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Quantum transport of strongly interacting fermions in one dimension far out of equilibrium
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In the study of quantum transport, much has been known about dynamics near thermal equilibrium. However,
quantum transport far away from equilibrium is much less well understood—the linear response approximation
does not hold for physics far out of equilibrium in general. In this work, motivated by recent cold atom
experiments on probing quantum many-body dynamics of a one-dimensional XXZ spin chain, where a transition
from ballistic to diffusive dynamics has been established by increasing the interaction strengths, we study the
strong interaction limit of the one-dimensional spinless fermion model, which is dual to the XXZ spin chain.
We develop a highly efficient computation algorithm for simulating the nonequilibrium dynamics of this system
exactly, and examine the nonequilibrium dynamics starting from a density modulation quantum state. We find
ballistic transport in this strongly correlated setting and show that a plane-wave description emerges at long-time
evolution. We also observe a sharp distinction between transport velocities in short and long times as induced by
interaction effects and provide a quantitative interpretation for the long-time transport velocity. We expect our
results to shed light on the understanding of the dynamics of the XXZ spin chain in the strong interaction regime.
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I. INTRODUCTION

Transport in low-dimensional quantum systems [1] has
been attracting continuous research interest from both theoret-
ical and experimental perspectives, due to both the existence
of solvable models [2] and intrinsic strong correlation effects
[1,3]. Although wave functions are exactly solvable via Bethe
ansatz (BA) [4] in certain one-dimensional (1D) models, it is
challenging to compute dynamical observables such as trans-
port properties with analytic methods. Phenomenons unveiled
by recent studies still demand advanced numerical techniques
to explain [5-7].

The spin-1/2 XXZ chain in one dimension is a representa-
tive spin model, with the Hamiltonian

L
H=U) (SIS + SIS, +ASSL,), ()

i=1

where L is the system size, J denotes the hopping strength, and
A labels the spin anisotropy. Despite its simplicity, this model
exhibits several interesting transport properties worth theoret-
ical investigation. New concepts in nonequilibrium dynamics
in closed quantum systems [8,9], including the generalized
Gibbs ensemble [10], can also be studied in this model with
a quantum quench setup [11]. Another reason is from the per-
spective of phenomenological transport laws. The existence
of anomalous transport at finite temperatures, which does not
obey Fourier’s law [12], has been proved via linear-response
theory [13] in this model.
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Previous studies on one-dimensional quantum spin trans-
port in the linear response regime have provided important
insights about the correlated quantum dynamics. It has been
proved that finite-temperature transport is ballistic for |[A]| < 1
(gapless phase) at zero magnetization (m, = ), (s;) /L = 0)
[14] or for generic A at finite magnetization [13,15]. For
nonzero magnetization, Mazur inequality [16] gives a finite
lower bound [13,15] for the spin Drude weight D‘(,f,) [17],
which indicates a ballistic transport. The theoretical study at
high temperature [13] finds

2

DY > z Z > 0. 2
v 4T 1+ A2(2+2m2) @)

At the same time, for m, = 0, besides the ballistic transport
in the gapless phase (JA| < 1), recent studies also suggest
[18-20] a diffusive transport in the gapped phase (JA| > 1)
and predict [21] a superdiffusive transport in the Heisenberg
limit (|A]| — 1).

In contrast to the linear-response regime, dynamics far out
of equilibrium is less well studied. The results obtained via
linear-response theory may not hold at far out of equilibrium.
Numerical methods, such as the commonly used density ma-
trix renormalization group (DMRG) algorithm [22], tend to
be limited in simulating long-time quantum dynamics due to
the rapid entanglement growth. Finding solvable models or
efficient algorithms is thus important for investigating far-out-
of-equilibrium dynamics.

The study of far-out-of-equilibrium quantum transport
becomes more desirable with recent developments in cold
atom experiments. Experiments based on such clean and
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FIG. 1. (a) Workflow of the algorithm solving the strongly interacting model. The dynamics can be efficiently computed in logical basis
by mapping the interacting model to a free one. The physical observables are computed by mapping back to interacting basis [23,24], for
which the key is to sample the Slater determinant wave function efficiently. Here we implement the recently developed fast fermion sampling
algorithm [25], in order to simulate large system sizes. (b) Illustration of the density modulation state. The black (white) circles represent
occupied (empty) sites. In this state, the particles are distributed in a periodic way with a period A and are separated by a distance R. Without
loss of generality, we put the remaining A — n(R 4 1) empty sites on the left of a period as a padding, with n the particle number in each period.

controllable closed quantum systems [26] are naturally suit-
able to study the nonequilibrium dynamics, stimulating much
recent research effort in this direction [5,7,27]. Notably, a
recent experiment [7] demonstrates a subdiffusive transport
for the spin helix state, instead of the diffusive behavior pre-
dicted by linear-response theory analysis [18,20], in a gapped
phase at zero magnetization for the anisotropic Heisenberg
model. The experiment on the isotropic case also shows a
violation of the linear-response approximation when consid-
ering high-energy-density spin spiral states [5]. Modeling and
understanding the far-out-of-equilibrium quantum transport of
the one-dimensional spin chain demands further theoretical
investigation.

In this work, we focus on a one-dimensional spinless
fermion model, which is equivalent to the spin-1/2 XXZ
model. We take a strong interaction limit, in which physical
observables can be efficiently calculated with our fast fermion
sampling algorithm [23-25]. Due to the infinitely large repul-
sion, we can only deal with cases away from half-filling (zero
magnetization). In the strong interaction limit, it has been
shown by linear response theory that the spin current operator
has full overlap with the energy current away from half filling,
which implies ballistic transport [13]. In this work, we focus
on the far-out-of-equilibrium quantum dynamics. We choose
the density modulation state (DMS), a highly excited state,
beyond the description of linear response theory. The setup of
the DMS state is demonstrated in Fig. 1(b). Our results show
that the far-out-of-equilibrium quantum evolution develops
ballistic transport even for the infinite-temperature ensemble.
Furthermore, we provide a plane-wave picture in describing
the long-time dynamics of this highly excited state in the
strongly interacting model. At last, we observe different trans-
port velocities in short and long times caused by interaction
effects. The transport velocity in the long-time limit is de-
scribed by our plane-wave picture.

II. MODEL AND METHODS

A. One-dimensional strongly interacting fermion model

We consider a strongly interacting fermionic model on
a one-dimensional lattice, with particle number N and the

site index i € [1, L]. The quantum many-body dynamics is
described by a Hamiltonian,

L, L, R
H=-1) (clei +He)+U Y Y minie,  (3)
i=1

i=1 k=1

with i the lattice site index, c¢; the fermionic annihilation
operator, and n; = cfc,- the occupation number. Here we take
the strongly interacting limit U — 400 and J is the tunneling
strength. The interaction range R and the filling p = N/L are
both tunable parameters in our model. In this work, we choose
an open boundary condition and set the lattice constant and
tunneling to be the length and energy units, respectively. In
fact, this fermionic model is equivalent to a spin-1/2 XXZ
model through a Jordan-Wigner transformation [4]. Notably,
all the dynamics are suppressed in this strong interaction limit
when the system is at half-filling, or equivalently at zero
magnetization in the corresponding spin model. Therefore,
in this work, we carry out our theoretical study away from
half-filling.

B. An efficient algorithm

To overcome the exponential complexity of the interact-
ing many-body system, here we adapt an efficient sampling
algorithm [24,25] to compute the time evolution, with an
O(M,LN?) complexity and an error § proportional to the in-
verse square root of My, the number of random samples. The
illustration of this method is shown in Fig. 1(a).

Since we take the infinite interaction limit, those states
with two particles in a neighborhood of size R are prohibited.
Taking this constraint into account, we can map our model to
an exactly solvable free fermion case [23,24]. This is realized
by considering one occupied site and R empty sites on its left
as a composite fermion. For theoretical convenience, we ap-
pend R empty sites at the left boundary, because otherwise we
cannot construct the composite fermion above when there is a
fermion in the leftmost R sites—only when we append these
empty sites could we make a one-to-one mapping [23,24].
Through this mapping, the particle number remains the same
as the original model and the system size is reduced to L, =
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FIG. 2. Relaxation of the density modulation state. The interaction range here is fixed to R = 1. (a, b) The normalized contrast, ¢(¢) in
Eq. (5), with different wave vectors Q, at filling p = 1/3. The evolution time ¢ is rescaled by the wavelength A and its square A? in (a) and
(b), respectively. (c, d) Time evolution of the normalized contrast at a different filling, p = 7/15. (e) Long-time oscillation frequency w of the
contrast as a function of the wave vector Q. The numerical data points are well fitted by a linear function @ = vyQ, with vy the dispersion
velocity. The slopes vy are 2.84, 3.21, 3.49, 3.69, and 3.71 for filling factors p = 1/3,2/5,4/9,7/15, and 10/21. (f) Dependence of v, on the
filling. A nontrivial linear relation between the inverse of dispersion velocity and the filling factor is uncovered. We find 1/vg ~ 0.52 x (1 — p)

by an empirical fitting.

L; — R(N — 1). Hereafter, we refer to the model before (after)
the mapping as the one in physical (logical) basis. Here we
point out that this is a highly nonlocal mapping which leads
to some nontrivial properties, such as “ball-like” behavior in
OTOC spreading [24].

Furthermore, an advanced fermion sampling method ben-
efits us with less time cost when solving the free fermion
problem. Contrary to the commonly used DMRG [22]
method, which only allows an investigation on systems up
to hundreds of sites in short and intermediate times, our
algorithm can solve the dynamics exactly regardless of the
evolution time, for a large system with up to thousands of
sites.

C. Density modulation state

Taking the interacting fermion model, we consider the time
evolution of a density modulation state, which has a similar
periodic structure as in spin helix states investigated in recent
experiments [5,7] through Jordan Wigner transformation. It
is a highly excited state since the expectation value of its
energy is equal to zero, corresponding to the infinite tem-
perature ensemble average (see Appendix). The preparation
of this state is shown in Fig. 1(b). Fermions are arranged in
a periodic structure with A as the wavelength, and thus the

particle number in a period is determined for a given filling p.
Within a period, these particles are aligned in a most compact
pattern, that is, the distance of two adjacent particles is set to
be the interaction range R. Then we still have A — n(R + 1)
empty sites remaining in each period, which we put on the
left of a period as a padding, with n as the particle number in
each period. At last, a suitable system size is also necessary
to minimize the finite size effect and the computation cost,
which we set as L = 4 in this work.

III. RELAXATION

The relaxation dynamics is characterized by examination
of the density modulation amplitude. Due to the periodicity of
density modulation states, the contrast of density modulation
is defined through a Fourier transform,

L

2
C(t) =7 ) (mi(t)) cos(Q0),

i=1

4)

where Q = 2w /A is the wave vector. For comparison, we
focus on the normalized contrast

c(t) = C@)/C(0). (&)
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This physical observable is also commonly used to character-
ize a spin helix state in recent experiments [7].

In the linear response regime, whether a system is half-
filled plays a key role in its transport property [13,14]. One
of the main purposes of our work is to investigate the strong
interaction effects on the quantum transport. We set the filling
o= # (m=1,2,...) so that we can gradually probe the
half-filling limit. The results are shown in Fig. 2.

We observe a data collapse in the density wave contrast
[C(¢) in Eq. (4)], with the evolution time (¢) rescaled by the
wavelength A. This data collapse holds even for a filling factor
quite close to 1/2 (p = 7/15). This data-collapse behavior is
absent if the time ¢ is rescaled by the square of the wavelength
)2 instead. These numerical results imply universal ballistic
transport in this model, despite the strong interaction induced
nonlinearity.

We further study the oscillation of the normalized contrast
c(t) via an analysis on the frequency spectrum f(w), which is
defined by a Fourier transformation of c¢(¢) to the frequency
domain. For convenience, we normalize the frequency spec-
trum and compare the results with different wave vectors Q in
the initial DMS. In Fig. 3(a), the frequency spectrum shows
a sharp peak at w = vpQ, with vy being the corresponding
dispersion velocity. The full width at half maxima (FWHM)
of the peaks for different Q is shown in Fig. 3(b). We find
a linear relation between FWHM and wave vector Q, which
is consistent with the data collapse as shown in Fig. 2. The
FWHM of the peak in the frequency spectrum also implies
that the decay of the normalized contrast is attributed to de-
phasing effects.

Since the quantum transport in this model is ballistic, we
make an analog with plane wave propagating in free space
with a certain velocity. Surprisingly, the ballistic transport that
emerges from the far-out-of-equilibrium DMS state in our
strongly interacting model is captured by a physical picture
of propagating plane wave in free space. For a massless plane
wave mode spreading in free space with wave vector k and
energy E = hiw, the dispersion relation is w = vk, where v
is a dispersion velocity that determines the ballistic transport
velocity of the plane wave in free space. In our model, we
find that the linear dispersion emerges wgp = vpQ in the long-
time oscillation dynamics of the DMS state for a broad range

I
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FIG. 4. Dependence of density modulation relaxation dynamics
on the interaction range. (a—c) normalized contrast c(¢) [Eq. (5)] with
interaction ranges R = 1, 2, and 3. We investigate the relaxation
dynamics for a broad range of wave vector Q from 0.09 to 0.16.
The evolution time 7 is rescaled by the wavelength A. (d) Long-time
oscillation frequency of the contrast. The numerical data points are
all captured by the linear relation w = vy Q. The dispersion velocities
vp are 2.44, 3.28, and 4.77 for the interaction range R = 1, 2, and 3,
respectively. Its inset shows the linear relation between the inverse of
the dispersion velocity vy and the interaction range R. The filling p
is fixed to 1/5 here.

of wave vector Q (Fig. 2). Besides, the dispersion velocity
extracted from the long-time oscillation quantitatively agrees
with the spreading velocity [see Fig. 5(c)]. These numeri-
cal results imply that the quantum dynamics of the strongly
interacting fermions in one dimension starting from the far-
out-of-equilibrium DMS state is well captured by a physical
picture of propagating dynamics of a massless plane wave
mode. The strong interaction effects on the dynamics are re-
flected by the nontrivial dependence of the dispersion velocity
v on the filling p [Fig. 2(f)], to be further elaborated on in the
later analysis of velocity renormalization.

To confirm the generality of our finding, we further inves-
tigate the relaxation dynamics at different interaction ranges
R. The results are shown in Fig. 4. We observe that for R = 1,
2, and 3, the relaxation dynamics starting from DMS states
with different wavelengths A all collapse on a curve when
time ¢ is rescaled by A. This confirms the ballistic transport
for the different choices of interaction ranges. We find that
the dispersion velocity extracted from late-time oscillation
dynamics becomes larger as we increase the interaction range
R [Fig. 4(d)]. This can be attributed to the fact that the longer
interaction range in our model tends to accelerate the dynam-
ical transport.

IV. VELOCITY RENORMALIZATION

Velocity is a characteristic property of ballistic transport,
as well as an observable which can be measured directly
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FIG. 5. Sound velocity renormalization. (a, b) Time evolution
of the density profile (n;(¢)) for free and interacting fermions, re-
spectively. The sound velocities are determined according to the
propagation of the wave front as marked by the green line in (a) and
the blue and red lines in (b). The free fermion dynamics is character-
ized by one velocity scale, vy, whereas the two different velocities, v;
and v,, appear in the early and late stages of the interacting dynamics.
In (b), we choose a system size L = 96, particle number N = 32,
and wavelength A = 24. The initial state is a density modulation
state as shown in Fig. 1. We use the same setup for noninteracting
fermions in (a) for a fair comparison. (c) Convergence of the propa-
gating velocities with increasing the system size. The velocities for
the noninteracting model (black triangles and stars), with different
fillings p and particle separations within a period D, converge to
v = 1.96 (black dotted line). The velocity v, for interacting fermions
(blue dots and red triangles) converges to the dispersion velocity
Vo (dashed lines), as extracted from long-time oscillation of the
dynamics. In (a)—(c), we choose R = 1. (d) The ratio between vy and
v, as a function of the filling p. The numerical results are well fitted
by a linear function.

in experiments. In our numerical simulation here, we de-
termine the sound velocity by extracting the slope of the
stripe pattern in the density profile (n;(z)). A typical time
evolution of (n;(¢)) is shown in Fig. 5(a) [5(b)] considering
the density modulation state in the free (strongly interact-
ing) model. The free fermion velocity vy and the short-time
(long-time) velocity v; (vz) in the interacting case is also
determined by fitting the stripe pattern in Fig. 5(a) [5(b)].
The strongly interacting model shows different behaviors at
early and late time evolution. This two-stage dynamical fea-
ture as originated from strong interaction effects makes the
system distinctive from noninteracting fermions. Moreover,
even at late time where the ballistic transport of the strongly
interacting model looks similar to the noninteracting case, the
propagating velocity is actually strongly renormalized by the
interaction.

To gain more insight into the renormalization process, we
quantitatively study the velocities mentioned above. As the
system size grows, the free fermion velocity vy and the long-

time velocity v, in the interacting case converge, which is
demonstrated in Fig. 5(c). For comparison, we also choose
DMS states as initial states in the noninteracting case. Again,
the particles are aligned in a periodic way [see Fig. 1(b)], with
D the distance between particles within a period, in analog
with R in the interacting case. It is shown that the converged
value of vy is independent of D and filling p, as expected for
free fermions. Hereafter, the velocities vy and v, are defined
according to their thermodynamic limits. We observe that the
velocity v, matches the dispersion velocity vy extracted from
the long-time oscillations. The linear fit in Fig. 5(d) suggests
the relation vy/v, = 1 — Rp. This is verified in our numerical
calculation for a broad range of R and p.

The renormalization of the velocity in the interacting
dynamics as compared to the noninteracting case can be un-
derstood from the mapping between the logical and physical
basis. In this mapping, a length scale / in the physical basis
(interacting) shrinks to [ — [Rp in the logical basis (nonin-
teracting) on average. Such shrinking has been used in the
previous study on the ground state of the 1D strongly inter-
acting fermions for the Luttinger parameter [23]. In our study
of the dynamics, since the long-time behavior of the strongly
interacting model is captured by the plane-wave picture, it is
reasonable to expect that the velocity renormalizes according
to the length scale, which then implies

2~ 1 —Rp. (6)
)

This is exactly the same as what we observed in our numerical
simulations.

V. CONCLUSION

In this work, we study the quantum transport properties of
strongly interacting spinless fermions in one dimension. This
model is simulated efficiently using a fast fermion sampling
algorithm at the strong interaction limit. Despite the strong
interaction, we observe robust ballistic transport for different
fillings and interaction ranges. The ballistic transport has two
stages in dynamics with different transport velocities. We pro-
pose a plane-wave description for the ballistic transport of the
strongly interacting fermions, which captures the long-time
dynamics. The predominant effect of the strong interaction
on the transport is to introduce velocity renormalization. Our
results indicate that the subdiffusive transport observed for
the weakly interacting spin chain in the experiment [7] would
have a crossover to ballistic behavior when approaching the
strongly interacting regime. This is worth further experimental
investigation.
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FIG. 6. The energy distribution of DMS and canonical ensem-
bles at different temperatures. The energy distribution of DMS is
computed on a 36-site chain with 12 particles aligned according to
the rules of DMS with wavelength A = 9. The same setup (system
size and particle number) is used to calculate the energy distribu-
tion of canonical ensembles at different temperatures. The mean
energy of DMS and the infinite temperature canonical ensemble are
both equal to zero. Here the delta function is approximated via a
Lorentzian with width e = 0.2.

APPENDIX: CORRESPONDENCE BETWEEN DENSITY
MODULATION STATE AND INFINITE TEMPERATURE
ENSEMBLE RESULTS

In the main text, we informally give a correspondence
between DMS and infinite temperature ensemble results, con-

sidering that they have the same average energy. In this part,
we will validate this correspondence more seriously from the
perspective of energy distribution.

We compare the energy distribution of DMS with that in
canonical ensembles with different temperatures, as shown in
Fig. 6. The energy distribution of DMS is given by

poms(E) =Y 8(E — E) [l (A1)

with i indexing the many-body eigenstates, E; the eigenen-
ergy, and |;|*> the overlap between DMS and the corre-
sponding eigenstate. The energy distribution of a canonical
ensemble with an inverse temperature f is given by

pp(E) =) 8(E — Epe ™)z, (A2)

with the partition function Z = Y, e %, In a finite-size cal-
culation, we approximate the delta function via a Lorentzian,

1 €
S(E) = — lim ———, A3
(E) nell'?)62+E2 (A3)

where we take a small but finite width € in practice.

In Fig. 6, we observe that the energy distribution of DMS
is much closer to that of the infinite temperature ensemble
(B = 0), in terms of their mean energy and energy fluctuation.
We thus take the results derived from the DMS state as an
analogy in the high-temperature limit.
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