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Nonlinear optical frequency conversion, observed more than half a century ago, is a cornerstone in mod-
ern applications of nonlinear and quantum optics. It is well known that frequency conversion processes are
constrained by conservation laws, such as momentum conservation that requires phase-matching conditions
for efficient conversion. However, conservation laws alone could not fully capture the features of nonlinear
frequency conversion. Here it is shown that topology can provide additional constraints in nonlinear multifre-
quency conversion processes. Unlike conservation laws, a topological constraint is concerned with the conserved
properties under continuous deformation, and can be regarded as a new indispensable degree of freedom to
describe multifrequency processes. We illustrate such a paradigm by considering sum frequency generation
under a multifrequency pump wave, showing that, akin topological phases in topological insulators, topological
phase transitions can be observed in the frequency conversion process both at the classical and quantum levels.
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I. INTODUCTION

Since the first observation of optical harmonics more than
half a century ago [1], frequency conversion and wave mix-
ing processes in nonlinear optical media [2-5] enabled the
manipulation and control of the electromagnetic radiation to
a great extent, with a variety of applications ranging from
coherent harmonic generation [4-8] to ultrafast optics and
nonlinear spectroscopy [9—11], quantum optics [12-18], non-
linear imaging and biological microscopy [19,20], to mention
a few.

Modern nonlinear optics borrowed many concepts from
quantum mechanics and condensed-matter physics, and in
return, enriched the variety of theoretical and experimental
platforms where quantum phenomena can be studied (see,
e.g., [21-31] and references therein). Prominent examples
include the geometric (Berry) phase accompanying nonlinear
frequency mixing [22], adiabatic processes in frequency con-
version [21,27,28], and the design of novel photonic structures
which combine topological phases of light with appreciable
nonlinear response [22], thus extending to the nonlinear realm
the recent developments in the area of topological photonics
[32-36]. Recently, it was suggested that various nonlinear
optical effects can be described in a unified fashion by topo-
logical quantities involving the Berry connection and Berry
curvature [37].

Frequency conversion processes in nonlinear y ? media,
such as sum or difference frequency generation and paramet-
ric down-conversion, are constrained by conservation laws:
energy, flux, momentum, and angular momentum of pho-
tons should be conserved during the nonlinear interaction
[2,3,38,40]. Such conservation laws are expressed by well-
known conditions, such as the Manley-Rowe relations and
the phase-matching requirement for momentum conservation.

2469-9926/2022/106(5)/053503(13)

053503-1

However, conservation laws alone could not fully capture the
properties of nonlinear frequency conversion. In this work we
unravel that, akin to topological phases in condensed matter
physics [41-43], topology can provide additional constraints
to nonlinear multifrequency conversion processes, which can
undergo topological phase transitions. Unlike conservation
laws, topology concerns with the conserved properties under
continuous deformation, and can be regarded as a new indis-
pensable degree of freedom to describe nonlinear frequency
conversion processes.

To unveil the topological aspects underlying frequency
conversion, let us consider the process of sum frequency
generation (SFG), where two input photons at frequencies
) (signal wave) and w, (pump wave) annihilate while, si-
multaneously, one photon at frequency w3 = w; + w, (SFG
wave) is created under perfect phase matching in the nonlinear
crystal. The process is quite simple when we deal with single-
frequency fields, while topological features emerge when we
consider multifrequency waves. Let us assume that we inject
one signal photon at frequency w; and a stream of N, and N,
pump photons at slightly different frequencies w, and w) =
wy + 2, respectively [Fig. 1(a)]. Clearly, the signal photon
can annihilate with one pump photon of either frequency w,
or ), so that the frequency of the SFG photon can be either
w3 = w1 + wp or Wi = w + W) = w3 + Q with probabilities
N, /(N + Nj) and N;/(N, 4+ Nj), respectively. In repeated
measurements, on average the frequency of the SFG photon
is thus (w3) = w3 + v, with v = N} /(N, + Nj). Clearly, v is
not quantized, i.e., it not an integer number, and could be any
real number depending on the values of N, and N;. However,
this result holds for a short interaction length z: further inter-
action in the nonlinear crystal makes it possible the backward
process, i.e., the newly generated SFG photon can annihilate
and generate a pair of signal and pump photons. Energy
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FIG. 1. Multifrequency SFG. (a) A weak monochromatic signal
wave at frequency w; interacts with a strong bichromatic pump wave,
at frequencies w, and w), = w, + €2, in a nonlinear crystal to generate
a SFG wave. (b) The signal and SFG photons describe in tandem
a quantum walk in a synthetic binary lattice in frequency space.
The probability distribution of the photon frequency, depicted on a
pseudocolor map, broadens as the interaction length z increases. The
topology of the synthetic lattice provides a constraint on the mean
frequency of signal and SFG photons.

conservation imposes that the frequency of the created signal
photon should belong to the set {w;, w; — 2, w; + R2}. Such
a newly created signal photon can then annihilate with one
pump photon to generate a SFG photon at a frequency that
must belong to the set {w; — R, w3, w3 + Q, w3 + 2R} for
energy conservation. This reasoning can be iterated and the
frequency of both signal and SFG photons basically undergo
a diffusion process in frequency space. Hence, as the inter-
action length z in the nonlinear crystal increases, we have
an evolving probability distribution for the frequency of the
created SFG photon. Energy conservation requires that such
a frequency should belong to the set w; + n€2 (n integer),
but does not pose any constraint about the mean value (ws)
of such a distribution, which, in principle, could take any
value w3 + vQ2 with v a real number. Here topology comes
into play: as we show in this work, in the multifrequency
conversion process the signal and SFG photons describe in
tandem a quantum walk on a topological lattice in synthetic
(frequency) space [Fig. 1(b)], resulting in the quantization of
v for long interaction lengths. Specifically, the integer v turns
out to be a topological invariant (winding number) associated
to the synthetic lattice and determined by the multifrequency
properties of the injected strong pump wave. This is the main
message of this work, which is developed and presented with
the due mathematical details in the next sections.

II. TOPOLOGICAL SIGNATURE IN SUM-FREQUENCY
GENERATION WITH A MULTIFREQUENCY PERIODIC
PUMP WAVE

A. Classical analysis

The quantization of v can be readily proved in the frame-
work of a classical analysis of three-wave frequency mixing in
a nonlinear x® crystal. In the plane-wave approximation, the
electric field propagating along the longitudinal z direction of

the crystal can be written as

£ 1) = {Z

where wi, wy, and w; are the carrier frequencies of sig-
nal, pump, and SFG waves, respectively, k; = (w;/co)n; are
the wave numbers and n; = n(w;) the (linear) refractive
indices. Under perfect phase matching, the three coupled
equations governing the evolution of the field envelopes
¥i(z, 1) read (see, e.g., [2,3,15,27,38,39])

2ha)1

€pCony

Yy exp(—iwgt + ik;z) + c.c.

(0 1
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where o = [d./(ninyn3)]/2hk1koks/€o, d, is the effective
nonlinear interaction coefficient, and vy = 1/(dk/dw),, is
the group velocity at carrier frequency w;. In the above equa-
tions, the field envelopes were normalized such that |y;|?
is the photon flux of the e.m. wave at frequency w;. As
usual in problems of sum and difference frequency genera-
tion [2,21,27,44], we assume that the crystal is excited by
a strong pump field, not necessarily monochromatic, and by
a monochromatic weak signal at frequency w;. In the unde-
pleted pump approximation and after letting £ =z and n =
t — z/vg, one has Y (§, n) = ¥2(§ =0, n), and Egs. (1) and
(2) reduce to the linear two-level equations

G (1 1Y

5E l<vg2 vg1>_8n + h(n)s, 3)
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i5E l(vg2 vg3) o +h (v, 4)

where h(n) = —o 5 (£ = 0, ) describes the temporal shape
of the injected strong pump wave. As shown in Appendix A,
for a sufficiently spectrally narrow pump wave the group
velocity mismatch terms can be neglected, so that Egs. (3)
and (4) can be readily integrated with the initial condition

Y1 =0,17) = 1and Y3(§ =0, n) = 0, yielding
Y1(§, n) = cos[A(n)&],
¥3(&, n) = —isin[A(n)§]expl—ip(n)],

where we set h(n) = A(n)explip(n)], i.e., A(n) and ¢(n) are
the amplitude and phase of the normalized pump wave. Let
us now assume that /(n) is periodic with period T = 27 /2,
i.e., that the pump wave carries a stream of photons at fre-
quencies w; + n€2, and let us set k = Qn. Correspondingly,
the signal and SFG wave v 3(£, k) are periodic with respect
to k with period 27 and can be thus written as a Fourier se-
ries, ¥13(§,k) =Y, (a;, b))(§) exp(—ilk) with &-dependent
amplitudes a;(§), b;(§). At the propagation distance &, the
mean of the frequency of the signal wave, given by (w;) =
w1+ Y, 1Qlai(E)*) Y la(€)|, reads (w)) = w;, whereas
the mean frequency of the SFG wave, given by (w3) = w3 +
S IUBIE)?/ Y, 1bi(E), can be written as {(w3) = w3 +
v 2, where we set (technical details are given in Appendix A)

[, dk sin’[A(k)&§132
[T dksin?[AKE]

(&)
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FIG. 2. Quantization of index v. (a), (b) Behavior of the index
v versus propagation distance in the process of SFG in a PPLN
crystal. The pump wave is bichromatic with pump intensities Iy
and I, at frequencies w, and w, + Q. In (a) Iy = 800 MW /cm?,
I, = 400 MW /cm?; in (b) Iy = 400 MW /cm?, I; = 800 MW /cm?.
The insets show the behavior of h(k) = hy + h; exp(ik) in complex
plane, parametrized in the scaled time k = 2. Parameter values
are given in the text. (c) Synthetic SSH lattice in frequency space
along which the signal and SFG photons undergo a quantum walk in
tandem.

If we assume that A(k) # 0 for any k, i.e., that the pump
wave is nonvanishing at any time instant, for long interaction
lengths & we can set sinz[A(k)S] >~ 1/2 in Eq. (5), yield-
ing v~ (1/2n)ffn dk(de/dk) = vs. This relation clearly
shows that the index v is quantized and equals the phase
spanned by the pump wave in one oscillation cycle, normal-
ized to 2. For example, for an injected bichromatic pump at
frequencies w; and w), = w, + 2, h(k) = ho + h; exp(ik) and
thus v = O for |hg| > |hy]| and v = 1 for |hy| < |h], the case
|ho| = |hy]| corresponding to a topological phase transition.
To illustrate the quantization of v in a realistic setting, let us
consider SFG in a periodically poled lithium niobate (PPLN)
crystal with a strong pump at the wavelength A, = 810 nm and
a weak signal at A; = 1.55 um. The SFG wave corresponds
to A3 = 532 nm. We assume extraordinary wave propagation,
with a nonlinear coefficient ds3 ~ 27 pm/V. Phase matching
is realized by a first-order QPM grating (7.38 um period),
so that d, = (2/m)ds3 [45]. Figure 2 shows the behavior of
the index v versus propagation distance z in the crystal for a
bichromatic pump wave with a frequency offset Q = 2w x
1 GHz and with two different values of the ratio hy/hy =
/(11 /1ly) between the two harmonic pump amplitudes. The
simulations take into account group velocity mismatch, as
calculated using Sellmeier equations for n(w) [46]. The fig-
ure clearly illustrates the asymptotic quantization of v for long
interaction lengths and the topological phase transition as the
ratio of pump intensities /; /I varies from below to above one.

B. Quantum analysis

The quantization of the index v predicted by the classical
analysis can be at best captured in the second-quantization
framework of SFG [44,47-51]. Here, the signal and SFG
photons undergo in tandem a quantum walk on a synthetic
lattice with nontrivial topology in frequency space, the index
v corresponding to a topological invariant of the lattice. The
second-quantization analysis shows that the topological origin
of v-quantization holds for an arbitrary nonclassical state of
the injected signal wave, i.e., not necessarily for classical
(coherent) states. As in the classical analysis, we assume a
multifrequency pump with frequencies w, 4 n€2, centered at
around the carrier w,, and neglect group-velocity mismatch
effects. The second-quantization Hamiltonian of the photon
field then reads [44,47]

H=H,+H,
where

+ ) hwr + nQ)Ee,

is the Hamiltonian of the free field

H = —hong(BnH&;@Z +Hc)
n,l

is the interaction Hamiltonian, a,,, 13,,, and ¢, are the bosonic
annihilation operators of photon modes at frequencies w; +
n, w3 + n2 and w, + n<2, respectively. Assuming a strong
and classical pump wave, the operators ¢, can be consid-
ered as c-numbers [44], and the Heisenberg equations of
motion of the destruction operators a,, B,,, after the transfor-
mation @, — a,exp[—i(w; + nQ)t], 13,1 — 13,, exp[—i(ws; +
n2)t], read (see Appendix B for details)

da, o db, ,
i T = —O’UgZCl bn+1, lI = _O—ngclanfls (6)
! !

where C, = (c,) and the interaction time ¢ is related to the
interaction length £ by the relation ¢+ = & /v,. Equation (6)
indicates that the signal and SFG photons undergo in tan-
dem a continuous-time quantum walk on the sublattices A
and B of a one-dimensional (1D) lattice with chiral sym-
metry and long-range hopping amplitudes ov,C;, which
provides an extension of the famous Su-Schrieffer-Heeger
(SSH) 1D topological insulator [41,52]. Note the c-numbers
C; are basically the Fourier amplitudes of the classical strong
pump waveform, namely ¥, (k) = >, C; exp(—ikl), with k =
Qn. After letting ¥, (k, 1) = >, @y exp(—ikn) and Uk, 1) =
don b, exp —(ikn), the evolution equations for the operators
Y153(k, 1) read i(d /dn) (., F3)" = veH (k) (1, 3)" with the
matrix Hamiltonian

NG
HE) = (h*(k) 0 )
= A(k){cos[(k)]ox — sin[g(k)]oy}, (7
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where we set

h(k) = —o ;3 (k) = A(k) explig(k)],

and oy, are the Pauli matrices. Note that the Heisenberg equa-
tions for the 13 operators are analogous to the classical ones
[Egs. (3) and (4)] with vg = vy = vg3 = v, after the substi-
tution t — z/v, and considering 1/71,3(k, t) as c-numbers.

Let us assume that the crystal is excited with a
monochromatic signal field at frequency w; in an arbi-
trary quantum state, given by a superposition of Fock states
[Y(0)) = 372 (ar/+/11)a}!|0) with arbitrary amplitudes o
and ), |oy|> = 1. Note that excitation with a single-photon
Fock state corresponds to ; = §; ;, whereas excitation with a
classical field (a coherent state) corresponds to a Poisson dis-
tribution o = o’ exp(—|a|2/2)/«/ﬂ, with a = 1 (0). After a
propagation distance £ = v,t, the mean value of the frequency
of the signal and SFG photon fields can be readily calculated
and read (details are given in Appendix B)

(1) = w1, (w3) =w; +VvQ,

where the value of v is the same as the one obtained from
the classical analysis [Eq. (5)], regardless of the initial state
|1 (0)) of the signal photon field.

C. Frequency conversion and winding number

The main result that unravels the topological aspects in the
SFG process is that, for long interaction lengths &, the index
v converges to the topological invariant (winding number) v,
of the 1D gapped topological insulator. For example, if we
assume a bichromatic pump as in the simulations of Fig. 2,
corresponding to h(k) = hy + h; exp(ik), the signal and SFG
photons undergo a quantum walk on a synthetic SSH lattice in
frequency space with alternating hopping amplitudes /4, and
h; [see Fig. 2(c)], the two sublattices A and B corresponding
to the various frequency components w; 3 + nS2 of the two
fields. The topological invariant of a 1D gapped topological
insulator with chiral symmetry is provided by the Zak phase
y+ of the two lattice bands, given by [41]

'fﬂ dklug | ! /n i

=i Uy —ug)=— — =TTV,
ve=t) s T o ) Yk

where

1 1
b= ﬁ(i exp[—igo(k)])
are the two eigenstates of the Bloch Hamiltonian H (k)
[Eq. (7)] corresponding to the eigen-energies +|Aa(k)| and
T
Voo = L d 8_(p
2 J_, 0k
is the winding number. Note that the Zak phase in the two
bands takes and same value, related to the winding number
Voo, and that v, is the asymptotic value of v(£) [Eq. (5)] as
& — oo. The quantization of v as & — oo, such as the one
observed in Figs. 2(a) and 2(b), can be explained in terms of
the asymptotic quantization of the mean displacement that the
signal and SFG photons undergo in the tandem quantum walk
in the synthetic frequency space. In fact, as shown in previous
works [53-58] for a gapped 1D topological insulator such a

mean displacement is asymptotically quantized and equals the
winding number v, of the topological lattice. According to
the bulk-boundary correspondence [41,52,59], |voo| measures
the number of topologically protected zero-energy edge states,
and the quantum walk provides a bulk probing method to
measure |v| [53].

III. TOPOLOGICAL SIGNATURES UNDER A
MULTIFREQUENCY APERIODIC PUMP

The previous analysis can be extended to the case where
the envelope ¥, (n) of the strong pump wave is aperiodic in
time and given by the superposition of N mutually incommen-
surate frequencies €21, €2, . .., Q. In this case, the signal and
SFG photons undergo a quantum walk on a high-dimensional
synthetic lattice in frequency space [60], which can display
nontrivial topological features.

Let us consider the simplest case of N = 2 incommensu-
rate frequencies 2; and €2, and let k; = Q7 and k, = Q2,7.
The temporal pump waveform () can be considered as a
periodic function of the two variables k;, k, and expanded in
double Fourier series as

Ya(ky, ky) = ZC””” exp(—ikyn — ikym).

In the classical model of SFG, neglecting the group velocity
mismatch effects and assuming a monochromatic injected
signal field at the entrance of the crystal, the solution to
Egs. (3) and (4) is given by

Y&, ki, ky) = cos[A(ky, ky)E],
Y3(&, ki, ky) = —isin[A(ky, ko)§]expl—ip(ki, k),

where h(k(, ko) = —oy5(ki, k) is written in terms of
amplitude and phase as h(ky, ko) = A(ky, ky) explio(ky, k2)].
The mean frequencies of the signal and SFG photons read
(w1) = w1 and {(w3) = w3 + V12 + 1,2, where we set
(technical details are given in Appendix C)

[f" dkdky sin®[A(ky, kz)g](%)
[T dkidks sin®[A(ky, ko)E]

Vi2 = (8)
Assuming that A(ky, kp) # 0, i.e., that the pump wave (1)
does not vanish for any time instant n, for long-enough
propagation distances we may set sin’[A(k;, k)&] ~ 1/2 in
Eq. (8), yielding

vip=(1/27) | dki2(3¢/0ki2). 9)

=T

The values of v;, turn out to be independent of k;, and
are integer indices (winding numbers). The same result
holds in the second-quantization framework of SFG, and
the indices v, correspond to the topological numbers of
a weak two-dimensional (2D) topological insulator, along
which correlated signal and SFG photons undergo a tandem
quantum walk. In fact, in the second-quantization framework
the photon fields of signal and idler waves are given in terms
of the bosonic operators ay, (1), &;m(t) and lAJ,,,m(t), Bz,m(t),
respectively, that annihilate and create photons at frequencies
w; +n2; +mQy and w3 + nQ + m2,, respectively. In
the limit of a strong classical pump wave, the Heisenberg
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equations of motion of the destruction operators are a 2D
extension of Eq. (6) (see Sec. 2 of Appendix C), and formally
describe a quantum walk in two sublattices A and B of a 2D
lattice in synthetic frequency space [60] with an Hamiltonian
in Bloch space given by Eq. (7), with the replacement
k — (ki, k). Such a lattice is a 2D extension of the SSH
model [61-64] and provides an important example of a 2D
weak topological insulator [63,64] sustaining flat-band edge
states [61,62]. The Hamiltonian H (k) shows chiral and parity-
time reversal symmetries, namely, H(k)o, = —o,H (k) and
PTH(k)=H(k)PT, where P =0, and 7 = K (complex
conjugation) are the parity and time reversal operators. More-
over, provided that the Fourier coefficients C, ,, of the pump
wave are real, H (k) also displays inversion symmetry [65],
namely, H(—k)P = PH (k). For such a 2D lattice, the Berry
curvature identically vanishes and the topological phases can
be identified by the strong Z, index vy and by two weak Z,
indices v [63,64], or equivalently, by the vectorized Zak
phase in two dimensions [66—68]. Technical details are given
in Sec. 3 of Appendix C. The strong index vy = 0 corresponds
to the insulating (i.e., gapped) phase, which is equivalent to
the condition (1) # 0, whereas the 2D vectorized Zak
phase can be mapped into the quantized indices v; » [Eq. (9)
mod 2]. Therefore, the mean frequency (ws3) of the SFG wave
in the gapped phase (1) # 0 is constrained by topological
properties of the 2D weak topological insulator.
As an illustrative example, let us assume

h(ky, k2) = ho + hy exp(—ik;) + ha exp(ikz)
+ hs exp(—ik; — iky), (10)

which corresponds to a pump envelope n(n) =
—(1/o)h*(ky, ky) comprising the four frequencies w;,
wy — Qp, wy + 2y, and w, — Q1 — 2, with amplitudes hy,
hi, hy, and h3, respectively. The topological 2D synthetic
lattice, along which the SFG and signal photons undergo a
tandem quantum walk, is shown in Fig. 3(a). Note that the
amplitudes of the four pump waves correspond to the hopping
amplitudes in the synthetic 2D lattice. The value of the
strong topological index vy can be computed from the parity
eigenvalue of the Bloch eigenstates at the four time-reversal
invariant momenta (ki, k) =mw(n,ny) (nj,=0,1) [see
Eq. (C16) in Appendix C] and reads

(—D)" = sign{(ho + hy + ho + h3)(ho — hy + hy — h3)}
x sign{(ho + hy — hy — h3)(ho — hy — ho + h3)}.

In the insulating phase, i.e., for vy = 0, the winding numbers
V12 can be calculated from Eq. (C21) of Appendix C along
the lines k> ; = 0, i.e., they are the winding numbers of the
two reduced 1D Hamiltonians

hi(ky) = ho + hy + (hy + h3) exp(—ik;) (11)
for v; and
hy(k2) = ho + hy + ho exp(ika) + h3 exp(—iks) (12)

for v,. For example, assuming hy = h; = h3 and h /hg = 2,
the system is in the gapped (insulating) phase, i.e., vy =
0, and the winding numbers v, , are given by v; =0 and
v, = 1. Figures 3(b) and 3(c) shows the numerically com-
puted evolution of the indices v (&) versus propagation

(a) @ sublattice A (signal photons)
() sublattice B (SFG photons)
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FIG. 3. Topological indices with a multifrequency aperiodic
pump. (a) Schematic of the 2D synthetic topological lattice in fre-
quency domain corresponding to a pump wave comprising four
harmonic terms at frequencies w,, w, — 2y, w, + 27, and w, —
Q; — Q, with amplitudes ho, hy, hy, and hs, respectively. (b), (c)
Behavior of the indices v, versus propagation distance in a PPLN
crystal; parameter values are given in the text.

distance &, as obtained using Eq. (8) (i.e., neglecting GVM),
in a 6-cm-long PPLN crystal with intensities [y =1} = I3 =
200 MW /cm? and I, = 4, = 800 MW /cm? of the four pump
harmonics (/; « hlz,l =0, 1,2, 3). Note the asymptotic con-
vergence of v;(§) and v,(&) to the topological indices 0 and 1,
respectively.

The above results suggest that SFG under a multifre-
quency strong pump wave with incommensurate frequency
components could provide a fascinating setup to emulate in
photonics weak topological insulators in high dimensions.

IV. CONCLUSION

In conclusion, we unveiled that frequency conversion
processes in nonlinear optical media, besides obeying well-
known conservation laws, are restricted by topological
constraints and, like topological insulators, can display
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topological phase transitions. We illustrated such a paradigm
by considering sum frequency generation in second-order
nonlinear media under a multifrequency pump wave, showing
that topological phase transitions can arise both at the classical
and quantum levels. Our results shed new light on the founda-
tions of nonlinear optics and the consequences of topological
behaviors in nonlinear optics could be far reaching for future
applications of modern nonlinear and quantum optics.

APPENDIX A: TOPOLOGY WITH A TIME-PERIODIC
PUMP: CLASSICAL ANALYSIS

In this Appendix we provide some technical details on
the topological features of sum-frequency generation (SFG)
when the strong pump wave is a periodic function of time. We
use here a classical description of the frequency conversion
process using standard coupled-mode equations. In particular
we discuss the effects of group velocity mismatch, which is
not considered in the main text.

1. Coupled-mode equations

We assume that the nonlinear x @ crystal is excited by a
strong pump field, at carrier frequency w,, and by a weak

J

(ws, n)) _ ( cos[ A(n)&]
Y3(&,n)) — \ —isin[A(n)&]exp[—ip(n)]

where we set h(n) = A(n)explig(n)]. Let us assume that the
crystal is excited at the entrance plane by a monochromatic
signal wave, ¥(§ =0, n) independent of 5, and y3(§ =
0,7n) = 0. Assuming, without loss of generality, ¥(§ =
0, n) = 1, one obtains

Y1(&, n) = cos[A(n)E],

Y3(&, n) = —isin[A(n)E]exp[—ip(n)]. (A4)

2. Calculation of the mean frequencies of signal and SFG waves

Let us assume that the pump wave is periodic in time with
period T = 27 /2. After introduction of the scaled time k =
n<2, the solutions ¥ (&€, n) and ¥3(£€, ), given by Eq. (A4),
are periodic in k with 27 period, and can be, therefore, ex-
panded in Fourier series with &£-dependent coefficients, i.e.,

Y15 k) =Y a(&)exp(—ikl),
1

Y35, k) =) bi(€) exp(—ikl). (A5)
!

Clearly, the spectral amplitude |a; (&) is the (nonnormalized)
probability that, after an interaction distance & in the nonlinear
crystal, the signal photon has a frequency w; + /2. Likewise,
|b;(£)|? is the (nonnormalized) probability that, after an inter-
action distance &, the SFG photon has a frequency wsz + [€2.
The mean frequencies of signal and SFG waves are thus given

signal at carrier frequency ;. In the undepleted pump approx-
imation and after letting § = z and n =t — z/v,3 (§ describes
the interaction distance in the crystal while n is a retarded
time in the reference frame of the pump wave), the evolution
equations for the signal and SFG envelopes v 3(&, ) are
given by [Egs. (3) and (4) in the main text]

31/11 A1 0y
=i\———)—+h , Al
85 l<Ug2 Ugl) o + h(mys (A1)
81/!3 . 1 ) BW3 *
=i|l———)—+h , A2
8%_ l<vg2 om ) 1 + R (mn (A2)
where h(n) = —o}(n) and V() is the temporal profile of

the undepleted pump envelope. The solution to Egs. (A1) and
(A2) cannot be given in an exact closed form rather generally
(see [39] and Sec. 3 of Appendix A). However, when the
group velocity mismatch between the waves is negligible, i.e.,
Vgl = Vg = Vg3, the retarded time 7 enters in the equations as
a parameter and the most general solution displays Rabi-like
oscillations along the & coordinate, i.e., oscillation cycles
alternating SFG (w; + wy — w3) and difference frequency
generation (w3 — w, — w;), namely, one has

—isin[A(n)E]eXp[iw(n)]) _ <wl(0, n)) (A3)
cos[A(mE]v3 (&, n) ¥3(0,n) )
{
by

gl la®P il ®F
(o) = w1 + Q STGER (03) = w3+ Q

ARG
(A6)

To calculate the series on the right-hand sides of Eq. (A6),
let us use the following property of the Fourier series
that can be readily proven: for any given function f(k) =
R(k) exp[—i6(k)], periodic in k with 2 period, after letting
flk) =", frexp(—ikl), one has

1 T 1 T
Z|ﬁ|2=— / dkIf (O = > / dkR*(k), (AT)

Zl|f,|2 = —f dkf* (k)—:i dkRz(k)—
27 J_
(A8)
From Egs. (A4), (A6)—(A8) one then obtains
B B [, dksin’ [ A(k)E] 52
(w1) = w, (w3) = w3+ T dksin?[A(0¢] (A9)

ie., (w1) = w; and (w3) = w3 + v§2, where v is given by
Eq. (5) in the main text.

3. Effects of group velocity mismatch

Let us assume that the group velocities of signal and SFG
waves are not exactly matched with the one of the pump
wave. In this case the initial-value problem of Eqs. (A1) and
(A2) can be solved rather generally using inverse scattering
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FIG. 4. Effects of GVM. Numerically computed of the index v versus propagation distance in the process of SFG in a PPLN crystal

(crystal length 6 cm). The pump wave is bichromatic with pump intensities [,

=400 MW /cm?, I; = 800 MW /cm? at frequencies w, and

wp + Q. (a) Q =27 x 100 MHz, (b) @ =27 x 1 GHz, (¢) 2 =27 x 2 GHz, and (d) 2 = 27 x 5 GHz.

methods [39]. When the pump wave is periodic in time with
period T = 27 /2, we can, however, look for a solution to
Egs. (A1) and (A2) as a Fourier series in 1, with £-dependent
coefficients. After letting

Y15, k) =Y (&) exp(—ikl),
1

Y3(&, k) = (A10)

> " bi&) exp(—ikl),
1

with £k = <2, from Egs. (Al), (A2), and (A10) one readily
obtains

da
e = 18, +Zh bi_,, (A11)
L

T = 18b, +Zh i p, (A12)

o

where we set §; = Q(1/vg — 1/v,1), 83 = Q(1 /v — 1/v43),
and h(k) = ), hj exp(—ikl). Equations (A11) and (A12) ba-
sically describe, at the classical level, the coupled signal and
SFG spectral component dynamics on a synthetic binary lat-
tice, discussed in the main text [Figs. 1(b) and 2(c)], with
initial excitation of the site [ = 0 of sublattice A (the injected
monochromatic signal wave). As it can be seen, the GVM
(i.e., 813 # 0) introduces uniform gradients in the two sub-
lattices, which spoil out the discrete translation invariance of
the lattice and are responsible for Bloch-Zener-type dynamics.
However, when the spectral extent of the strong pump wave is
sufficiently narrow, i.e., in the limit & — 0, the GVM terms
can be neglected for not too long interaction lengths £ in
the crystal. The strength of the pump wave is measured, for
example, by its Fourier terms Ay ~ A1, and thus in the absence
of the GVM the spreading in the lattice occurs at a speed of
the order ~hy. After an interaction length &, the excitation
diffused to about Ay sites in the lattice, so that GVM effects
are negligible provided that |6; 3§ho| < |ho|, 1.e., provided

that the propagation length & satisfies the condition

1 1!

vg2 vgk

1
§ < —ming_;3 (A13)

Q

To illustrate the effects of GVM, let us consider SFG in a pe-
riodically poled lithium niobate (PPLN) crystal with a strong
pump at the wavelength A, = 810 nm and a weak signal
at A; = 1.55 um, as in the example discussed in the main
text (Fig. 2). The SFG wave corresponds to A3 = 532 nm.
We assume extraordinary wave propagation, with a nonlinear
coefficient ds33 >~ 27 pm/V. Phase matching is realized by a
first-order QPM grating (7.38 um period), so that the effec-
tive nonlinear coefficient of the interaction is d, = (2/7)d;3.
The group velocities of signal, pump, and SFG waves, as
calculated using Sellmeier equations [46], are vy = 0.4581cy,
vy = 0.4422¢, and vy3 = 0.4069¢, where ¢ is the speed of
light in a vacuum. For a frequency Q = 27 x 1 GHz, from
Eq. (A13) it follows that GVM is negligible for propagation
lengths satisfying the condition £ < 24 cm. Since the typical
lengths of a nonlinear crystal are smaller than 5 to 10 cm,
neglecting GVM is a justified assumption. Clearly, GVM
effects can become important as the strong pump wave is
spectrally broadened. As an example, in Fig. 4 we depict the
numerically computed evolution of the index v versus interac-
tion length & for a bichromatic pump, carrying the intensities
Iy = 400 MW /cm?, I} = 800 MW /cm? at the frequencies w»
and w; + €2, for a few increasing values of 2. Note that the
quantization of v is spoiled out at high frequencies €2 as a
consequence of GVM.

APPENDIX B: TOPOLOGY WITH A TIME-PERIODIC
PUMP: QUANTUM ANALYSIS

1. Heisenberg equations of motion and quantum walk on a
synthetic frequency lattice

The second-quantization Hamiltonian of the photon field
in the nonlinear x® crystal under perfect phase matching and
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neglecting GVM is given by H = Hy, + H;, where
Hy =" h(w +n)aja, + Y h(ws + nQ)bib,

+ ) h(wr +nQ)eje, (B1)
n

is the Hamiltonian of the free photon field, and the trilinear

Hamiltonian

Ay = —hovg » (byy] ¢} + He.) (B2)

is the interaction Hamiltonian. In the above equations &, &Z,
bn, b and ¢,, ¢ are the annihilation and creation operators
of the photon modes at frequencies w; + n<2, ws + n2 and
wy + n2, respectively, which satisfy the usual bosonic com-
mutation relations and v, = vy = vy = Vg3 is the common
group velocity of the three fields. The Heisenberg equations of

motion of the destruction operators read
da, 1

it = %[&n,H] = (@) + nQ)ay, —angI:é}BH,, (B3)
db, 1 .

i~ = by, H]= (w3+nsz>an—ovg;&zén_z, (B4)
dé, 1 _ .

idct = —lén H = (@2 + 1), —0ovg Y by (BS)

1
éfter tpe gauge transformation @, — a, exp[—i(w; + n<)t],
b, — b,exp[—i(ws +nQ)], and ¢, > ¢,expl—i(wr +
n<2)t], the above equations take the form

da,,
= _Gvgzcl n+l» (B6)
i d” = —anga,@n_,, (B7)
I
dé, P
i p = —anga;b,,H, (B8)
I

where the interaction time ¢ is related to the propagation
distance z = £ in the crystal by the relation

t = &/v,. (B9)

Assuming a strong and classical (coherent) pump wave, the
operators ¢; can be regarded as c-numbers, i.e., we can assume
¢ ~ (¢;) = C;. In the undepleted pump approximation, such
terms are constant and related to the incident pump wave
profile ¥, (n) by the Fourier expansion

Va(n) = ) Crexp(—ilQ). (B10)
[

Therefore, for a strong classical pump and in the undepleted
pump approximation, the Heisenberg equations for the de-

J

(Y (O)a) (t)a, () (0)) =

p.o

= [An (W ()] (0)a, (0)]y(0)) =
P

struction operators of signal and SFG photon fields read

A

da,, )
= _UUgE C[ n+1 s l_ =

which are Eqs. (6) given in the main text. Equations (B11)
indicate that the signal and SFG photons undergo in tandem
a continuous-time quantum walk on the sublattices A and B
of a one-dimensional synthetic lattice in frequency space. In
Bloch space, the Hamiltonian of the binary lattice is given by

H (k) = (Oh(k)h* (k)0)
= A(k)cos[p(k)]oy — Ak)sin[p(k)loy, (B12)

where we set h(k) = A(k)explip(k)] = —o 5 (k) and where
oy, are the Pauli matrices. The formal solution to Eq. (B11)
can be written as

an(t) =Y _(An1u(0) + B, 15y(0)),
!

—0v, Y Ciétyy. (B11)
1

(B13)

bu®) = 3 (Cos@(©) + Dusbi(0).  (B14)
1

where the r-dependent matrices A, B, C, and D are determined
by the propagator of the linear system and describe how an
initial single-site excitation of the system, in either sublattice
A or B, spreads in the lattice.

2. Calculation of the mean frequency of signal and SFG photons

Let us assume that the crystal is excited at the entrance
plane £ = 0 by a monochromatic signal field at frequency w,;
in an arbitrary quantum state, given by a superposition of Fock
states, namely, let us assume

IS
2 70010

=1

3

1 (0)) = (B15)
with arbitrary amplitudes «; and Y, |oy|*> = 1. Note that
excitation with a single-photon Fock state corresponds to
o; = 8,1, whereas excitation with a classical field (a co-
herent state) corresponds to a Poisson distribution o; =
ol exp(—|a|?/2)/+/1!, with o =(0). The mean num-
ber of photons carried by the input signal wave is
(¥ (0)]agaoly(0)) = 3, Leul*.

After a propagation distance & = v,t, the mean value of
the frequency of the signal and SFG photon fields can be
calculated as

>, (W (0)|a) (1)a, ()] (0))
> (W (0)]ag(1)a, ()Y (0))
>, n (W (0B ()b (t)| 1 (0))
W OB ()b (1) (0))

The mean values entering in Eqs. (B16) and (B17) can be
readily computed using Eqs. (B13)—-(B15). For example, one
has

(w1) = w1 + 2

(B16)

(w3) = w3 +Q (B17)

> (WO (AL, a5 0) + By, 55 (0) (A pitp (0) + B b (0] (0

| Anol* (1 (0)]ag (0)ao(0)](0)). (B18)
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Similarly, one has

(W (OB )b, ()Y (0)) = ICuol* (¥ (0)]af (0o (0)] 1 (0))

(B19)

and thus
Z n|An0|2 Z n|cn0|2
= Q= _——_ = Q&= -
e SV AR A ST
(B20)

Equation (B20) clearly shows that the mean frequencies
of signal and SFG photons do not depend on the initial
quantum state |y (0)), and thus they should reproduce the
result obtained by the classical analysis. In fact, the sums
Zn |~An,0|27 Zn n|An.()|2’ Zn |Cn,0|2’ and Zn n|cn,0|2 enter-
ing in Eq. (B20) and associated to the quantum walk on
the binary lattice with chiral symmetry can be calculated in
terms of h(k) = A(k)explig(k)] using the method described
in [53,55], and read

1 g
D Aol = o f dk cos’[A()EL, Y nlA,ol* =0,
! (B21)

n

dk sin’[A(K)E],

-7

1
%: |CI‘L,O|2 = E

2o U7 aksin? de
Xn:n|cn,o| =5, | dksin [A(k)é](dk) (B22)

Therefore, one obtains (w;) = w; and (w3) = w3 + v<2,
where

_ [ dksin’[A(K)E](%52)
[T dksin*[AE]

(B23)

Equation (B23) exactly reproduces the result obtained by the
classical analysis (Sec. 2 of Appendix A).

APPENDIX C: TOPOLOGY WITH A MULTIFREQUENCY
APERIODIC PUMP

Let us assume that the strong pump wave envelope ()
is aperiodic in time and given by the superposition of N
mutually incommensurate frequencies €21, 2»,..., 2y. In this
case, the signal and SFG photons undergo a quantum walk
on a high-dimensional synthetic lattice in frequency space
[60], which can display nontrivial topological features. For
the sake of simplicity, we will consider the case of N = 2 in-
commensurate frequencies €2; and €2,, however, the analysis
can be readily extended to an arbitrary number of mutually
incommensurate frequencies.

1. Classical analysis

In the classical analysis of SFG with two incommensu-
rate frequencies €2; and €2, of the pump wave, it is worth
introducing the two dimensionless variables k; = ;1 and
k, = Q,n, and considering the pump waveform ¥,(n) as a
periodic function of the two independent variables &, k», i.e.,
Yo = Ya(ky, kp). We can thus expand yr»(7) in double Fourier
series as

Yok, ko) = ) Cumexp(—ikin — ikym). — (C1)

n,m

Neglecting group velocity mismatch effects and assuming a
monochromatic injected signal field at the entrance of the
crystal, the envelopes of signal and SFG waves at the prop-
agation distance £ are given by

Vi(§, ki, ky) = cos[A(ky, k)§],
V3§, ki, ky) = —isin[A(ky, k2)§ ] expl—ip(ki, k)], (C2)

where h(kyi, ky) = —o 5 (ky, kp) is written in terms of ampli-
tude and phase as h(ki, k) = A(ky, ky) explip(ky, kp)]. Let
us introduce the Fourier expansions for the two fields, with
&-dependent coefficients by letting

Vi€ ki k) = ) ara(E) exp(—ikil — ikon),

I,n

Y€, ki ko) = ) by a(§) exp(—ikil — ikon).  (C3)

I,n

Clearly, the spectral amplitude |a; ,(£)|? is the (nonnormal-
ized) probability that, after an interaction distance & in the
nonlinear crystal, the signal photon has a frequency w; +
12 + nf,. Likewise, |b; ,(£)]? is the (nonnormalized) proba-
bility that, after an interaction distance &, the SFG photon has
a frequency w3 + [ + n€2,. The mean frequencies of signal
and SFG waves are thus given by

321+ n20)la . (6)

)= et TS @
> LA+ n20)|b (812
= ’ c4
(w3) = w3 + LG (C4)

To calculate the series on the right-hand sides of Eq. (C4),
let us use the following property of double Fourier series:
for any two-dimensional function of the form f(k;, k) =
Zl_n Jfinexp(—ikil — ikyn), i.e., periodic in k| and k, with pe-
riod 27, after letting f(ky, k») = R(ky, ky) exp[—iB (ky, k»)],
one has

1 T
Sl = s [ dhadialsti ko
In -

1
(2m)?

Zl|f = ‘ //ﬂdkdkf*(k k)ﬂ
a Ln a2 ). 14k, 1’28k1

f / dkdioR2k, k), (CS)

1 T a0
= — // dk]dszz(kla kZ)_v (C6)
(2 Sy - dky

i T " af
Slfal = s [ diadiof*(a ko) -

I,n

1

- @n)?
Using such identities, from Egs. (C2)—(C4) one finally obtains
(w3) = w3 + V121 + 1282, (C8)

” ) 36
dkydkoR?(ky, ky)—. (C7)
L ok,

<a)l) =w],
where we set
JI7, diydky sin?[ A Ky, k)] (£ )
Vi = b . ’
’ [T dkidks sin®[A(ky, k»)E]

(€9)
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2. Quantum analysis

The second-quantization Hamiltonian of the photon field
in the nonlinear x* crystal under perfect phase matching and
neglecting GVM is given by H = Hy, + H;, where

H() = Z h(a)l + an + mQZ)aZ,m&n m

n.m

+ Z (w3 + nS2; + mQZ)Blyml;n,m

n,m

+ Y @+ nQy + m2)e) enm

n,m

(C10)

is the Hamiltonian of the free photon field and

Ay =—hovy Y (buymsnd] &, +He) (ClD)

ny,ng,l b

is the interaction Hamlltoman In the above equations &, ,
al by, b,L > and &, &6 are the annihilation and creation
operators of the photon modes at frequencies w; + n2; +
mS2, ws +nQ2 + mp and w, + nQ2; + m,, respectively,
which satisfy the usual bosonic commutation relations. Pro-
ceeding as in Sec. 1 of Appendix B, assuming a strong
and classical pump field and in the rotating-wave frame, the
Heisenberg equations of motion of the destruction operators
an,m and 13,”,1 read

danm

l dt = —0Vg Z C]T,bbn-H] Jm+l s
b
A (C12)
.dby .
l dl" = _GUgZCll,lzan—ll.in—lza

[N’

where Cj, ;, are the Fourier coefficients of the classical pump
envelope (1), namely,

Ya(n) =Y Gy 1y exp(—ili 21 — ibQun),
Ll

(C13)

and where in Eq. (C12) the interaction time ¢ is related to the
interaction length & in the crystal by the relation t = & /v,.
Let us assume that the crystal is excited at the entrance plane
& = 0 by a monochromatic signal field at frequency w; in
an arbitrary quantum state, given by a superposition of Fock
states, namely, let us assume

ZAvl
Z\/—OO

with arbitrary amplitudes «; and ), lo;|? = 1. Proceeding
as in Sec. 2 of Appendix B, it can be shown that, after an
interaction length &, the mean frequencies of signal and SFG
photons do not depend on the initial quantum state | (0)) and
reproduce the classical result, given by Egs. (C8) and (C9).

[¥(0)) = (C14)

3. Topological properties

Equations (C12) indicate that the signal and SFG photons
undergo in tandem a continuous-time quantum walk on the
sublattices A and B of a two-dimensional synthetic lattice in
frequency space. In Bloch space, the Hamiltonian of the 2D

lattice reads

_ 0 hk, k2)
H(klv kZ) - (l’l*(kl, kz) 0 )

= A(ky, ky) cos[p(k.kz)]oy

— A(ky, kp) sin[@(ky, k2)loy,  (C15)
where we set h(k, k) = Aky, ky)explipky, k)] =
—oyy(ki, k) and where oy,. are the Pauli matrices.
Such a synthetic lattice in frequency space provides a 2D
extension of the SSH model introduced in recent works
[61-64] and represents an important example of a 2D weak
topological insulator [63,64] sustaining flat-band edge states
[61,62]. Here we briefly illustrate the topological properties
of this model (for details see [63,64]). The Hamiltonian
H(ky, k) = H (k) displays the following symmetries:

(i) Chiral symmetry, namely, H (k)o, = —o, H (k).

(ii) PT symmetry, namely, PTH(k) = H(k)PT with
parity operator P = o, and time-reversal operator 7 = K (K
is the element-wise complex conjugation operation).

(iii) Inversion symmetry. Provided that the Fourier am-
plitudes C,,, of the pump wave are real, H(k) also shows
inversion symmetry, namely H(—k)P = PH (k).

For such a 2D weak topological insulator, the Berry cur-
vature identically vanishes in the entire Brillouin zone and
nontrivial topological phases can be identified by the strong
Z, index vy [65] and by two weak Z, indices 7, [61,62] or
equivalently by the vectorized Zak phase 8 = (6;, 6;) in two
dimensions [61,66-68].

The strong index vy is given by the relation

4
=" =]Ts
i=1

where §; = £1 is the parity eigenvalue of the Bloch eigen-
states at the four time-reversal invariant momenta (k;, kp) =
m(ny, ny), with ny, = 0, 1. One has vy = 0 if and only if the
two lattice bands are gapped, i.e., h(k) # 0 over the entire
Brillouin zone: vy = 0 thus corresponds to an insulating phase
[63].

The 2D vectorized Zak phase is defined by [68]

(C16)

l T
6= / / dkidky Tr[A(ky, k2)], (C17)
v -

where A, ,, = (u,|iVk|uy) (n,m = %) is the Berry connec-
tion, u,(k;, k») is the periodic part of the Bloch wave function
in the nth band, and the trace is taken over the occupied bands
of the lattice. For the Hamiltonian Eq. (C15), the periodic part
of the Bloch functions in the two bands is given by

us(ky, ko) =

explip(k, kz)]) (C18)

A

so that one readily obtains A} ; = A_ _ = —(1/2)Vkp and

thus
1 s
=_/f dkidk;Vig. (C19)
ar JJ_,
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Note that, in the gapped phase (vy = 0), for any line k, the
integral (winding number)

1 8(0
27‘[ 8k1

does not depend on kp: in fact, it is an integer and its value
cannot change as we adiabatically vary k>, unless the gap
closes. Likewise, the integral

1 [r g

o )" ok
does not depend on the line k; in the insulating phase.
Therefore, when vy = 0 one obtains § = (6;, 6,) for the 2D
quantized Zak phase, with

1 (" g
017 = — dk .
1273 /_ "2 ki

We remark that, since the Berry connection is gauge depen-
dent, the Zak phase components 6, and 8, are uniquely defined
mod 27, i.e., they can uniquely take the two possible values 0
and . The vectorized Zak phase can be readily associated to
the indices v », given by Eq. (C9) and determining the mean
frequency of the SHG photons. In fact, in the topological insu-
lating phase A(ky, k») does not vanish in the entire Brillouin
zone, and thus for large-enough interaction length £ we may
set sinz[A(kl, ky)E] ~ 1/2in Eq. (C9), yielding

ps a(p
dkidk dk .
// : 23k1 2 27‘[ b2 8k1,2

A comparison of Egs. (C20) and (C21) yields
(mod 27).

(C20)

012 =mvi 2 (C22)

As an illustrative example, let us assume
h(ky, k2) = ho + hy exp(—ik;) + hy exp(iky)

+ h3 exp(—ik; — iky), (C23)

which corresponds to a pump envelope Yn(n) =
—(1/o)h*(ki, k) comprising the four frequencies w,,
wy — 1, wy + 2, and w, — Q) — 2, with amplitudes hy,
hy, hy, and h3, respectively. The value of the strong topological
index vy can be computed from the parity eigenvalue of the
Bloch eigenstates at the four time-reversal invariant momenta
(k1, ky) = m(ny, np) (n1 2 =0, 1) according to Eq. (C16) and
reads

(=)™ = sign{(hg + hy + hy + h3)
X (ho — hy + hy — h3)(ho + hy — hy — h3)
X (hg — hy — hy + h3)}. (C24)

In the insulating phase, i.e., for vy = 0, the winding numbers
V12 can be calculated from Eq. (C21) along the lines ky | =
0, i.e., they are the winding numbers of the two reduced 1D
Hamiltonians

hy(ky) = ho + hy + (hy + h3) exp(—ik;) (C25)
for v; and
hy (ko) = ho + hy + hp exp(iky) + h3 exp(—ikz)  (C26)

for v,. The 2D weak topological insulator associated to this
model is illustrated in Fig. 3(a) of the main text. Depending on
the values of the pump amplitudes Ay, &, hy, and h3, different
topological phases, corresponding to different values of the
topological numbers, can be obtained.
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