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Spatial distribution of two symmetric four-wave-mixing signals induced by Gaussian beams
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We present a theoretical analysis of the spatial shape of two symmetric signals of degenerate four-wave mixing
induced by Gaussian beams in a thin sample of two-level atoms. Our calculations take into account the full spatial
and spectral dependences of the relevant nonlinear susceptibilities that govern the two processes. This reveals
two interesting effects. The first one is that the total power of incident beams affects the transverse profile of
the four-wave-mixing signals at the medium exit and their free propagation. The second one is the influence
of the spectral characteristics of the medium on the longitudinal profile of both generated signals upon free
propagation. We argue that the first effect can be seen as the saturation of the medium in regions of higher
intensity, while the second can be understood as the result of a nonlinear contribution to the refractive index
inside the atomic medium. These effects can be symmetric between the two signals, with asymmetries induced
by different detunings from the resonance of the incident fields.
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I. INTRODUCTION

The fundamental solution to the paraxial wave equa-
tion (PWE), the Gaussian beam, encompasses important
properties of the actual output of laser sources, such as their
characteristic intensity profile and phase distribution, both of
which evolve as the beam propagates. One exact higher-order
solution to the PWE is the Hermite-Gaussian (HG) mode,
which is given in Cartesian coordinates and is characterized
by lobes of light disposed in a rectangular grid. Hermite-
Gaussian modes are important in the study of laser cavities, as
they describe the spatial distribution of the output beams from
these light sources [1]. The Laguerre-Gaussian (LG) mode is
another exact solution to the PWE. It is given in cylindrical
coordinates and carries a ring-shaped intensity distribution.
Most importantly, LG modes carry well-defined orbital an-
gular momentum (OAM) in the propagation direction per
photon, as first demonstrated by Allen et al. [2]. Hermite-
Gaussian and LG modes can be represented in terms of one
another and this correspondence is well known [2,3]. Also,
they are limiting cases of the so-called Ince-Gaussian paraxial
mode [4], which carries elliptical symmetry. There are many
other higher-order solutions to the PWE that present vastly
diverse characteristics and interesting properties [5].

The above discussion considers the radiation field of light,
in its many accessible spatial distributions or modes, propa-
gating in free space. Here we are interested in the nonlinear
light-matter interactions taking place in atomic media and
in understanding how these interactions affect the spatial
properties of the light field. We will be concerned with a
particular configuration of four-wave mixing (FWM), a third-
order nonlinear optical process that can take place in a variety
of systems, such as atomic vapors, cold-atom samples, and
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optical fibers. Four-wave mixing has allowed the investigation
of several optical phenomena, for instance, ac Stark shift,
phase conjugation, and electromagnetically induced trans-
parency [6–10]. It has also been widely employed to study
the interaction of structured optical modes with matter.

One setting that is commonly used to explore the spatial de-
grees of freedom of light is that of FWM induced by amplified
spontaneous emission in a hot atomic vapor, with a three-level
cascade system [11–15]. In cold atomic samples, FWM was
employed to transfer OAM from incident to generated beams
in nondegenerate [16] and degenerate [17] atomic systems,
to transfer more complicated phase structures (obtained by
superimposing LG modes of different orders) [18], and to
store the information carried by the spatial structure of light
in the ensemble of atoms and later retrieve it [19,20].

When the primary objective is the study of the spatial
shape of the FWM beam, the usual approach is based on the
overlap integral of four paraxial modes [12,14,15,21]. In these
cases, the calculations are performed regarding the interaction
medium as a channel for the nonlinear process to take place,
not possessing degrees of freedom that can affect the output
mode superposition. In other words, the spatial distribution of
the FWM field is fully determined solely by the distributions
of the participating beams. With this approach, the theoreti-
cal predictions are remarkably accurate [12,15,21]. The role
of the spatially dependent nonlinear coherence in the signal
generation process was discussed in Ref. [22]. In Ref. [23],
the full spatial dependence of medium quantities was taken
into account in calculations, and effects of detunings from
resonance and phase mismatch on the phase distribution of the
FWM beam were evidenced. No connection was established,
however, between the medium quantities and the spatial prop-
erties of the beam outside the interaction medium. This is the
point our work seeks to highlight.

This work is a theoretical study of the spatial shape
of two symmetric signals of degenerate four-wave mixing
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generated in a sample of cold two-level atoms. A spectral
analysis of this kind of symmetric FWM signals was con-
ducted in Ref. [24] considering a three-level system in Rb
vapor. Our focus is on the influence of the spatially dependent
nonlinear susceptibility, induced as a result of the nonlinear
process, on the overall shape of the two FWM signals. We
investigate the spatial properties of the generated beams in
various configurations, including different detunings from the
atomic resonances and several intensities. In particular, we
take into account contributions to the nonlinear signal up
to the effective third-order susceptibility. This allows us to
obtain a closed relation to the coherence associated with the
FWM signal and perform the overlap integrals with a physical
interpretation of the results. In this regime we show that the
total power of incident beams affects not only the transverse
profile of both FWM fields at the medium exit, but also the
evolution of this profile under free propagation. We show
that the so-called root-mean-square (rms) parameters of the
generated beam, which serve as an effective measure of the
longitudinal profile, are intuitively affected by the frequency
degrees of freedom of the atomic medium, in a way that
resembles the Kerr effect. These effects indicate that even
in a thin medium, the power and frequency of pump beams
may lead to significant modifications of the transverse and
longitudinal profiles of a nonlinear signal.

Our results focus on the thin-medium regime, characterized
by a medium length, much smaller than the Rayleigh ranges of
the participating fields. This regime is in agreement with the
experimental conditions in a cold-atom sample obtained with
a magneto-optical trap (MOT). On the other hand, in the thick-
medium regime, the requirement of the Gouy phase-matching
condition [15] can lead to different results. This regime is
more easily achievable in a hot atomic vapor cell, for example.

This paper is divided as follows. In Sec. II we present
details of the calculations performed, more specifically, the
semiclassical modeling of the nonlinear interaction, the so-
lution to the wave equation for the FWM beam, and the
properties of this solution. In Sec. III we present and discuss
the main results of this work. We summarize in Sec. IV.

II. FOUR-WAVE MIXING IN A TWO-LEVEL SYSTEM

The theoretical model used to describe the generated FWM
beam can be divided in two main parts. The first one is
the semiclassical description of the interaction between the
atomic medium and the radiation field of the laser beams via
optical Bloch’s equations. In particular, we are interested in
the case where both incident beams possess the same power, to
ensure that the two signals are generated with equal probabili-
ties. The second part consists of solving the nonhomogeneous
wave equation for the FWM field Es with the source term
given by the nonlinear polarization vector Pnl, related to the
nonlinear coherence obtained in the first part. It is important to
note that both FWM signals are generated in two independent
processes and we can treat each one separately.

A. Nonlinear light-atom interaction

We consider that both nonlinear signals are induced by
two almost copropagating Gaussian laser beams, with wave

FIG. 1. (a) Spatial orientation of incident and FWM fields.
(b) Depiction of the parametric processes that generate signals S1

and S2 in a two-level atom.

vectors ka and kb, and detected in the 2ka − kb and 2kb − ka

directions, as shown in Fig. 1(a). We employ the density
operator formalism to calculate the atomic medium response
related to the nonlinear processes represented in Fig. 1(b). The
total Hamiltonian is Ĥ = Ĥ0 + Ĥint , where Ĥ0 is the free-atom
Hamiltonian such that for the ground |1〉 and excited |2〉
states, we have Ĥ0| j〉 = E j | j〉, where E j is the energy eigen-
value of | j〉, j ∈ {1, 2}. The interaction Hamiltonian is Ĥint =
−μ̂ · E(r, t ), where μ̂ = er̂ is the electric dipole operator
and the total electric field is given by E(r, t ) = ∑

υ Eυ (r, t ),
υ ∈ {a, b},

Eυ (r, t ) = 1
2ευEυ (r)e−i(kυ ·r−ωυ t ) + c.c.

= ευEυ (r, t ) + c.c., (1)

where kυ is the wave vector, ωυ is the frequency, ευ is the
polarization direction, the amplitudes Eυ (r) carry the trans-
verse dependence of the fields, and c.c. means the complex
conjugate. We consider a quasicopropagating configuration,
where the angle ϑ between ka and kb [Fig. 1(a)] is very small,
making kυ · r � kυz, where kυ = |kυ | = ωυnυ/c and nυ is the
index of refraction at frequency ωυ .

The polarization directions εa and εb of input beams Ea

and Eb, respectively, determine the number of atomic states
involved in the nonlinear process. We are interested in the case
where εa and εb are parallel circular polarizations. Thus, the
light-atom interaction can be described in terms of a two-level
system. We consider the |5S1/2, F = 2〉 → |5P3/2, F = 3〉 hy-
perfine transition of 87Rb. The nonlinear interaction leads to
the generation of signal S1, due to the absorption of two pho-
tons from beam Ea and the stimulated emission of one photon
from beam Eb, and signal S2, due to the absorption of two
photons from Eb and the stimulated emission of one photon
from Ea. Figure 1(b) illustrates these processes schematically.

We define the Rabi frequency

�υ (r) = μ jkEυ (r)

2h̄
, (2)
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where μ jk = 〈 j| (μ̂ · ευ ) |k〉, with j �= k, is the electric dipole
matrix element (due to parity μ j j = 0). The matrix elements
of Ĥint can be written

Hint, jk = −h̄
∑

υ

�υe−i(kυ z−ωυ t ) + c.c. (3)

The density operator ρ̂ = ∑
jk ρ jk | j〉 〈k| describes the state

of the atomic ensemble and satisfies
∑

j ρ j j = 1, and ρ jk =
ρ∗

k j , where the asterisk means complex conjugation. Its time
evolution is given by Liouville’s equation with a relaxation
term L̂ associated with spontaneous decay from |2〉 to |1〉,

d ρ̂

dt
= i

h̄
[ρ̂, Ĥ ] + L̂. (4)

In our model, populations and coherences decay at rates �

and �/2, respectively, where �/2π is the natural decay rate
of the excited state. For the D2 line of 87Rb, �/2π ≈ 6 MHz
[25]. With this we obtain the optical Bloch equations for the
two-level system

	̇ρ = −2i

h̄
[ρ12Hint,21 − c.c.] − �[	ρ − (	ρ)0],

ρ̇12 = − i

h̄
[Hint,12	ρ − ρ12(E2 − E1)] − �

2
ρ12, (5)

where 	ρ = ρ22 − ρ11 is the population difference and (	ρ)0

is the population difference far from the region of inter-
action with fields Ea and Eb. The problem of a two-level
system interacting with two strong fields has been addressed
in Refs. [26–28], and Eqs. (5) are solved for arbitrary pump
intensities assuming that the elements of the density opera-
tor oscillate with an infinite number of frequencies. In these
works, the nonlinear coherence associated with the FWM
process at frequency 2ωa − ωb is found in terms of a recursive
formula. Here we employ a simpler solution method, similar
to the treatment found in [7], to obtain a closed expression to
the relevant nonlinear coherence. Considering signal S1, we
assume that the coherence ρ12 oscillates with frequencies ωa,
ωb and 2ωa − ωb [6,7],

ρ12 = σ a
12eiωat + σ b

12eiωbt + σ 2a−b
12 ei(2ωa−ωb)t , (6)

where σi j are the slowly varying coherences. The 2ωa − ωb

component is responsible for the FWM process that generates
the signal S1. The population difference 	ρ has a stationary
component and one oscillating at |ωa − ωb| [6],

	ρ = (	ρ)dc + [(	ρ)a−bei(ωa−ωb)t + c.c.]. (7)

We now substitute Eqs. (3), (6), and (7) into Eqs. (5), per-
form the rotating-wave approximation, and collect terms that
oscillate with the same frequency. Then, in the steady-state
regime we arrive at the set of algebraic equations shown in
Appendix A for the slowly varying coherences and population
differences. Defining �̃υ ≡ �υe−ikυ z, δυ ≡ ωυ − ω0 as the
detuning from resonance of field �υ , and ω0 ≡ (E2 − E1)/h̄
as the resonance frequency, we obtain for the coherence σ 2a−b

12 ,
related to the generation of signal S1,

σ 2a−b
12 = −2i�̃2

a�̃
∗
b(	ρ)dc(1/	a + 1/	b)

(	a + 	b)(2iδa − iδb + �/2) + 2|�a|2 , (8)

where 	a = iδa + �/2, 	b = −iδb + �/2, and

(	ρ)dc = (	ρ)0

1 + 2|�a|2
δ2

a+�2/4 + 2|�b|2
δ2

b+�2/4

. (9)

A similar result is found for the coherence σ 2b−a
12 , related to

signal S2. For Rabi frequencies up to �a,b = �, the FWM
spectra calculated with the coherence given by Eq. (8) are
in good agreement with the more general solution given in
Refs. [27,28]. For the higher intensities, similar effects on the
light structure upon propagation can be obtained with both
solutions. The coherences σ a

12 and σ b
12 can be found as

σ a
12 = −i�̃aρ

0
11

	a + 2|�a|2/� + 2|�b|2/	ab
, (10)

σ b
12 = −i�̃bρ

0
11

	∗
b + 2|�b|2/� + 2|�a|2/	∗

ab

, (11)

where 	ab = iδa − iδb + �/2 and ρ0
11 = 1 is the population

of the ground state far from the region of interaction.
We rewrite the coherences given by Eqs. (8), (10), and (11)

in the forms

σ 2a−b
12 = X 2a−b�̃2

a�̃
∗
b, (12)

σ a
12 = X a�̃a, (13)

σ b
12 = X b�̃b, (14)

where X 2a−b, X a, and X b are the couplings associated with
the processes in directions 2ka − kb, ka, and kb, respectively,
and carry the spectral response of the medium. These coupling
factors also depend on the field amplitudes |�a,b|2, and thus
the corresponding susceptibilities contain information about
power broadening and saturation effects. We define the effec-
tive susceptibilities

χ2a−b = N |μ12|4
ε0h̄3 X 2a−b, (15)

χab = N |μ12|2
ε0 h̄

(X a + X b), (16)

where N is the atomic density. Since the atoms are considered
stationary, we do not need to include the effect of Doppler
broadening.

B. Wave equation

We are interested in the field distributions of the generated
signals and thus seek a solution to the wave equation for
field Es. We focus only on S1, since the equations for S2 are
obtained and solved in the same way. The wave equation for
the FWM electric field is [29]

∇2Es − 1

c2

∂2Es

∂t2
= μ0

∂2P
∂t2

, (17)

where Es is written as in Eq. (1). The macroscopic polar-
ization P can be divided in two components: P2a−b, which
describes the generation process of the FWM field Es, and Pab,
associated with the propagation of the generated field inside
the medium affected by fields Ea and Eb. We can write the
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total polarization as P = Pab + P2a−b, and its projection onto
the oscillation direction of the generated field is

(P · ε∗
s ) = ε0χ

abEs + ε0χ
2a−bE2

a E∗
b . (18)

In the calculations that follow and throughout the rest of
this work, we neglect the first term on the right-hand side
of Eq. (18). This is done under the thin-medium regime as-
sumption such that the generated field is not influenced by
the medium response associated with χab. Under the rotating-
wave and paraxial approximations, we obtain(

i

2ks
∇2

⊥ + ∂

∂z

)
Es = κ�2

a�
∗
be−i	kz, (19)

where ∇2
⊥ is the transverse Laplacian, 	k = |2ka − kb −

ks| � (2ka − kb) cos ϑ
2 − ks cos 3ϑ

2 is the phase mismatch, and
κ is the nonlinear coupling, given by

κ (r, z; δ) = −i
ωsh̄

3

2cμ12|μ12|2 χ2a−b(r, z; δ). (20)

Here δ represents δa and δb.
We highlight that there is an implicit position dependence

for κ . It exists only inside the interaction region, between
z = −L/2 and z = L/2, and is zero everywhere else along
the z axis. Thus, Eq. (19) describes the nonlinear signal
generation process inside the sample. There is no nonlinear
signal at positions z � −L/2 and so the boundary condi-
tion is Es(r⊥,−L/2) = 0. For z > L/2, where the generated
beam propagates in free space, Es must satisfy the homoge-
neous paraxial wave equation (i∇2

⊥/2ks + ∂/∂z)Es = 0, with
the boundary condition given by the solution of Eq. (19) at
z = L/2, Es(r⊥, L/2).

For the solution of Eq. (19), we first note that the Rabi
frequencies of incident beams are comparable to �, and we
expect them to undergo little extinction and transverse struc-
ture variation along the interaction region. Thus, we treat
Eq. (19) uncoupled from the wave equations for Ea and Eb.
This simplifies the mathematical work of our problem and is
shown to produce results in good agreement with experimen-
tal measurements [12,15,21].

C. Solution to the FWM field wave equation

It is well known that both the HG and LG paraxial modes
form complete orthonormal sets of functions on the trans-
verse plane. This property allows us to write any scalar
optical field as a superposition of the form U (r⊥, z) =∑

m,n cmn(z)umn(r⊥, z), where indices (m, n) characterize the
modes of the chosen basis. The expansion coefficients cmn(z)
can be seen as power control parameters. If we call Pmn =
|cmn|2 the power allocated to the mode umn, then the total
power carried by the field U is P = ∑

m,n Pmn = ∑
m,n |cmn|2.

It is important to note that cmn(z) can be complex.
We consider only incident Gaussian beams and therefore

the LG basis is most convenient due to its cylindrical symme-
try. The LG mode is defined as

u�p(r, φ, z) = C�p

w(z)

( √
2r

w(z)

)|�|
L|�|

p

(
2r2

w2(z)

)
ei�φ

× e−r2/w2(z) exp

(
−i

kr2

2R(z)
+ i�G(z)

)
, (21)

where C�p = √
2p!/π (p + |�|)! is the normalization con-

stant, L|�|
p (·) is the associated Laguerre polynomial, w(z) =

w0

√
1 + (z/zR)2 is the beam waist, R(z) = z[1 + (zR/z)2] is

the curvature radius, �G(z) = (N�p + 1) tan−1(z/zR) is the
Gouy phase shift, with the total mode order defined as N�p =
2p + |�|, zR = kw2

0/2 is the Rayleigh range, and w0 is the
minimum beam waist.

A light beam described by an LG mode carries well-
defined OAM in the z direction, which is related to the
azimuthal phase factor ei�φ , where the integer � ∈ (−∞,∞),
called the topological charge, defines the OAM per photon in
the beam [2]. The other index characterizing the mode, p ∈
[0,∞), is called the radial index. It is related to the number of
dark rings in the intensity profile of u�p, but does not have a
straightforward connection with a physical quantity, as is the
case for �. In recent years, however, the radial index has been
the subject of theoretical works [30,31] that have enlightened
its significance.

We write the generated field amplitude Es as the superposi-
tion

Es(r) =
∞∑

�=−∞

∞∑
p=0

A�p(z)u�p(r). (22)

The problem becomes that of finding the set of relevant
coefficients {A�p}. Substituting Eq. (22) into Eq. (19) and
employing the orthogonality relation of u�p, we obtain an
equation for A�p(z),

∂A�p(z)

∂z
= ��

p(z)e−i	kz, (23)

where

��
p(z) =

∫ 2π

0

∫ ∞

0
κ (r)�2

a�
∗
bu∗

�pr dr dφ (24)

is the projection of the spatially dependent nonlinear source
term onto the LG function space, called the transverse over-
lap integral. In all cases we consider, Eq. (24) is calculated
assuming parallel transverse planes for all beams, which is
reasonable for small angles ϑ [21].

As we consider only Gaussian incident beams, which carry
no OAM and thus possess � = 0, it will be useful to define the
single index mode up(r, z) ≡ u0p(r, z), which is azimuthally
symmetric. Since κ (r) only contains the squared modulus of
fields �a,b, it has no φ dependence, even for �a,b �= 0. The
azimuthal integral in Eq. (24) yields

∫ 2π

0 ei�φdφ = 2πδ�,0 and
��

p(z) becomes �p(z) ≡ �0
p(z) = 2π

∫ ∞
0 κ�2

a�
∗
bu∗

pr dr. We
then see that, as the incident fields have � = 0, the FWM field
does not carry OAM content, as anticipated, and can be writ-
ten as a superposition of radial modes Es = ∑

p Ap(z)up(r, z),
where Ap ≡ A�=0,p. The presence of modes with different
orders Np = N0p = 2p can lead to the interference of the vari-
ous Gouy phase factors exp[i(1 + Np) tan−1(z/zR)] that affect
the radial structure of |Es|2 upon propagation [32,33]. When
incident fields carry single topological charges or an arbitrary
superposition of topological charges, the azimuthal integral
imposes the conservation of OAM [12,14,15]. This is a subject
beyond the scope of the present work.
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We then solve Eq. (23) to find the expansion coefficients as

Ap(z) =
∫ z<

−L/2
�p(z′)e−i	kz′

dz′, (25)

where z< = min[z, L/2]. This solution is suitable for both
regions of space: −L/2 < z � L/2 and z > L/2. We are in-
terested in the FWM beam outside the medium, where it can
be detected, and thus seek to evaluate Ap(L/2). It is important
to note that, although not explicit, Ap(z) is also a function of
the detunings δa and δb.

The characteristic length of �p(z) is given by the Rayleigh
range of the beams that participate in the FWM process, zR.
For a thin medium, characterized by L � zR, we can neglect
the variation of �p(z) inside the interaction region and take its
value at z = 0. This allows us to remove the transverse overlap
from the z integral in Eq. (25) and write the approximate form

Ap

(L

2

)
� �p(0)

∫ L/2

−L/2
e−i	kz′

dz′

= �p(0)T (L), (26)

where T (L) = 2 sin(	kL/2)/	k can be regarded as an ef-
ficiency measure of the signal generation process inside the
medium. It takes into account the phase mismatch and is a
common factor to all Ap. Thus, in the thin-medium regime,
all the information of the nonlinear wave-mixing process is
contained in the transverse overlap integral evaluated at z = 0,
�p(0). It is therefore the main quantity in our calculations
and completely determines the distribution of modes of the
generated fields.

The orthogonality of LG modes allows us to write the total
power of field Es as P = ∑

p |Ap|2, which gives the normal-
ization factor of Es at fixed δ. We define the mode purity
or mode weight as ηp ≡ |Ap|2/P, a measure of the relative
contribution of the mode up to Es. The phase angle of Ap

is �p such that we can write the expansion coefficient in
the normalized form Ap = √

Pηp ei�p . Note that the relative
phases between the various expansion coefficients can also be
responsible for changes on the output beam superposition.

The nonlinear coupling κ (r, z; δ) ∝ χ2a−b(r, z; δ) has a
complicated dependence on the input fields and rigorously
on the position r. However, even though this coupling can
promote sensible modifications to the FWM beam in the near
field, it does not contribute substantially to the transverse
shape of the far-field FWM beam, which is mainly determined
by the mode components of fields �a and �b. This suggests
that the FWM beam profile is dictated by the overlap of
input beams. Indeed, this is usually assumed in the descrip-
tion of nonlinear processes involving beams with OAM or
arbitrary transverse structures. In Refs. [32,34–36], which fo-
cus on second-order nonlinearities (parametric oscillation and
second-harmonic generation), and in Refs. [12,14,15], which
treat FWM, the quantities analogous to those of Eq. (24) are
overlap integrals of three (χ (2)) and four (χ (3)) LG modes.
In all of these cases, the relevant nonlinear susceptibility χ (2)

or χ (3) is a uniform quantity that factors out of the overlap
integral and does not affect the value of the mode expansion
coefficients. With the present study, we seek to understand the
influence of the atomic medium on the FWM process, more
specifically, the role of the full spatial and spectral depen-

dences of χ2a−b(r; δ) and χ2b−a(r; δ) on the spatial features
of signals S1 and S2 in the particular FWM configuration
considered. Our results, in Sec. III, show that by varying the
power and the frequency of input fields, one can produce
changes of the distributions of mode weights ηp and phases
�p, which in turn generate modifications on the FWM beams
upon free-space propagation. This is because, in our case, the
effective susceptibility cannot be factored out from the overlap
integral and is taken fully into account in the calculations.

D. Longitudinal profile of the FWM field

The spot size of the FWM beam is well described by the
rms radius, defined as rrms(z) ≡ ( 1

P

∫∫
r2|Es|2r dr dφ)1/2 [37].

Substituting Eq. (22), at z > L/2 we can obtain the form [38]

rrms(z) =
√

r2
m + θ2

rms(z − zm)2, (27)

where rm is the minimum spot size, zm is the position where
it occurs, and θrms is the divergence angle. These three pa-
rameters are calculated from the set of coefficients {Ap} (see
Appendix B) and completely determine the longitudinal pro-
file of the beam. We can also introduce the dimensionless
quantity M2 = kθrmsrm, called the beam quality factor, which
is proven to satisfy the bound M2 � 1 + 〈|�|〉 [38], where
〈|�|〉 is the mean value of the topological charge magnitude
in the field expansion. In our case, 〈|�|〉 = 0 and the quality
factor must therefore satisfy M2 � 1.

We highlight that θrms, rm, zm, and M2, the so-called rms
quantities, depend on the detunings δa,b. In order to highlight
that this dependence arises in the theory due to the spatial dis-
tribution of χ2a−b, we consider the spatially uniform nonlinear
coupling κ (δ) ∝ χ (δ), an averaged measure of the nonlinear
response over the interaction volume. Then κ (δ) factors out
of the integral given by Eq. (24), which becomes the integral
of a product of four LG modes [12,14,15]. It can be seen that
in this case all of the dependence on the frequency degrees
of freedom factor out from the coefficients Ap and the rms
quantities do not vary with δ.

III. RESULTS AND DISCUSSION

In this section we present and discuss our main results.
Together they comprise a theoretical investigation of various
aspects of the FWM signal generation (induced by Gaussian
incident beams) and the free-space propagation after leaving
the nonlinear medium.

Our calculations consist of evaluating the expansion coeffi-
cients Ap for the two symmetric signals S1 and S2. With the set
{Ap}, all of the quantities we are interested in can be obtained,
such as the intensity distribution |�s|2 and its propagation
outside the medium and the mode components ηp. We do this
for several configurations. Here each configuration is defined
by the amplitudes �0

a and �0
b, related to the total power of the

incident beams [�a,b(r) = �0
a,bu0(r)], and the detunings from

resonance δa and δb. In the calculations, all beams possess the
same wavelength λ and minimum waist w0, giving the same
Rayleigh range zR.

We consider that the waist of all beams is w0 = 1 mm
near the interaction region. For the wavelength λ = 780 nm,
used to excite the D2 line of 87Rb, the Rayleigh range is
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FIG. 2. (a) Mode weights ηp, (b) propagation of the FWM beam intensity profile outside the interaction medium from z/zR = L/2zR ≈ 0
to z/zR = 1 (insets show the intensity profile at z = L/2, zR/2, and zR), and (c) normalized radial distribution of intensity at positions z = L/2,
zR/2, and zR for incident Gaussian beams with Rabi frequencies �0

a,b = � = 0.5�, �, 2�, and 4� (from top to bottom).

zR = πw2
0/λ ≈ 4 m. A cold-atom cloud usually obtained with

a MOT has a size L of a few millimeters. The condition
L/zR � 1 is satisfied, thus justifying our focus on the thin-
medium regime.

As will be seen, for purely Gaussian incident beams, the
transverse shapes of the FWM beams are mainly Gaussian
but can have significant contributions from modes with p > 0.
We show how the transverse profiles of the generated FWM
beams and their free-space propagation are affected by the to-
tal power contained in the incident beams and by the detunings
from resonance δa and δb.

A. FWM induced by Gaussian beams

For Gaussian input beams, the two signals S1 and S2

carry null topological charges �1 = �2 = 0. Also, for equal
amplitudes �0

a = �0
b and detunings δa = δb = δ, they pos-

sess completely symmetric transverse shapes and free-space
propagation characteristics. This is because the nonlinear co-
herence, given by Eq. (8), remains the same with an exchange
of labels a ↔ b.

1. Effect of pump intensity

We now investigate the effect of the total power contained
in the incident beams on the overall shape of the generated
beams. The weights ηp, which quantify the contribution of

each mode up to the generated field Es, are represented in
Fig. 2(a) and the radial distribution of intensity at different
longitudinal positions is discriminated in Fig. 2(c). Figure 2(b)
shows the FWM beam propagation for δa = δb = 0 and differ-
ent values of �0

a = �0
b = �. We note that as the amplitudes

increase, the overall shape of the generated beam at the non-
linear medium exit changes significantly. However, keeping
�0

a = �0
b, the symmetry between both generated beams is

preserved. Near the medium exit z/zR = L/2zR ≈ 0, the beam
becomes ring shaped. We attribute this behavior to a spa-
tial saturation effect, which can be understood by inspecting
Eq. (8). In all cases, the near-field intensity profile is de-
termined by the nonlinear coherence |σ 2a−b

12 |2 ∝ |χ2a−b|2I2
a Ib

and due to the Gaussian distribution of the fields, for greater
amplitudes, the denominator in Eq. (8) is larger at the center,
making |σ 2a−b

12 |2 smaller in this region. Nonetheless, after
propagating distances of the order of zR, the beams acquire a
shape that corresponds to the dominant modes, as we can see
in the radial profile at z = zR (green solid line) in Fig. 2(c).
This is similar to what is verified in Ref. [32].

For the lower intensities (� = 0.5�,�) the dominant mode
is u0 and the far-field profile is mainly Gaussian. In this case,
the saturation effects are very small, making the influence of
the nonlinear coupling κ (r) in Eq. (24) negligible. The val-
ues of ηp approach those obtained by calculating the overlap
integral of four LG modes [12,14,15]. On the other hand,
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for the higher intensities (� = 2�, 4�) there is a significant
contribution from the mode u1 and a dark ring is present on the
far-field profile. This transition of the radial profile is due to
the superposition of modes in the generated beam that possess
different mode numbers Np and thus acquire different Gouy
phases upon propagation [32,33].

A sensible change of the longitudinal profile is achieved
by increasing �. We highlight that the generated beam out-
side the medium clearly indicates an intensity maximum at
positions z/zR far from 0, for all incident beam amplitudes.
In fact, for increasing �, this position of maximum intensity
is shifted towards greater z/zR, as seen from Fig. 2(b). This
would make one expect the position of minimum rrms(z) to
be shifted as well. However, this is not the case, since the
minimum of rrms(z) does not necessarily correspond to the po-
sition of maximum local intensity. This is because rrms(z) for
an arbitrary beam does not correspond to the radial position
where the field amplitude decreases by a factor of 1/e relative
to the amplitude at the center, as it does for a pure Gaussian
beam.

It is important to note that although in our model the effec-
tive susceptibility only takes into account contributions up to
third order in the fields, the more general solution to the FWM
coherence, presented in Refs. [27,28], gives very similar re-
sults. For instance, the maximum relative error between the
mode weights ηp shown in Fig. 2(a) and those calculated using
the recursive formula is 7%. The resulting mode superposition
preserves the overall behavior shown in Figs. 2(b) and 2(c).
More importantly, with our solution, we are able to establish
a simple physical interpretation of the results.

2. Effect of detunings from resonance

To better understand the influence of the medium on the
spatial characteristics of the generated beams, we investigate
the effect of the detunings from resonance, δa,b, on the free-
space propagation of the generated beam. First, we consider a
situation where both beams have equal detunings, i.e., come
from the same laser source. We see from Fig. 3 that δa,b has an
intuitive effect on the FWM beams. On resonance, the beams
are generated with the maximum radius and the minimum
divergence. As we move away from the resonance, the radius
right outside the sample decreases while the divergence angle
increases. It is interesting to note that zm changes considerably
for varying incident beam detunings. Above resonance, zm is
shifted to negative values, while below resonance, it is shifted
to positive values. These results suggest that it is possible to
translate the position where the minimum waist of the FWM
beam occurs by controlling the frequency of the incident
beams. This translation comes with not much change of the
other beam parameters. Another parameter is the beam quality
factor, which is maximum at resonance and approaches unity
as δa,b goes away from resonance.

To evidence that the influence of the frequency degrees of
freedom depends on the incident beam amplitudes, we show
in the inset of Fig. 3(a) the rms radii of the symmetrically
generated beams when �0

a,b = � = �/4. We see that all five
curves, at each δa,b value, are now closer to each other. The
longitudinal parameters for this low Rabi frequency are shown
by the black curves with crosses of Fig. 3(b), and we can

FIG. 3. (a) Behavior of rrms(z) of the symmetric generated beams
with varying δa = δb = δa,b for � = � and �/4 (inset). (b) Longitu-
dinal parameters for the symmetric generated beams for the same
values of δa,b. Curves with red circles and black crosses correspond
to � = � and � = �/4, respectively.

see that rm varies much less with the detunings and zm stays
around 0 for all δa,b. This is because, in the limit �0

a,b → 0, the
coupling κ becomes uniform and factors out of the integral in
Eq. (24). As a result, the frequency degrees of freedom would
not affect the overall shape of the generated beam, only the
power conversion efficiency. Moreover, we can see that the
beam quality factor satisfies M2 � 1 for all detunings and
approaches the value M2 = 1 for increasing |δa,b|.

We now turn to a situation where the two incident beams do
not have the same detuning but maintain equal Rabi frequen-
cies �0

a = �0
b. In this case, the symmetry under the exchange

a ↔ b in Eq. (8) no longer holds and the generated signals S1

and S2 are shown to differ.
First, we set the frequency of Ea on resonance, δa = 0,

and make δb vary around δb = 0. Figure 4(a) shows the radii
of both generated beams on free-space propagation in this
situation. We see that by varying only the detuning δb, we also
obtain changes in the focusing region of both FWM beams.
However, the positions of minimum radius, zm, of the two
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FIG. 4. (a) Behavior of rrms(z) of signals S1 (top) and S2 (bottom)
and (b) longitudinal parameters of S1 (red circles) and S2 (black
crosses) for δa = 0 and different values of δb/�. The Rabi frequen-
cies are �0

a,b = �.

signals are translated in opposite directions [Fig. 4(b)]. A
more focused beam in the 2ka − kb direction is accompanied
by a more spread out beam in the 2kb − ka direction and
vice versa. The values of the divergence angle θrms, minimum
radius rm, and quality factor M2, also shown in Fig. 4(b), are
very similar for both signals. Further, their dependence on δb

is similar to that seen in the case with δa = δb.
In Fig. 5(a) we show the longitudinal profile of S1 and S2

for δa = 0 and δb = 0.75�, corresponding to the thin purple
solid curves of Fig. 4(a). Referring to the discussion regarding
the position of maximum intensity, we see that in this case
the position of the minimum rrms(z) seems to be closer to the
position of maximum intensity outside the nonlinear medium.
The distributions of ηp, shown in Fig. 5(b), are similar for both
signals, with u0 having the greatest contribution, as before,
and slightly different weights for the modes with p �= 0. How-
ever, the distribution of relative phases of the modes up that
are being superimposed, shown in Fig. 5(c), is quite different
between S1 and S2. This is the dominant factor that leads to
the differences in the longitudinal profiles of Fig. 5(a).

Our calculations reveal an effect that resembles Kerr lens-
ing [39], where the total index of refraction in the medium

FIG. 5. (a) Propagation of both generated beams outside the
nonlinear medium from z/zR = L/2zR ≈ 0 to z/zR = 1, (b) mode
components ηp, and (c) phases �p of S1 and S2 for δa = 0 and δb =
0.75�, corresponding to the thin purple solid curves of Fig. 4(a).

can be written as n = n0 + n2I , where n0 and n2 are the linear
and nonlinear refractive indices and I is the beam intensity.
The total index of refraction seen by the strong beam is thus
modulated by its own spatial distribution. Evidently, the gen-
erated beam is not strong enough to induce self-modulation.
However, we can explain qualitatively the observed focusing-
defocusing effect by expressing the total index of refraction
seen by the generated field as

nt = n0 + 	n(Ia, Ib; δ), (28)

where 	n(Ia, Ib; δ) ∝ Reχ2a−b(r; δ) is a nonlinear contribu-
tion modulated by the spatial distribution of both incident
beams.

Now we look at the first situation considered: incident
fields with equal detunings δa = δb and symmetric nonlinear
signals. We show in Figs. 6(a) and 6(b) plots of the real part of
the nonlinear susceptibility as a function of the radial coordi-
nate for different values of δa = δb. The Rabi frequencies are
�0

a,b = � [Fig. 6(a)] and �0
a,b = �/4 [Fig. 6(b)], correspond-

ing to the situations of Fig. 3(a) and its inset, respectively.
We see that below resonance δa,b < 0 (red dotted and blue
dashed curves), the total index of refraction is greater at the
center r = 0 and decreases at greater r positions. Thus, the
FWM beam is focused. On resonance δa,b = 0, the total index
of refraction is unaffected by χ2a−b = χ2b−a = χ at all radial
positions. The FWM beam is neither focused nor defocused.
Above resonance δa,b > 0 (thin purple solid and green dash-
dotted curves), nt is smaller at the center and increases as
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FIG. 6. Radial distributions of the real part of the nonlinear
susceptibility for different cases. In (a) and (b) the detunings are
equal δa = δb = δ, depicting the completely symmetric case χ2a−b =
χ 2b−a = χ . The Rabi frequencies are (a) �0

a,b = � and (b) �0
a,b =

�/4. In (c) Reχ 2a−b(r; δb) and (d) Reχ 2b−a(r; δb) for different values
of δb and for �0

a,b = �, depicting the non-symmetric case when δa is
fixed on resonance.

we move away from this position. As a result, the FWM
beam is defocused. For the lower intensity [Fig. 6(b)] the
variation of the refractive index is smaller. We then expect
the (de)focusing effect to be weaker. This agrees with the
behavior of zm shown in Fig. 3 and its inset.

The same analysis can be made regarding the second case,
where δa is fixed at resonance and δb varies. As already dis-
cussed, the two FWM signals in this case are nonsymmetric.
In Figs. 6(c) and 6(d) we present plots of the real part of
the nonlinear susceptibility associated with the generation
of FWM signals S1 (2ka − kb) and S2 (2kb − ka) with the
input Rabi frequency �0

a,b = �. The nonlinear susceptibility
related to S2 has a radial dependence similar to that shown
in Figs. 6(a) and 6(b) for δb > 0 and δb < 0, while for S1

the curves are switched. This indicates that the (de)focusing
effect is opposite between S1 and S2, in agreement with the
results for zm shown in Fig. 4(b). The opposite behavior of
the two generated beams is related to whether the beams that
participate with one and two photons in the nonlinear process
have negative or positive detunings.

When the incident fields carry topological charge, the
radial profile of the susceptibility is further affected by
their non-Gaussian intensity profiles. More interestingly, the
phase distribution of the generated field is twisted when the

detunings are varied around resonance [23,40]. The phase
discontinuities that arise from the azimuthal phase factors
e±i�φ , inherent to vortex beams, are the features that reveal
this twisting effect.

IV. CONCLUSION

We have shown that the combined spatial and spectral
degrees of freedom of the nonlinear susceptibility in a thin
medium lead to intuitive effects on the free-space propagation
properties of the generated FWM beam. In particular, we
analyzed a situation where two nonlinear signals are induced
by two incident beams with equal power and studied their
transverse and longitudinal characteristics. The FWM fields
were calculated as superpositions of paraxial modes, with the
expansion coefficients given by the overlap integral of the
nonlinear polarization. The effects of incident beam power
and detunings from resonance were investigated.

For increasing power, we showed that the distribution of
coefficient amplitudes is sensibly affected, leading to greater
contributions from higher-radial-order modes. The intensity
profile at the medium exit was shown to suffer notable change,
with an intensity ring being formed as the pump power
increases. Physically, this can be understood as a spatial sat-
uration effect. This intensity ring is not stable and under free
propagation to distances of the order of the Rayleigh range
outside the interaction medium, the ring-shaped profile tran-
sitions into one that is Gaussian at the center. These results
were obtained by modeling the atomic density operator with a
finite number of oscillating frequencies. Similar effects can be
verified if we consider a more general treatment of the optical
Bloch equations, suitable to a high-intensity regime.

When the detunings are varied around resonance, the dis-
tribution of phases of the superimposed modes is mainly
affected. In this case, the FWM beam is shown to undergo
focusing or defocusing, depending on whether the fields are
above or below resonance. We argued that it is possible to
identify a nonlinear contribution to the refractive index inside
the atomic medium, similar to the Kerr effect. The fundamen-
tal difference is that this nonlinear index is affected by the
intensity distribution of the strong pump beams and not by the
generated beam itself. Moreover, in the configuration where
two FWM signals are generated simultaneously, we showed
that the effect can be either symmetric between the two beams,
if the detunings are equal, or antisymmetric, if the detunings
are different, e.g., one of the detunings is fixed on resonance.

The transfer of transverse structure of light beams in non-
linear processes is strongly dictated by the overlap of incident
beams, and this assumption leads to remarkably accurate the-
oretical predictions in both third- and second-order processes.
However, by taking into account the spatial structure of the
medium susceptibility, effects due to pump power and fre-
quency arise and we show that in this case the overall spatial
shape of the generated signal can be sensibly affected. The
results presented in this work indicate that the FWM beam
structure, in the near field, can reveal characteristics of the
nonlinear light-atom interaction, such as the resonances of
the medium, saturation effects, and nonlinear variations of the
refractive index, while after propagation to distances of the or-
der of a Rayleigh range, this information fades away as the
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generated beam evolves into a stable form, which is strongly
dictated by the overlap of incident beam modes.
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APPENDIX A: STEADY-STATE OPTICAL BLOCH
EQUATIONS

The modeling of the atomic quantities is based on that
of Ref. [7], where the usual case of the nonlinear process
involving a strong pump and a weak probe was considered.
In our specific setup both fields possess similar intensities and
thus we look for solutions to the relevant matrix elements of
the density operator that are influenced by both pumps. The
set of steady-state equations for the Fourier components in
Eqs. (6) and (7) is

(	ρ)a−b = 2i�̃∗
aσ

2a−b
12 + 2i�̃∗

bσ
a
12 − 2i�̃aσ

b∗
12

iδa − iδb + �
, (A1)

(	ρ)dc = (	ρ)0 − 4

�

[
Im

(
�∗

aσ
a
12

) + Im(�∗
bσ

b
12

)]
, (A2)

σ a
12 = i�̃a(	ρ)dc + i�̃b(	ρ)a−b

iδa + �/2
, (A3)

σ b
12 = i�̃b(	ρ)dc + i�̃a[(	ρ)a−b]∗

iδb + �/2
, (A4)

σ 2a−b
12 = i�̃a(	ρ)a−b

2iδa − iδb + �/2
. (A5)

With a direct substitution method, it is possible to arrive at the
slow coherence σ 2a−b

12 shown in the main text. The coherence
related to signal S2, in the 2kb − ka direction, can be found by
introducing in Eq. (6) a term ρ2b−a

12 that oscillates at 2ωb − ωa

and following the same procedure. It is evident that this will
result in a solution to the slow coherence σ 2b−a

12 that has the
same form as σ 2a−b

12 with the exchange of labels a ↔ b.
One could add to Eq. (6) the coherence ρ2b−a

12 =
σ 2b−a

12 ei(2ωb−ωa )t , related to the FWM process at frequency
2ωb − ωa. This would lead to an additional equation for the
slow coherence σ 2b−a

12 and Eq. (A1), for the population dif-
ference (	ρ)a−b, would be modified. However, terms which
appear due to these changes are related to higher-order non-
linear processes in the direction 2ka − kb and we do not keep
them in our solution process.

APPENDIX B: CALCULATION OF THE RMS
PARAMETERS

Following Ref. [38], we can write the rms radius of field
Es = ∑

p Apup as

rrms(z) = w(z)√
2

[1 + 〈N〉 − Re(ϕe2i tan−1(z/zR ) )]1/2,

where 〈N〉 = ∑
p ηp2p is the mean value of the mode order

Np = 2p in the superposition and ϕ = 1
P

∑
p>0 2pApA∗

p−1 is
a generally complex-valued factor. By straightforward manip-
ulations we can obtain the form shown in Eq. (27), rrms(z) =√

r2
m + θ2

rms(z − zm)2, where we have explicitly

r2
m = w2

0

2

(1 + 〈N〉)2 − |ϕ|2
1 + 〈N〉 + Re(ϕ)

, (B1)

zm = −zR
Im(ϕ)

1 + 〈N〉 + Re(ϕ)
, (B2)

θrms = w0√
2zR

[1 + 〈N〉 + Re(ϕ)]1/2. (B3)
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013840 (2018).

[24] A. Alvarez, A. de Almeida, and S. Vianna, J. Phys. B 54,
045403 (2021).

[25] D. A. Steck, Rubidium 87 D line data, https://steck.us/
alkalidata/rubidium87numbers.pdf (2001), accessed 05-05-
2022.

[26] G. S. Agarwal and N. Nayak, Phys. Rev. A 33, 391
(1986).

[27] H. Friedmann and A. D. Wilson-Gordon, Phys. Rev. A 36, 1333
(1987).

[28] A. D. Wilson-Gordon and H. Friedmann, Phys. Rev. A 38, 4087
(1988).

[29] J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1999).

[30] E. Karimi, R. W. Boyd, P. de la Hoz, H. de Guise, J. Řeháček,
Z. Hradil, A. Aiello, G. Leuchs, and L. L. Sánchez-Soto, Phys.
Rev. A 89, 063813 (2014).

[31] W. N. Plick and M. Krenn, Phys. Rev. A 92, 063841 (2015).
[32] L. J. Pereira, W. T. Buono, D. S. Tasca, K. Dechoum, and A. Z.

Khoury, Phys. Rev. A 96, 053856 (2017).
[33] H.-J. Wu, L.-W. Mao, Y.-J. Yang, C. Rosales-Guzmán, W. Gao,

B.-S. Shi, and Z.-H. Zhu, Phys. Rev. A 101, 063805 (2020).
[34] C. Schwob, P. F. Cohadon, C. Fabre, M. Marte, H. Ritsch, A.

Gatti, and L. Lugiato, Appl. Phys. B 66, 685 (1998).
[35] G. B. Alves, R. F. Barros, D. S. Tasca, C. E. R. Souza, and A. Z.

Khoury, Phys. Rev. A 98, 063825 (2018).
[36] W. T. Buono, A. Santos, M. R. Maia, L. J. Pereira, D. S. Tasca,

K. Dechoum, T. Ruchon, and A. Z. Khoury, Phys. Rev. A 101,
043821 (2020).

[37] R. L. Phillips and L. C. Andrews, Appl. Opt. 22, 643 (1983).
[38] G. Vallone, G. Parisi, F. Spinello, E. Mari, F. Tamburini, and P.

Villoresi, Phys. Rev. A 94, 023802 (2016).
[39] R. Boyd, Nonlinear Optics (Academic, New York, 2020).
[40] C. Yu and Z. Wang, Phys. Rev. A 103, 013518 (2021).

053502-11

https://doi.org/10.1103/PhysRevA.96.013830
https://doi.org/10.1364/JOSAB.390280
https://doi.org/10.1103/PhysRevA.98.013840
https://doi.org/10.1088/1361-6455/abe178
https://steck.us/alkalidata/rubidium87numbers.pdf
https://doi.org/10.1103/PhysRevA.33.391
https://doi.org/10.1103/PhysRevA.36.1333
https://doi.org/10.1103/PhysRevA.38.4087
https://doi.org/10.1103/PhysRevA.89.063813
https://doi.org/10.1103/PhysRevA.92.063841
https://doi.org/10.1103/PhysRevA.96.053856
https://doi.org/10.1103/PhysRevA.101.063805
https://doi.org/10.1007/s003400050455
https://doi.org/10.1103/PhysRevA.98.063825
https://doi.org/10.1103/PhysRevA.101.043821
https://doi.org/10.1364/AO.22.000643
https://doi.org/10.1103/PhysRevA.94.023802
https://doi.org/10.1103/PhysRevA.103.013518

