that the
inhomogeneity of the spatial density N (z) does not lead to the
spatially dependent group refractive index of light.

In order to calculate the emitted field from the whole layer,
one has to sum up all responses Eq. (12) over the thickness
of the layer, where the time delays have to be correctly taken

into account. Hence the total layer’s response is given as

E (−D, t ) =
∫ L

0
N (z)A(z, t )dz, (13)

with the spatial density N (z).
Let us start with the simplest case, namely, a uniform

spatial density N (z) = N0. We also neglect here the spatial de-
pendence of A0(z) in Eq. (12), assuming the excitation pulses
negligibly transform over their propagation in the layer, so that
each medium’s resonant center gets excited by the same pulses
Eq. (6). In this case, when both excitation pulses have entered
the medium layer, Eq. (13) yields

E (−D, t ) = N0A0

∫ (ct−D)/2

(ct−D−λ0 )/2
sin ω0

(
t − 2z + D

c

)
dz = 0,

D + λ0

c
� t � D + 2L

c
, (14)

i.e., we get no emitted field. This result arises due to the
destructive interference of the emitted fields from different
slices over the whole layer thickness. Indeed, according to the
findings of the previous section, every infinitesimal medium
slice emits a single-cycle pulse Eq. (12). If the spatial density
N (z) does not change over the layer thickness, the positive and
negative half-waves from different parts of the medium layer
will fully compensate each other, resulting in zero total field.

Equation (14) was obtained with the specific choice of
the harmonic emitted field Eq. (12). However, it can be
shown that zero emitted field for a uniform spatial density
N (z) = N0 would be detected for an arbitrary profile of the
resonant center’s emission instead of Eq. (12). Let us replace
Eq. (12) with a certain other odd function f :

A(z, t )|z=−D = A0(z)δz · f

(
t − 2z + D

c

)
,

2z + D

c
� t � 2z + D

c
+ T0,

f

(
2z + D

c

)
= f

(
2z + D

c
+ T0

)
= 0,

f

(
2z + D

c
+ T0

2
+ τ

)
= − f

(
2z + D

c
+ T0

2
− τ

)
,

for 0 � τ � T0

2
. (15)

The exact shape of the function f (t ) mainly depends on the
ratio between the excitation pulse duration τp and the delay
Eq. (7). In any case, however, the function f (t ) has to be equal
to zero before the action of the first excitation pulse and after
the action of the second excitation pulse due to the selected
value of the delay Eq. (7). Besides that, since Eq. (2) yields
the free resonant oscillations in between the excitation pulses,
function f (t ) has to be uneven vs time measured from the cen-
tral time point in between the excitation pulses Eq. (6). This
reasoning explains the imposed restrictions on the function
f (t ) in Eq. (15).

Using the emission in the form of Eq. (15), Eq. (13) yields
the following for the total emitted field, when both excitation
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pulses have entered the medium layer:

E (−D, t ) = N0A0

∫ (ct−D)/2

(ct−D−λ0 )/2
f

(
t − 2z + D

c

)
dz

∼
∫ T0/2

−T0/2
f
(
τ ′ + T0

2

)
dτ ′ = 0,

where τ ′ = t − 2z + D

c
− T0

2
,

D + λ0

c
� t � D + 2L

c
.

Hence, due to the symmetry properties of the function f (t )
the destructive interference of the emitted fields from differ-
ent slices of the medium layer results in zero emitted field
regardless of the specific shape of the function f (t ).

This result, however, holds only in the central part of the
reflected signal. Specifically, when the first excitation pulse
has already entered the medium layer while the second pulse
has not, instead of Eq. (14), one gets another expression from
Eq. (13) with the response in the form Eq. (12):

E (−D, t ) = N0A0

∫ (ct−D)/2

0
sin ω0

(
t − 2z + D

c

)
dz

= A0N0λ0

4π

[
1 − cos ω0

(
t − D

c

)]
,

D

c
� t � D + λ0

c
. (16)

Equation (16) describes a half-cycle unipolar pulse arising at
the very leading edge of the layer emitted field due to the
constructive interference of the fields Eq. (12) from the res-
onant particles located near the left boundary of the medium
layer. Exactly the same unipolar half-cycle pulse but of oppo-
site polarity appears at the very trailing edge, when the first
excitation pulse has already left the medium layer while the
second pulse has not:

E (−D, t ) = N0A0

∫ L

(ct−D−λ0 )/2
sin ω0

(
t − 2z + D

c

)
dz

= −A0N0λ0

4π

[
1 − cos ω0

(
t − D + 2L

c

)]
,

D + 2L

c
� t � D + 2L + λ0

c
. (17)

Hence the measured signal in reflection represents a pair of
half-cycle unipolar pulses following with a significant time
delay between them. According to Eq. (14), this time delay is
given as (2L + λ0)/c ≈ 2L/c, i.e., linearly proportional to the
layer thickness. Therefore it is possible to obtain effectively
isolated unipolar half-cycle pulses, if this time delay is tuned
to be large enough.

Figure 4 shows an example of the reflected electric field
from an extended layer of the nonlinear resonant medium
Eq. (2) with the uniform spatial density N (z) = N0 calculated
through the direct numerical solution of the coupled equa-
tions Eqs. (2), (9), and (10). For numerical simulations we
used the finite-difference time-domain method (FDTD) for
the wave equation Eq. (9), while Eq. (2) was solved with
the high-order Runge-Kutta method. The calculated emitted

FIG. 4. Rescaled electric field obtained in reflection from an
extended layer of the nonlinear resonant medium Eq. (2) with the
spatially homogeneous density, with layer thickness L = 1 mm, reso-
nant frequency ω0 = 1013 s−1, damping rate γ = 1011 s−1, density of
resonant centers N0 = 1018 cm−3, the duration of the exciting pulses
τp = 70 fs, and carrier frequency �p = 3 × 1014 s−1.

field exactly matches the analytical findings above, with two
separated-in-time, half-cycle unipolar pulses and a near-zero
field between them. It should also be noted that a similar
response was recently obtained from a layer of a two-level
medium in Ref. [48], but only with unipolar excitation pulses.

In fact, the electric field in the central part of the re-
flected signal between half-cycle unipolar pulses does not
exactly equal zero, and some small oscillations still appear.
The reason for that is the non-negligible distortion of both
excitation pulses upon their propagation through an extended
medium layer. As a result, the amplitude of the excitation
pulses slightly decreases towards the right boundary of the
medium layer. Therefore the amplitude of the single-cycle
pulse from each thin slice of the layer A0(z) in Eq. (12) also
in turn gradually monotonously decreases with z. This leads
to the slight deviations from the complete mutual compen-
sation of the fields emitted from different parts of the layer
in Eq. (14) and the remaining field oscillations between half-
cycle unipolar pulses at the edges of the medium response.
Similar field oscillations arise for the same reason also behind
the second half-cycle unipolar pulse, i.e., at the trailing edge
of the reflected field, as can be seen in Fig. 4.

As long as the amplitude of the emitted field is orders-of-
magnitude weaker than the amplitude of the excitation pulses,
the medium response can be taken linearly proportional to the
product g0E2

0 . That is why we used rescaled values in Fig. 4.
In this case the amplitude of the remaining weak field oscil-
lations is primarily determined by the density of the resonant
particles N0. At the same time, the strengths of unipolar pulses
in Fig. 4 are still linearly proportional to N0, which also allows
rescaling the emitted field by the N0 factor. On the other hand,
the strength of the remaining low-amplitude oscillations of the
emitted field in Fig. 4 does depend on the particle density N0,
with larger values of N0 leading to stronger field oscillations,
so that one has to keep in mind the specific values of N0 for
each specific figure of the emitted field.
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FIG. 5. Instantaneous spatial distribution of the rescaled induced
medium polarization inside an extended layer of the nonlinear
resonant medium Eq. (2) with the spatially homogeneous density
together with the respective rescaled electric field. The picture is
taken at a moment when both excitation pulses are still propagating
inside the medium layer, black vertical dashed lines indicate the
boundaries of the medium layer, and all parameters are the same as
in Fig. 4.

It seems convenient to illustrate also the dynamics of the
induced medium polarization. In Fig. 5 we have plotted an
instantaneous distribution of the medium polarization P(z, t )
at a certain time point, when both excitation pulses still
propagate inside the medium layer. For clarity, the corre-
sponding instantaneous distribution of the electric field is also
shown.

In Fig. 5 one can see the polarization dynamics described
in the previous section for a single resonant center, namely,
that the first excitation pulse initiates the induced polariza-
tion oscillations at the medium resonant frequency, while the
second pulse stops these oscillations after a half cycle. Such
control of polarization oscillations is again enabled through
the choice of the time delay between excitation pulses given
by Eq. (7), since only in this case can the second excitation
pulse fully stop the induced polarization oscillations.

However, in contrast to the treatment in the previous sec-
tion, now we observe such polarization dynamics in a spatially
extended layer of the resonant medium Eq. (2). That is why
we can see in Fig. 5 a half cycle of the medium polariza-
tion, which is placed right in between two excitation pulses
and propagates along the medium together with them. Such
a traveling half-cycle burst of the medium polarization then
produces the layer emission following Eq. (11). In particular,
when both excitation pulses are inside the medium layer,
Eq. (11) has to yield zero emitted field, as the emission from
the leading edge of the polarization burst with the growing
polarization would be fully compensated by the emission from
the trailing edge of the polarization burst with the decreas-
ing polarization. The nonzero bursts of the electric field are
to be emitted only at the leading and trailing edges of the
medium response, when the half-cycle burst of the medium
polarization in Eq. (11) is just arising or vanishing, respec-
tively. This reasoning is in full agreement with the results of
Eqs. (14)–(17) and the numerically calculated field in Fig. 4. It

should be also noted that some small polarization oscillations
are well seen in Fig. 5 left behind the polarization burst, which
are eventually responsible for the remaining low-amplitude
field oscillations in Fig. 4.

IV. WAVEFORM-TUNABLE UNIPOLAR PULSES

The treatment above was based on the assumption of a
spatially uniform density distribution of the resonant centers
along the medium layer. We proceed, therefore, with the in-
homogeneous spatial density. Different spatial profiles of the
density distribution could be made, for example, using mature
techniques of controlling the three-dimensional arrangement
of guest molecules upon growth of multicomponent molecular
crystals or organic semiconductors [49]. First we take the lin-
ear dependence of the spatial density N (z) on the coordinate:

N (z) ∼ z.

To be more specific, we will focus on a symmetric profile, so
that

N (z) = 2N0
z

L
, 0 � z � L

2
,

N (z) = 2N0
L − z

L
,

L

2
� z � L, (18)

with the maximum density value N0 at the center of the layer
and the layer thickness L. Given that, Eq. (13) for the emitted
field yields for the emission of the left half of the layer, i.e.,
the one with the increasing density,

E (−D, t ) = 2N0A0

L

∫ (ct−D)/2

(ct−D−λ0 )/2
z sin ω0

(
t − 2z + D

c

)
dz

= A0N0λ
2
0

4πL
= const,

D + λ0

c
� t � D + L

c
, (19)

so we get a constant electric field value, i.e., the rectangular
unipolar pulse. Similarly, the right half of the layer Eq. (18)
would generate an identical rectangular unipolar pulse but of
the opposite sign of the electric field. At the same time, at the
leading edge of the emitted signal Eq. (13) gives

E (−D, t ) = 2N0A0

L

∫ (ct−D)/2

0
z sin ω0

(
t − 2z + D

c

)
dz

= A0N0λ0

4πL
(ct − D) − A0N0λ

2
0

8π2L
· sin ω0

(
t − D

c

)
,

D

c
� t � D + λ0

c
,

i.e., due to the continuous distribution of the spatial density
Eq. (18) instead of the field bursts as in Eqs. (16) and (17) we
get a smooth monotonously increasing field from zero until
the value Eq. (19).

The respective results of the numerical simulations for the
reflected field are shown in Fig. 6. In addition, we also plot in
the same figure the emitted field for the case of the trapezoidal
profile of the spatial density, when the spatial density N (z)
linearly increases or decreases in the left and right thirds of the
layer, while in the central third the spatial density is uniform
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FIG. 6. Rescaled electric field obtained in reflection from an
extended layer of the nonlinear resonant medium Eq. (2) with the
triangular and trapezoidal profile of the spatial density distribution.
The largest value of the density of resonant centers N0 = 1018 cm−3,
and other parameters are the same as in Fig. 4.

and equals N0. Both profiles of the spatial density distribution
are plotted for clarity among others in Fig. 7. One can see
that with the trapezoidal density profile the emitted field again
consists of two rectangular unipolar pulses of opposite polar-
ity, but now separated in time by a near-zero field plateau.
The amplitude of the rectangular unipolar pulses is increased
as compared to the triangular density profile, since this am-
plitude according to Eq. (19) is proportional to the slope of
the spatial density, which is larger for the trapezoidal profile
in Fig. 7. One can easily see that the time delay between two
rectangular unipolar pulses for the trapezoidal density profile
grows as one increases the length of the central uniform part
in the spatial density distribution. As a result, one can obtain
two unipolar pulses with largely tunable time delay between
them, which should enable their separation in order to have an
isolated rectangular unipolar pulse.

FIG. 7. Different considered profiles of the spatial density dis-
tribution N (z) inside an extended layer of the nonlinear resonant
medium Eq. (2); the layer thickness L = 1 mm.

FIG. 8. Rescaled electric field obtained in reflection from an
extended layer of the nonlinear resonant medium Eq. (2) with the
trapezoidal profile of the spatial density distribution. The lowest
value of the density of resonant centers N0 = 1018 cm−3, while the
largest value in the central part equals 2N0; other parameters are the
same as in Fig. 4.

Different profiles of the spatial density distribution N (z) in-
side an extended medium layer are summarized in Fig. 7. Here
for triangular and parabolic profiles the spatial density first
increases from zero at the layer’s left boundary to the layer’s
center and then decreases similarly from the layer’s center
until its right boundary. In contrast, in cases of trapezoidal
and flat-top parabolic profiles the layer length is divided into
three equal parts, where in the left and right parts the spatial
density again increases and decreases, while in the central part
the spatial density stays constant.

Since the resonant particle density can be hard to reduce
to zero at the boundaries, we additionally examine the case
of a trapezoidal-shaped profile N (z) but with nonzero density
values at the layer boundaries. Specifically, we select the
following expression for N (z):

N (z) = N0

(
1 + 3z

L

)
, 0 � z � L

3
,

N (z) = 2N0,
L

3
� z � 2L

3
,

N (z) = N0

(
1 + 3(L − z)

L

)
,

2L

3
� z � L. (20)

The respective profile is also shown in Fig. 7, where we denote
it as the uplifted trapezoidal one. The generated field in reflec-
tion for this case is plotted in Fig. 8. As could be expected,
the obtained field is close to the simple linear superposition
of the fields generated in the case of the homogeneous profile
in Fig. 4 and in the case of the trapezoidal profile in Fig. 6.
The temporal shape of the produced unipolar pulses appears to
be quite irregular, since the amplitudes of half-cycle unipolar
bursts at the edges of the emitted field are almost by an or-
der of magnitude stronger than the amplitudes of rectangular
unipolar parts.
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FIG. 9. Rescaled electric field obtained in reflection from an
extended layer of the nonlinear resonant medium Eq. (2) with the
parabolic profile of the spatial density distribution, either with or
without a flat-top section. The largest value of the density of resonant
centers is N0 = 1018 cm−3; other parameters are the same as in Fig. 4.

Next, we proceed with the parabolic dependence of the
spatial density N (z):

N (z) ∼ z2.

As before, we take a symmetric profile:

N (z) = 4N0
z2

L2
, 0 � z � L

2
,

N (z) = 4N0
(L − z)2

L2
,

L

2
� z � L, (21)

which is illustrated in Fig. 7. Now, applying Eq. (13), we find
the following for the emitted field from the left half of the
layer, i.e., with the quadratically increasing density:

E (−D, t ) = 4N0A0

L2

∫ (ct−D)/2

(ct−D−λ0 )/2
z2 sin ω0

(
t − 2z + D

c

)
dz

= A0N0λ
2
0

2πL2
(ct − D − λ0/2),

D + λ0

c
� t � D + L

c
, (22)

i.e., the electric field linearly grows with time, which corre-
sponds to a triangular-shaped unipolar pulse. The right half
of the layer Eq. (21) with the quadratically decreasing density
N (z) would again emit an identical triangular-shaped unipolar
pulse but of the opposite sign of the electric field.

In Fig. 9 we have depicted the respective results of the
numerical simulations for the emitted field in reflection. One
can see two sequential triangular unipolar pulses of opposite
sign. In order to get these triangular unipolar pulses shifted in
time, we can turn to the flat-top parabolic density profile:

N (z) = 9N0
z2

L2
, 0 � z � L

3
, N (z) = N0,

L

3
� z � 2L

3
,

(23)

N (z) = 9N0
(L − z)2

L2
,

2L

3
� z � L, (24)

which is also illustrated in Fig. 7. As a result, we obtain
instead two triangular unipolar pulses with the time delay
between them linearly proportional to the length of the flat-top
central section of the density profile. Hence, it is possible to
get an effectively isolated triangular unipolar pulse by increas-
ing the layer thickness and thus the time delay between both
unipolar pulses.

We can eventually consider the more general case of an
arbitrary power-law dependence of the spatial density N (z):

N (z) ∼ zn.

Equation (13) then yields the following for the emitted field:

E (−D, t ) ∼
∫ (ct−D)/2

(ct−D−λ0 )/2
zn sin ω0

(
t − 2z + D

c

)
dz. (25)

One can easily see that the leading term in the temporal field
dependence given by the integral Eq. (25) is ∼t n−1. Therefore
it is possible to tune the profile of produced unipolar pulses
in wide limits to an arbitrary power-law dependence through
adjusting the spatial density profile N (z).

Finally, we want to take a look at the role of the symmetry
of the density distribution. Indeed, all the considered profiles
N (z) in Fig. 7 possess symmetry with respect to the layer
center, resulting in similar symmetry of the obtained unipolar
pulses. Let us now consider the case when the spatial density
changes monotonously over the layer thickness. Specifically,
we take here the linearly growing profile N (z), i.e.,

N (z) = N0
z

L
, 0 � z � L. (26)

The emitted field in this case has to follow Eq. (19) over
the whole duration of the emitted field, except for the final
time interval of the duration T0 at the very trailing edge
of the emitted signal, where one gets a half-cycle burst
identical to Eqs. (16) and (17). Therefore one obtains here
the long rectangular unipolar pulse followed by an intense
unipolar half-cycle burst of opposite polarity of the dura-
tion T0. A respective example of numerical simulations is
shown in Fig. 10. As one can see, the emitted field in-
deed consists of two sequential unipolar pulses of opposite
polarity—a long low-amplitude rectangular one and a much
more intense half-cycle one. It is worth noting that the total
electric pulse area Eq. (1) of the emitted signal equals zero,
so that no zero-frequency spectral component is produced
from the considered nonlinear medium. We can thus only
deal with certain parts of the emitted field exhibiting con-
stant sign of the electric field over finite time slots, which
could, however, be tuned to be long enough for required
applications.

V. CONCLUSION

We have demonstrated the generation of unipolar pulses
of widely tunable profile upon the excitation of an extended
layer of a resonant medium with nonlinear field coupling
by a pair of ultrashort excitation pulses. As an example of
such a nonlinear medium one can consider a Raman-active
medium which can be efficiently described by a model of
nonlinearly bonded electron and nucleus oscillators. When
filtering out the high-frequency spectral components by an
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FIG. 10. Rescaled electric field obtained in reflection from an
extended layer of the nonlinear resonant medium Eq. (2) with the
asymmetric linearly growing profile of the spatial density distribu-
tion Eq. (26). The largest value of the density of resonant centers
N0 = 1018 cm−3; the other parameters are the same as in Fig. 4.

appropriate low-pass filter, the remaining low-frequency
medium response is well described by the model of a resonant
medium with the nonlinear field coupling.

Two excitation pulses are selected in such a way that the
time delay in between them equals half of the period of low-
frequency resonant oscillations in the medium. This allows
coherent control of the induced medium polarization, so that
the polarization distribution represents a half cycle of the sine
wave, while each molecule of the medium emits a single-
cycle pulse at the medium resonant frequency. In an extended
medium layer the interference of such emitted waves leads to
formation of well-isolated unipolar output pulses.

The tuning of the unipolar pulse profile is achieved by ad-
justing the spatial density distribution of the resonant particles
N (z) along the layer thickness. In particular, we have shown
that rectangular- and triangular-shaped unipolar pulses can be
produced for triangular and parabolic profiles of the spatial
density, respectively. Paper findings therefore enable the op-
portunity to obtain unipolar pulses, whose temporal profile
can be readily changed in a controllable way. We expect that
these findings can be of significant interest for the coherent
control applications, where shaping of subcycle pulses plays
a crucial role to efficiently drive different ultrafast processes
in matter.
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