
PHYSICAL REVIEW A 106, 053505 (2022)

Nonparaxial corrections for short cavities and fibers
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This paper describes optical propagation beyond the paraxial limit in rotational symmetric short Fabry-Pérot
cavities and long fibers with parabolic-index profiles. Frequency shifts due to paraxial and nonparaxial effects,
the so-called spectral fine structure and vector corrections, are calculated with perturbation theory and expressed
in a single dimensionless expansion parameter. The results obtained for short cavities and fibers have similar
functional forms but are surprisingly different. These similarities and differences are pointed out and discussed,
including their consequences for mode multiplexing in fibers.

DOI: 10.1103/PhysRevA.106.053505

I. INTRODUCTION

Rotational symmetric Fabry-Pérot (FP) microcavities are
well-known tools in optics. They are among others used
as a spectrum analyzer and as a means to trap light [1,2].
The paraxial description of these cavities predicts that their
resonance spectra, observed upon scanning either optical fre-
quency or cavity length, consist of a series of equidistant
peaks [3]. This prediction works reasonably well for macro-
scopic cavities but breaks down when the optical modes are
compact and hence have large opening angles. A proper de-
scription of such resonances requires the inclusion of several
nonparaxial corrections.

Nonparaxial corrections to the propagation of light have
been a popular topic of research since the 1970s [4,5].
But nonparaxial corrections to the boundary conditions are
equally important for cavities. The first complete description
of the fine structure in FP spectra, including nonparaxial
propagation and reflection corrections, was formulated in the
1980s [6–8] and reformulated in 2010 [9]. This nonparaxial
theory was recently extended in a paper on the fine structure of
microcavity Fabry-Pérot spectra [10], and several predictions
therein were experimentally confirmed [11]. We will use these
recent and more complete publications as our main references.

In this paper, we will apply the nonparaxial theory from
Ref. [10] to the common geometry of short FP cavities, where
“short” means that the cavity length is much smaller than the
radius of curvature of the spherical mirror. In this short-cavity
limit, the focusing and defocusing effects of propagation and
reflection can be spread uniformly over the cavity, such that
the “unfolded” cavity resembles an optical transmission line
or fiber. In Sec. II, we show that these effects are then de-
scribed by a single parameter: the paraxial Rayleigh range z0.
The resulting expressions are surprisingly elegant and clearly
show the origin of various nonparaxial corrections.

Section III describes the nonparaxial propagation of light
in fibers with an infinite parabolic refractive-index profile,
which is a common approximation for multimode graded-
index fibers. It includes the so-called vector correction, which
results in spin-orbit coupling [12,13], but also introduces a

new (scalar) nonparaxial correction. This description is im-
portant because spatial mode multiplexing as a tool to increase
the bandwidth in fiber communication [14–19] works only if
these spatial modes are sufficiently different to act as inde-
pendent channels, i.e., if their modal refractive indices are
sufficiently different. The nonparaxial corrections discussed
in this paper are essential to create these differences. Sec-
tion IV compares the nonparaxial corrections in cavities and
fibers. Section V concludes with a summary and outlook.

II. NONPARAXIAL FINE STRUCTURE FOR SHORT
CAVITIES

Consider a stable Fabry-Pérot cavity in vacuum with a
planar mirror at z = 0 and a concave spherical mirror with
curvature radius Rm at z = L. Both mirrors are assumed to be
ideal, the cavity is perfectly rotationally symmetric, and losses
are neglected.

The intracavity field �E should satisfy the wave equa-
tion (� + k2) �E = 0 and the boundary conditions at the
mirrors. The paraxial solutions of this problem are well known
[3]. They can be derived by writing the forward-propagating
component of the scalar optical field as E (r, θ, z) =
ψ (r, θ, z) exp(ikz) and by approximating the exact rewrite on
the left with the paraxial result on the right [3]:(

2ik
∂

∂z
+ �⊥ + ∂2

∂z2

)
ψ = 0 ⇒

(
2ik

∂

∂z
+ �⊥

)
ψ � 0,

(1)
where �⊥ = ∂2/∂x2 + ∂2/∂y2. The paraxial wave equa-
tion on the right has a series of exact solutions in the form
of Laguerre-Gaussian (LG) modes [10,20]:

ψp,�̃(r, θ, z) = 1

γ (z)
�p,�̃(r̃, θ, χ )ei kr2

2R(z)

= cos χ

γ0
�p,�̃(r̃, θ, χ )ei tan χ r̃2

2 , (2)

�p,�̃(r̃, θ, χ ) = 
p,�̃(r̃, θ )e−i(N+1)χ

= fp,�(r̃)ei�̃θe−i(N+1)χ . (3)
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Equation (2) expresses the LG modes in terms of nor-
malized LG modes with normalized radial position r̃ ≡
r/γ (z) by removing the wave-front curvature and the
transverse scaling by introducing the beam width γ (z) =
γ0

√
1 + (z/z0)2 = γ0/ cos χ , the fundamental Gouy phase

χ = χ (z) = arctan(z/z0), and the radius of curvature R(z) =
(z2 + z2

0 )/z = 2z0/ sin(2χ ). The wave fronts of these solu-
tions match the shape of the flat mirror at z = 0 and the
radius of curvature of the concave mirror when R(L) = Rm,
i.e., when z0 = kγ 2

0 = √
L(Rm − L) with wave vector k =

2π/λ and wavelength λ. Equation (3) removes the (Gouy-
phase-induced) longitudinal phase slip. It also introduces the
normalized radial function fp,�(r̃) ∝ r̃� L�

p(r̃2) exp(−r̃2/2),
with the generalized Laguerre polynomial L�

p(r̃2), and the
orbital angular momentum (OAM) phase factor [10,21]. The
radial mode number p and OAM number �̃ = ±� together
determine the transverse order N = 2p + �. The �̃ = � and −�

solutions are simple mirror images with identical resonance
frequencies in a mirror-symmetric system.

Equation (2) applies to all solutions ψp,�̃ and can thus also
be interpreted as a coordinate transformation from the actual
position (r, z) to the normalized dimensionless position (r̃, χ ).
This change in coordinates, which involves a Jacobian with an
off-diagonal element ∂ r̃/∂z 	= 0, modifies the right-hand side
of Eq. (1) to the normalized paraxial equation [20–22]

i
∂

∂χ
� =

(
−1

2
�̃⊥ + 1

2
r̃2

)
� ≡ H̃par�, (4)

where the tildes indicate dimensionless forms and where
�̃⊥ = γ (z)2�⊥ and r̃ = r/γ (z). Equation (4) shows that
the evolution of the field profile in normalized coordinates
is identical to the evolution of the wave function of the
two-dimensional harmonic oscillator in quantum mechanics,
where the Gouy phase χ acts as a time coordinate [20–22].
The two systems have identical eigenmodes �p,�̃, as described
by Eq. (3), and identical eigenvalues (N + 1).

In the short-cavity limit L 
 Rm, where χ � z/z0 ≡ z̃ 
 1
and γ (z) � γ0, Eq. (4) can be written as

i
∂

∂z
� � H̃par

z0
� =

(
− 1

2k
�⊥ + kr2

2LRm

)
�. (5)

This equation has an appealing physical interpretation when
we interpret the partial derivative ∂/∂z as the spread-out,
coarse-grained evolution of the field over multiple round trips
in the unfolded cavity (see Fig. 1). Each reflection from the
concave mirror will then approximately imprint a phase factor
exp(−2ikzm) = exp(−ikr2/Rm) � 1 − ikr2/Rm on the wave,
where zm = r2/2Rm > 0 is the quadratic part of the mirror
shape. If we spread this phase change over the round-trip
length 2L, we recover the kr2/(2LRm) potential in Eq. (5)
and conclude that this potential originates from the spheri-
cal mirror shape. For completeness, we note that the same
result can be derived by applying the effective-index model of
Hadley [23] to a short Fabry-Pérot cavity [24]. This model,
which is valid if the effective potential varies sufficiently
slowly over the beam profile, states that optical propagation
in the unfolded cavity resembles optical propagation in a fiber
with an effective-index profile n2

eff (r) = 1 − (r/z0)2, where

(a) Cavity

z = L

Rm

(b) Fiber

z
r

FIG. 1. Sketches of the considered geometries: (a) Short cavity
with a planar mirror and a curved mirror with the radius of curvature
Rm at a distance L 
 Rm. (b) Fiber with parabolic profile n2(r). The
to-and-fro paths between the mirrors in (a) can be unfolded into a
one-way propagation like that in the fiber in (b).

z0 = √
LRm; the case with core index ncore 	= 1 follows from

scaling.
Next, we introduce nonparaxial corrections by replacing

H̃par in Eqs. (4) and (5) by H̃par + H̃fine/(kz0). This replace-
ment is inspired by the analysis in Ref. [10], where the
evolution per round trip is described by a round-trip operator
M that transforms the field profile � into M� = exp[i(2kL −
H)]� after one round trip with H = Hpar + Hfine. Our oper-
ator H̃par = [z0/(2L)]Hpar because H̃par describes the change
per Rayleigh range z0, whereas Hpar in Ref. [10] describes
the change per round trip �z = 2L. And our operator H̃fine =
[kz2

0/(2L)]Hfine includes an additional factor kz0 because we
chose to remove the expansion parameter α = 1/(kz0) from
the strengths of all nonparaxial effects.

The nonparaxial operator contains several scalar and vector
contributions, described by H̃fine = H̃scalar + H̃vec. The non-
paraxial evolution of the scalar field is described by

iz0
∂

∂z
� =

(
H̃par + 1

kz0
H̃scalar

)
�. (6)

Following Ref. [10], we split H̃scalar into a propagation cor-
rection H̃prop and a wave-front or reflection correction H̃wave.
We further split H̃wave into a correction H̃curv that acts via the
wave-front curvature 1/R(z) and a correction H̃Gouy that acts
via the Gouy phase χ (z). Appendix A discusses the origin of
these effects and shows that

H̃scalar = H̃prop + H̃curv + H̃Gouy

= 1

8

(
�̃2

⊥ + 2r̃4 − 4ir̃2 ∂

∂ z̃

)
(7)

in the short-cavity limit of a more general theory [10].
Next, we consider the nonparaxial vector correction H̃vec,

which results from the polarization character of the field. We
now write the transverse field as a two-component vector ��⊥
and express its evolution as

iz0
∂

∂z
��⊥ =

(
H̃par + 1

kz0
H̃scalar + 1

kz0
H̃vec

)
��⊥, (8)

where H̃vec is a 2 × 2 matrix operator acting on ��⊥. The
vector correction originates from the unavoidable and typi-
cally weak longitudinal component of the optical field, which
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TABLE I. Quantum numbers, mode profiles (intensity in false color, polarization shown by black lines), and labels or names of all vector-
LG modes. The � = 0 modes come in pairs. The � � 1 modes come in double pairs. The two modes within each pair are rotated over an angle
π/(2m) with respect to each other, except for the J = 0, � = 1 modes, which have a uniform radial or azimuthal polarization. The labeling
of cavity modes contains the absolute OAM �, the A or B spin-orbit alignment, and the + or − mirror symmetry in the x axis. It does not
contain the radial quantum number p and instead uses the group number N = 2p + �. The corresponding labeling of fiber modes starts with
the spin-orbit alignment (HE, EH, TM, or TE) and contains the absolute total OAM J and m = p + 1. It does not contain the mirror symmetry,
except for the special J = 0 TM/TE modes.

Quantum numbers Mode profile Mode label Mode label

cavity fiber

� = 0, J = 0 0+ = X 0− = Y HE1m

� = 1, J = 0 1A + 1A− TM0m TE0m

� = 1, J = 2 1B + 1B− HE2m

� = 2, J = 1 2A + 2A− EH1m

� = 2, J = 3 2B + 2B− HE3m

� ≥ 2, J = � − 1 �A + �A− EHJm

� ≥ 2, J = � + 1 �B + �B− HEJm

generates an extra transverse field upon reflection. The as-
sociated vector operator Hvec = [2/(kRm)] �r⊥ ⊗ �∇⊥ in the
notation used in [10], which corresponds to

H̃vec = �̃r⊥ ⊗ �̃∇⊥ = −1

2
(I2 + σz�̂3), σz =

(
1 0
0 −1

)
,

(9)
in normalized coordinates. The final equation expresses the
operator in the basis of the circularly polarized unit vec-
tors ê± = (�ex ± i�ey)/

√
2 and introduces the Pauli spin matrix

σz and the Stokes operator �̂3 = n̂+ − n̂−. The combination
σz�3 corresponds to a spin-orbit coupling, with σz�3 = s�̃ for
the vector eigenmodes with 〈s〉 = ±1 and 〈n+ − n−〉 = �̃. The
paraxial circularly polarized eigenmodes are ��⊥(r, θ, z) =
exp[−i(N + 1)χ ] �
⊥(r, θ ), where

�
⊥(r, θ ) = f (r)ei�̃θ �e± = f (r)eiJ̃θ (�er ± i�eθ )/
√

2, (10)

with J̃ = �̃ ± 1 and (�e±, �er, �eθ ) being unit vectors in the
circular, radial, and azimuthal directions, respectively. The
associated eigenvalues are (see Appendix B)

〈 ��⊥|H̃vec| ��⊥〉 = ∓J̃/2 = −(1 + �̃s)/2. (11)

The eigenmodes described by Eq. (10) come in different
flavors. Table I summarizes the labeling of the associated
vector-LG modes, which are superpositions of circularly po-
larized vector modes and their mirror images. Table I also
shows the intensity and spatially varying linear polarization
patterns of these modes for p = 0; the p � 1 modes have
more intensity rings with identical polarization patterns. For
� = 0 the mentioned superposition results in modes with a
uniform x or y polarization, which we call the 0X and 0Y
mode or the 0+ and 0− mode, where the + or − label refers to
their symmetry under reflection around the x axis. For � � 1,
the four eigenmodes with �̃ = ±� and s = ±1 come in two
flavors, depending on the alignment of the OAM and the spin
angular momentum (SAM). The (parallel) B modes have total
angular momentum J̃ = �̃ + s = ±J , with J = � + 1 [7,10].
The (antiparallel) A modes also have J̃ = ±J , but now with
J = |� − 1|. Spin-orbit coupling lifts the frequency degener-
acy of the A and B modes but does not remove the twofold
degeneracy between the + and − modes. Hence, for each
set of quantum numbers (p, � � 1) we expect two pairs of
modes: the (�A+, �A−) modes and the (�B+, �B−) modes.
In systems with imperfect rotation symmetry the frequency
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degeneracy between the � = 0 linearly polarized modes is
slightly lifted by shape birefringence [10,25]. The frequency
degeneracy within the A and B mode pairs can then also be
slightly lifted, in particular for the 1A modes, which have J̃ =
0 and have either radial or azimuthal polarization. We refer to
Appendix D of Ref. [10] for a more extensive discussion of
these so-called hyperfine splittings.

The nonparaxial operators in Eq. (8) can potentially cou-
ple different paraxial modes. However, this mode coupling

typically goes unnoticed because light coupled to modes
with different transverse orders N is typically detuned from
the cavity resonance and hence does not interfere con-
structively [10]. As the considered nonparaxial operators
are diagonal in the subset of vector-LG modes of or-
der N , they affect only their modal wave vector kz = k +
δk j , with δk j < 0, � j (z) = exp(iδk jz)� j (0), and i∂� j/∂z =
−δk j� j . After some calculation we thus find the key result
[10,11],

δk j

k
= − 1

kz0

∫∫
��†

j

[
H̃par + H̃Gouy + H̃curv + H̃prop + H̃vec

kz0

]
�� j dxdy

= −N + 1

kz0
− 1

2(kz0)2

[
−(N + 1)2 + 3

4
f (N, �) − (1 + �̃s)

]
, (12)

where f (N, �) = 〈�̃2
⊥〉 = 〈r̃4〉 = 3

2 (N + 1)2 − 1
2 (�2 − 1).

This final result highlights the 1/(kz0) and 1/(kz0)2 scaling
of the paraxial and nonparaxial contributions. The paraxial
and nonparaxial contributions scale with the square and fourth
power of the opening angle �0 of the fundamental mode
since α = 1/(kz0) = 1/(kγ0)2 = �2

0, where γ0 and �0 are
both radii at 1/e of the maximum intensity.

The final result also shows the origin of the three non-
paraxial contributions: (i) the (N + 1)2 term originates from
the wave-front correction associated with the Gouy phase,
(ii) the f (N, �) term originates from the combination of a
nonparaxial propagation correction k4

⊥ and a nonparaxial r4

correction to the curvature of the wave front, and (iii) the
(1 + �̃s) term originates from the vector correction upon
reflection.

Equation (12) agrees with the results obtained in
Refs. [10,11], with minor differences. First, it expresses the
relative modal shift as δk j/k, whereas Refs. [10,11] used
�ν̃ = �ν/νFSR, with free-spectral range �νFSR = c/(2L). As
a result, the factor 1/2(kz0)2 in Eq. (12) changes into a factor
1/(2πkRm) in the equations for �ν̃ ≈ �L̃ in Refs. [10,11].
Second, the (N + 1)2 contribution depends on the type of
measurement. Equation (12) describes the change δk j = kz −
k < 0 for a mode in an unfolded cavity, with fixed wave vector
k and fixed geometry (L, Rm). But in an actual experiment,
one typically scans either the optical frequency or the cav-
ity length to meet the resonance conditions for consecutive
modes. A scan of the optical frequency will not affect the
Rayleigh range z0 = kγ 2

0 = √
LRm and hence will go unno-

ticed in the final Eq. (12). This makes the required detuning
to obtain resonance equal to �k = −δk j , if we neglect the
frequency-dependent penetration depth of the commonly used
Bragg mirrors [26]. But a scan of the cavity length will affect
the Rayleigh range z0 and the associated Gouy phase χ0,
which in turn will introduce derivatives of χ (L0 + �L) and
an additional ∝ (N + 1)2/(kz0)2 term in the final equation for
�L/L0, which then actually cancels the ∝ (N + 1)2/(kz0)2

term in Eq. (12). Further discussion of the subtleties of the
(N + 1)2 term is beyond the scope of this paper. We prefer
to focus on the �2 and �̃s terms, which lift the frequency
degeneracy of the modes within each N group and thereby
introduce a spectral fine structure.

III. NONPARAXIAL FINE STRUCTURE FOR FIBERS

This section discusses the propagation of light in optical
fibers with refractive-index profile n = n(x, y) and compares
the results with those obtained for short Fabry-Pérot cavities.
The discussion is based on the general analysis from the
book Optical Waveguide Theory by Snyder and Love [12]. It
starts from the scalar wave equation for optical propagation in
fibers:

(�⊥ + k2n2 − β2)
 = 0, (13)

where β is the propagation constant for the scalar elec-
tric field E (�r) = 
(x, y) exp(iβz). The solutions 
 j of this
equation are the transverse eigenmodes j of the fiber. The
eigenvalues β j = β0 + δβ j are the modal propagation con-
stants, where β0 = knco serves as a reference and δβ j < 0
for the usual case with nco > ncl, where nco and ncl are the
refractive indices of the core and cladding, respectively.

We consider fibers with rotation symmetry. The solutions
of the scalar wave equation (13) for such fibers are tradition-
ally called LP�m modes, with OAM quantum number �̃ = ±�

and radial quantum number m = p + 1. The eigenvalues of
these modes typically depend on both � and m. But for the
parabolic fibers discussed below, the paraxial eigenvalues are
partially degenerate as they depend on only the transverse
order N = 2(m − 1) + �.

We are interested in fibers with an infinite parabolic
refractive-index profile [12]

n2(r) = n2
co

[
1 − 2�

(
r

R

)2]
≡ n2

co

(
1 − r2

z2
0

)
. (14)

The first equation describes the parabolic profile in terms of
its half width R and its profile height parameter � = (n2

co −
n2

cl )/(2n2
co) [12]. The second equation considers the limit

R → ∞ and � → ∞ with fixed z2
0 ≡ R2/(2�). Parabolic-

index fibers are useful because they refocus the input light
(a property also used in graded-index (GRIN) lenses) and
because they have limited dispersion. Furthermore, they allow
for analytic solutions and can hence serve as a convenient
reference.

Next, we insert the index profile of Eq. (14) in the scalar
wave equation (13). We introduce the dimensionless parame-
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ters r̃ ≡ r/γ0 and �̃⊥ ≡ γ 2
0 �⊥, with γ0 = √

z0/β0, to obtain
the dimensionless wave equation[

�̃⊥ − r̃2 + γ 2
0

(
β2

0 − β2
)]


 = 0. (15)

We thus recover the familiar equation for the (stationary
modes of the) quantum harmonic oscillator and conclude
that the eigenmodes of our fiber are the scalar LG modes.
The eigenvalue equation γ 2

0 (β2
0 − β2) = 2(N + 1) shows that

these modes are equidistant in β2. A Taylor expansion of this
equation yields

βN = β0

√
1 − 2(N + 1)

β0z0
≈ β0 − (N + 1)

z0
− (N + 1)2

2β0z2
0

.

(16)
The first-order paraxial result βpar = β0 − (N + 1)/z0

shows that any spatial profile, i.e., any superposition of modes,
approximately repeats itself after propagation over a distance
�zperiod = 2πz0 in the fiber. The second-order correction
δβscalar = −(N + 1)2/(2β0z2

0 ) acts as a nonparaxial scalar cor-
rection on this propagation. This modest result agrees with
the nonparaxial scalar correction for parabolic-index fibers
determined by Petrov [13].

The transition from scalar to vector fields introduces a
vector correction in the wave equation. In fibers, the vec-
tor correction originates from a �∇( �∇ · �E ) term in Maxwell’s
equations. This term is absent in free space, where �∇ · �E = 0,
but is present in fibers where �∇ · (n2 �E ) = 0 ⇒ �∇ · �E = − �E ·
�∇ ln[n2(r)]. In normalized units, the resulting vector wave
equation is [12][

�̃⊥ − r̃2 + γ 2
0

(
β2

0 − β2
)] �
⊥ = − �̃∇⊥{ �
⊥ · �̃∇⊥ ln[n2(r)]}

= 2

β0z0

�̃∇⊥( �
⊥ · �̃r⊥). (17)

The top equation describes the vector correction for any
rotation-symmetric index profile. The bottom equation is
valid only for fibers with the infinite parabolic profile of

Eq. (14), where �∇⊥ ln[n2(r)] ≈ −2�r⊥/z2
0 and �̃∇⊥ ln[n2(r)] �

−2�̃r⊥/(β0z0) in normalized units. For comparison with the
cavity results, we rewrite the bottom Eq. (17) as

γ 2
0

(
β2

0 − β2
) �
⊥ = 2

(
H̃par + 1

β0z0
H̃′

vec

)
�
⊥, (18)

where H̃par = 1
2 (−�̃⊥ + r̃2) is the familiar paraxial operator

and H̃′
vec = �̃∇⊥ ⊗ �̃r⊥ is the vector correction in parabolic-

index fibers. Using partial integration on bound modes, one

can show that H̃′
vec = −H̃vec, where H̃vec = �̃r⊥ ⊗ �̃∇⊥ is the

spin-orbit operator in cavities.
Snyder and Love calculated the vector correction for fibers

with an arbitrary circular index profile. Appendix C presents
their general result in our notation and applies it to parabolic-
index fibers to show that the resulting vector correction is

〈 �
⊥|H̃′
vec| �
⊥〉 = (1 + �̃s)/2 (19)

for the complex vector modes in Eq. (10). We thus find that the
vector correction in fibers also acts as a spin-orbit coupling,
like in cavities, but that its sign is different as H̃′

vec = −H̃vec

for parabolic-index fibers. As a result, the vector eigenmodes

are again the A and B modes with antialigned and aligned
OAM and SAM, respectively. In fibers these modes are tradi-
tionally called EH (or TE or TM) and HE modes (see Table I).

By combining the above results, we obtain

δβ j

β0
= −N + 1

β0z0
− 1

2(β0z0)2
[(N + 1)2 + (1 + �̃s)] (20)

for the eigenmodes in parabolic-index fibers. This key result
has the same functional form as the key (12) for short cavities
if we associate β0 ↔ k. The expansion parameter is also iden-
tical and is now given by α = 1/(β0z0) = �2

0 = (�ext/nco)2,
where �ext is the opening angle of the fundamental mode out-
side the fiber and θ0 is its internal angle (both radii are at 1/e of
peak intensity). The paraxial contribution is identical in both
equations, but the nonparaxial corrections differ (see below).

IV. COMPARISON CAVITY AND FIBER

This section compares the nonparaxial corrections in short
cavities and parabolic-index fibers, as described by Eqs. (12)
and (20). A quick look at these equations shows that (i) the
(N + 1)2 terms in cavities and fibers have the same magnitude
but opposite signs, (ii) the f (N, �) term is absent in fibers,
and (iii) the spin-orbit couplings in cavities and fibers also
have the same magnitude but opposite signs. With regard
to point (i), concerning the (N + 1)2 term, we note that the
cavity effect originates from an expansion of the Gouy phase,
while the fiber effect originates from a correction on the
propagation constant. In relation to point (ii), the f (N, �)
term is absent in parabolic-index fibers since no analog ex-
ists for the propagation and wave-front correction that occur
in cavities. An identical f (N, �) term could be synthesized
by modifying the fiber profile from n2(r) = n2

co[1 − r2/z2
0]

to n2(r) = n2
co[1 − r2/z2

0 − c4r4], with c4 = 3/(4z4
0 ), but the

physical interpretation thereof is yet unclear. Finally, with re-
gard to point (iii), concerning the spin-orbit coupling, we note
that its origin is again different in cavities and fibers. The spin-
orbit coupling in cavities originates from the 56projection of
a small longitudinal component of the field into an additional
transverse component upon reflection from a curved mirror.
The spin-orbit coupling in fibers, on the other hand, originates
from a �∇( �∇ · �E ) term in Maxwell’s equation, which can be
rewritten in a term that contains �∇⊥ ln[n2(r)].

As an aside, we note that the two forms of spin-orbit
coupling encountered in the cavity and fiber system are part
of the bigger picture of spin-orbit interactions of light, which
involves any interaction of the photon spin with the spatial dis-
tribution of light [27,28]. The spin-orbit coupling considered
in this paper is generated by the focusing of light, as quantified
by the parameter α = �2

0 
 1, and involves the longitudinal
OAM of light. For beams with a tighter focus, the longitudinal
field is stronger and also generates a sizable transverse OAM
[29], but this is not yet important in our system.

Figure 2 visualizes the comparison between cavities and
fibers in a way that summarizes the main message of this
paper. The dashed vertical lines show how the modes cluster
in groups with the same order N and how these paraxial
groups are equally spaced by −δkz/k = 1/(kz0) = α 
 1 for
cavities and by −δβ/β0 = α 
 1 for parabolic-index fibers.
The 2 × 4 zoomed-in sections show how nonparaxial effects
lift the degeneracy within each N group and thereby create
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FIG. 2. Sketch of the modal spectrum for (a) the cavity and
(b) fiber. The solid vertical line shows the plane-wave reference
kz = k or β = β0. The four dashed lines show the paraxial result
for modes in the N = 0, 1, 2, 3 groups. The expanded views show
the nonparaxial resonances relative to the paraxial values and the
associated mode labels. See the text for further discussion.

a spectral fine structure [10,11]. These nonparaxial effects
scale with α2, both in cavities and in fibers. But the ordering
and exact resonance frequencies of the modes differ. The six
arrows, for instance, show that the largest spin-orbit splitting
within each N group is Nα2 both for cavities and fibers but the
signs are different. And while the resonance frequencies in
fibers are regularly spaced at distances α2, the frequencies of
the cavity modes are less regular due to the �2 term in Eq. (12).

The modes in Fig. 2 are labeled �A, �B, and 0, where �

is the absolute OAM quantum number and A or B indicates
the OAM-SAM alignment of the � � 1 modes. Table I shows
the intensity and polarization patterns of these modes. Table I
also links these cavity-mode labels to the associated labels
that are traditionally used in fiber technology. The associated
fiber modes in Fig. 2 are (from left to right) {HE41, HE22,
(TM02 and TE02), EH21} for the N = 3 group, {HE31, HE12,
EH11} for the N = 2 group, {HE21, (TM01 and TE01)} for the
N = 1 group, and the fundamental HE11 for N = 0. Note that
this ordering applies to only fibers with an infinite parabolic-
index profile but is, for instance, different in step-index fibers
[16,17]. The frequency degeneracy of 1A+ and 1A− modes
is then also typically lifted, but all modes still occur in pairs
because of mirror symmetry.

For completeness, we note that the vector correction in
circular fibers always acts as a spin-orbit coupling but that
its magnitude depends on the index profile of the fiber (see
Appendix C). In fibers with nonparabolic-index profiles, the
spin-orbit coupling and the δβ splitting between the modes
can be much stronger, making these modes more resilient
against mode coupling. The first demonstrations of multimode
transmission in fibers used four spatial modes [14,15], which
were the fundamental (N = 1) HE11 mode and the (N = 2)
TM01, TE01, and HE21 modes. More recent demonstrations
have also used transverse modes from N � 3 groups: 24
modes in a specially designed fiber with an air core [18] and
15 modes in a trench-assisted graded-index fiber [19]. Using
various types of mode multiplexing, the later system holds the
current record with a communication bandwidth of more than
1 petabit/s in a multimode fiber [19].

V. SUMMARY AND OUTLOOK

In this paper, we discussed the nonparaxial fine struc-
ture in short rotational symmetric plano-concave Fabry-Pérot
cavities and in fibers with rotation-symmetric cross sections.
Corrections to the paraxial approximation were derived using
perturbation theory with expansion parameters α = 1/(kz0) =
�2

0 and 1/β0z0. These results were compared and discussed.
The vector corrections to cavities and fibers were shown to
result in spin-orbit couplings equal in magnitude but opposite
in sign. The (N + 1)2-type scalar corrections that exist in both
systems were also equal in magnitude but opposite in sign.
Finally, the nonparaxial propagation and wave-front correc-
tions predicted in cavities turned out to be absent in fibers and
could be synthesized only by modifying their refractive-index
profile. The resonance spectra, predicted on the basis of these
nonparaxial corrections, is depicted in Fig. 2. The predictions
for microcavities have been confirmed experimentally [11].
The fine structure in fibers is more difficult to interpret as
the dominant paraxial term depends critically on the fiber’s
precise index profile in relation to the ideal infinite parabolic
profile [16,17].

A crucial ingredient in this paper is the notion that the
round-trip evolution of the optical field in a short cavity can
be unfolded into a spread-out, coarse-grained evolution in one
direction, where the reflections from the curved mirror create
an effective waveguide. Although the key equations were de-
rived for a plano-concave cavity, they are valid for any short
cavity with mirrors with radii of curvatures R1 and R2. In
the short-cavity limit, L 
 R1, R2, one simply uses 1/z2

0 =
1/(R1L) + 1/(R2L) instead of 1/z2

0 = 1/(RL).
This paper analyzed rotation-symmetric cavities with ideal

mirrors. We end by briefly considering three possible defor-
mations beyond this ideal case. First, whether the mirrors have
spherical or parabolic shapes is irrelevant in the considered
short-cavity limit, but if the mirrors have very strong r4 defor-
mations, part of these deformations might still show up and
slightly modify the f (N, �) term in Eq. (12) [10,11], as L/Rm

is never truly zero (see Ref. [11] for the observation of this
modest effect). Second, if one uses Bragg mirrors instead of
ideal mirrors, the polarization and angle dependence of these
mirrors can introduce a frequency splitting between the 1A+
and 1A− modes in each 1A pair through the Bragg effect
[10,11]. In fibers with nonparabolic-index profiles, a related
splitting exists between the TM and TE (J = 0, cylindrical
vector) modes [16,17]. Finally, if one uses astigmatic mirrors
instead of circular ones, this will introduce astigmatic terms of
the form x2 − y2 in the evolution [10,11]. Further discussion
of these effects is beyond this paper.

APPENDIX A: NONPARAXIAL SCALAR CORRECTIONS

This Appendix describes the physical origin of the three
nonparaxial scalar corrections introduced in the main text and
derives Eq. (7), which reads

H̃scalar = H̃prop + H̃curv + H̃Gouy

= 1

8

(
�̃2

⊥ + 2r̃4 − 4ir̃2 ∂

∂ z̃

)
.
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The propagation correction H̃prop originates from the
∂2ψ/∂z2 term in Eq. (1), or, equivalently, from the Tay-
lor expansion of the longitudinal wave vector in Fourier

space, kz =
√

k2 − k2
⊥ � k − k2

⊥/(2k) − k4
⊥/(8k3) [5,10]. In

real space, the nonparaxial δkz = −k4
⊥/(8k3) results in an

operator H̃prop = (kz2
0 ) × �2

⊥/(8k3) = 1
8 �̃2

⊥.
The wave-front correction H̃wave = H̃curv + H̃Gouy de-

scribes the change upon reflection due to the mismatch
between the incident wave front and the mirror shape [10]. For
short cavities, L 
 Rm, this mismatch is typically dominated
by the wave front of the eigenmodes

kzwave(r, z) = kr2

2R(z)
− (N + 1)χ (z), (A1)

as these modes are typically compact enough not to notice
the quartic component of the mirror shape zm(r) ≈ r2/2Rm +
r4/8R3

m [10]. The wave front described by Eq. (A1) differs
from the ideal form kr2/(2Rm) − (N + 1)χ (L) because both
the curvature radius R(z) and the phase lag (N + 1)χ (z) vary
slightly over the mirror surface z = L − zm � L − r2/(2Rm).
A Taylor expansion of zwave thus produces two corrections.
The expansion of the R(z) term results in a wave-front correc-
tion �zwave = r4/(4R2

mL) and an associated operator H̃curv =
[kz2

0/(2L)] × 2k�zwave = r̃4/4. The expansion of χ (z) modi-
fies the transformation from z to χ into χ (r, z) � (z/z0)[1 −
r2/(2LRm)], such that ∂/∂χ � [1 + r̃2/(2kz0)]∂/∂ z̃, with z̃ ≡
z/z0. This results in an operator H̃Gouy = −i r̃2

2
∂
∂ z̃ . The com-

bination of the three nonparaxial effects mentioned above
results in the equation that we promised to derive.

APPENDIX B: NONPARAXIAL VECTOR CORRECTION

This Appendix shows that circularly polarized LG modes
are eigenmodes of the vector operator and derives their eigen-
values. The main text introduces the circularly polarized LG
mode as Eq. (10), where

�
⊥(r, θ ) = f (r)ei�̃θ �e± = f (r)eiJ̃θ (�er ± i�eθ )/
√

2,

and introduces the vector operator

H̃vec = �̃r⊥ ⊗ �̃∇⊥ = −1

2
(I2 + σz�̂3), σz =

(
1 0
0 −1

)
.

Application of H̃vec to �
⊥ starts by splitting

�∇⊥ · �
⊥ = 1

r

∂ (r
r )

∂r
+ 1

r

∂
θ

∂θ
(B1)

into contributions from the radial component 
r and the az-
imuthal components 
θ of the vector field �
⊥. Substitution
of the above equation for �
⊥ in Eq. (B1) yields

r �∇⊥ · �
⊥ =
(

∓J̃ f (r) + ∂[r f (r)]

∂r

)
eiJ̃θ /

√
2 (B2)

and

〈 ��⊥|H̃vec| ��⊥〉 =
∫∫

(�r⊥ · ��⊥)†( �∇⊥ · ��⊥) rdrdθ

= ∓J̃/2 = −(1 + �̃s)/2, (B3)

where the modes are assumed to be normalized and where
the radial derivative is removed via partial integration. These
are the eigenvalues that we promised to derive. The difference
between �
⊥ and ��⊥ is a simple phase factor that disappears
in the integration.

APPENDIX C: VECTOR CORRECTION IN FIBERS

Snyder and Love calculated the vector correction for fibers
with an arbitrary rotation-symmetric index profile. Using per-
turbation theory, they found

δβ2 = −
∫∫

{ �∇⊥ ln[n2(r)] ��⊥}†( �∇⊥ · ��⊥) rdrdθ, (C1)

where δβ2 = β2
vector − β2

par for bound normalized modes ��⊥.
For fibers with an infinite parabolic-index profile n2(r) =
n2

co(1 − r2/z2
0 ), this integral is proportional to Eq. (B3), and

δβ2 = − (1 + �̃s)

z2
0

⇒ δβvector ≈ − (1 + �̃s)

2β0z2
0

, (C2)

which is the vector correction in Eq. (20) in the main text.
For fibers with arbitrary rotation-symmetric index pro-

files, the conservation of OAM again allows one to write
the eigenmodes as in Eq. (10) and split �∇⊥ · ��⊥ in a radial
and azimuthal contribution as in Eq. (B1). Substitution in the
general Eq. (C1) now yields

δβ2 ≈ 2β0δβ = 2β0(I1 ∓ I2), (C3)

where the plus sign applies to all A modes with J̃ 	= 0 and
the minus sign applies to all B modes, including the � = 0
modes. The vector correction for the J̃ = 0 modes are δβ = 0
for the 1A− modes and δβ = 2(I1 + I2) for the 1A+ modes
[12]. Equation (C3) contains two integrals,

I1 = −1

2

∫
f (r)

d f (r)

dr

d ln[n2(r)]

dr
rdr,

I2 = −�

2

∫
1

r
f 2(r)

d ln[n2(r)]

dr
rdr,

which depend on | ��⊥| = f (r) and n(r). The same result can
be found in Table 14.1 in Optical Waveguide Theory by Snyder
and Love [12]. For typical fibers, I1 < 0, and I2 > 0. For
infinite parabolic fibers I2 = −�I1 = �/(2β0z2

0 ). But the signs
and magnitudes of I1 and I2 can be very different in fibers with
more exotic index profiles, for instance, designed to enhance
the spin-orbit coupling [15,17,18].
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