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Comparative study for two-terminal transport through a lossy one-dimensional quantum wire
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Motivated by the realization of a dissipative quantum point contact in ultracold atomic gases, we investigate a
two-terminal mesoscopic transport system in which a single-particle loss is locally present in a one-dimensional
chain. By means of the Dyson equation approach in the Keldysh formalism that can incorporate dissipative
effects, we reveal analytic structures of the particle and energy currents whose formal expressions correspond to
ones in certain three-terminal systems where particle loss is absent. The obtained formulas are also consistent
with non-Hermitian and three-terminal Landauer-Büttiker analyses. The universality of the current expressions
holds regardless of the quantum statistics, and may be useful for understanding lossy two-terminal transport in
terms of three-terminal transport and vice versa.
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I. INTRODUCTION

Along with the intensive momentum of quantum tech-
nology, research on quantum simulation that extracts the
essential features of complex quantum many-body problems
is developing at a rapid pace [1]. Since Feynman’s proposal
[2], several promising quantum simulators such as ultracold
atomic gases [3], trapped ions [4], photonic systems [5], and
superconducting qubits [6] have been introduced and a broad
spectrum of quantum many-body problems ranging from
condensed matter physics to astrophysics, and high-energy
physics such as particle and nuclear physics [7] have been
investigated.

Among them, ultracold atomic gases have reached a high
level of maturity owing to the controllability and flexibility
of experiments. As is often said, one of the advantages in
ultracold atomic gases is that the systems can normally be
treated as closed ones in that the effects of an uncontrollable
external environment are negligible. In fact, thermalization
and nonthermalization problems occurring in closed quan-
tum many-body systems have successfully been verified with
atomic gases [8]. More recently, controllable atomic gases
enable the exploration of open quantum many-body systems
as well. By applying various schemes to perturb the systems
[9–15], one can engineer one-body, two-body, and three-body
losses and analyze dissipation effects in quantum many-body
systems.

How dissipation affects quantum transport is an important
theme in quantum technology [16,17] and is now diag-
nosed in ultracold atomic gases. The epochal realization is
lossy Josephson junction arrays of Bose-Einstein condensates,
where negative differential conductance [18] and bistability
between superfluid and resistive states [19,20] have been
found. Another striking realization, which is the subject of
this paper, is two-terminal transport via a dissipative quantum
point contact [14], where a local single-particle loss is intro-
duced inside a short one-dimensional (1D) wire and leads to

a conductance plateau of less than 1/h. Although the dissi-
pation effects discussed in ultracold atomic gases can usually
be explained in terms of the Lindblad master equation [21],
unlike Bose-Einstein condensates where the quantum jump
term being difficult to handle is greatly simplified in the
Gross-Pitaevskii analysis, a proper prescription in a quantum
point contact system has yet to be fully understood. In order
to explain the experimental data of the dissipative quantum
point contact, Ref. [14] introduced the Landauer-Büttiker for-
malism with a complex potential in the belief that the quantum
jump term does not play an essential role in transport. While
an analysis with a complex potential has indeed been uti-
lized in the context of inelastic scattering problems [22,23],
it may also be important to understand dissipative quantum
point contact transport on the basis of the Lindblad formalism
including the quantum jump term.

In this paper, we investigate two-terminal current flows
through the lossy one-dimensional chain that is a model of
a dissipative quantum point contact. We note that a similar
model has recently been addressed in Refs. [24,25]. Compared
to these previous works, here we focus on the analytic struc-
tures of the energy current as well as the particle current, and
a connection to other approaches including the non-Hermitian
Landauer-Büttiker formalism. To this end, we adopt an anal-
ysis based on Dyson equations in the Keldysh functional
integral approach extended to open quantum systems [26],
and reveal a relationship between such a dissipative system
and a similar system in which dissipation is absent but an
additional reservoir is attached. By taking an appropriate limit
shown below, we show that regardless of fermions or bosons,
the particle and energy currents in these two systems coincide
with each other. In addition, the formal expressions of the cur-
rents are found to be consistent with the ones based on the
non-Hermitian analysis obtained in Ref. [14] and in certain
three-terminal Landauer-Büttiker analyses. What is remark-
able is that formal current expressions of lossy two-terminal
systems can be reproduced with three-terminal systems
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FIG. 1. Mesoscopic transport systems discussed in this paper.
(a) The lossy two-terminal transport system where the single-particle
loss occurs at the center site in the 1D chain. (b) Three-terminal
transport system where the center site in the 1D chain couples to
the third reservoir. (c) Three-terminal scattering problem where the
sample region in the Landauer-Büttiker formalism is characterized
by an S matrix.

consisting of nonempty reservoirs, which paves the way to
a simulation of lossy two-terminal transport realized in ultra-
cold atomic gases in terms of lossless three-terminal transport
realized in condensed matter systems and vice versa.

The paper is organized as follows. In Sec. II we perform
a formulation for the systems shown in Figs. 1(a) and 1(b).
In Secs. III and IV we apply our formalism to single-site
and multisite cases, respectively. In Sec. V we perform a
three-terminal Landauer-Büttiker analysis for the system of
Fig. 1(c). In Sec. VI we summarize and provide an outlook on
this work. In the Appendix, we give a derivation of the func-
tional integral form of the partition function whose density
matrix obeys the Lindblad master equation.

II. FORMULATION OF THE PROBLEM

We consider a two-terminal mesoscopic transport sys-
tem of noninteracting particles that can be either bosons or
fermions. In this work, we focus on a situation where a
one-dimensional tight-binding chain is attached between two
macroscopic reservoirs. By adopting units of h̄ = kB = 1, the
corresponding Hamiltonian is given by

Ĥ = ĤL + ĤR + Ĥ1D + ĤT , (1)

Ĥ1D =
N∑

i=−N

εid̂
†
i d̂i −

N−1∑
i=−N

ti(d̂
†
i d̂i+1 + d̂†

i+1d̂i ), (2)

ĤT = −
∑

k

[tkψ̂
†
L,kd̂−N + tkψ̂

†
R,kd̂N ] + H.c. (3)

Here, ĤL(R) = ∑
k(εk − μL(R) )ψ̂

†
L(R),kψ̂L(R),k, where εk = k2

2m
with particle mass m, is the Hamiltonian of the left (right)
reservoir measured from the chemical potential μL(R), Ĥ1D is
the Hamiltonian of the one-dimensional chain with nearest-

neighbor hopping ti, and ĤT is the coupling between the
reservoirs and the one-dimensional chain that is modeled as
the tunneling term with tunneling amplitude tk. For a sym-
metric reason, we assume that the on-site potential energy
εi has the property εi = ε−i, the hopping amplitude satisfies
t−i = ti−1 for i = 0, 1, . . . , N , and the site number of the 1D
chain L is set to be L = 2N + 1. In addition, ψ̂L(R) and d̂ are
respectively the annihilation field operators in the reservoir
L(R) and one-dimensional chain.

For comparative purposes, we also introduce a three-
terminal system described by the following Hamiltonian:

ˆ̃H = ĤL + ĤR + Ĥ1D + ˆ̃HT + Ĥ3, (4)

ˆ̃HT = ĤT −
∑

k

t̃kψ̂
†
3,kd̂0 + H.c. (5)

Here, Ĥ3 is an additional reservoir Hamiltonian that is similar
to ĤL and ĤR and is expressed with the field operator ψ̂3,k. In
addition, we assume that a coupling to the third reservoir with
tunnel amplitude t̃k occurs at the center site in the 1D chain.

We now come back to Eq. (1) and introduce dissipation
such that a single-particle loss is present at the center site in
the chain. Inspired by the dissipative quantum point contact
experiment [14], we assume that the system obeys the follow-
ing Lindblad master equation [27],

∂τ ρ̂ = −i[Ĥ , ρ̂] + γ

(
d̂0ρ̂d̂†

0 − {d̂†
0 d̂0, ρ̂}

2

)
, (6)

where ρ̂ is the density matrix operator and γ is the dissipation
rate. For γ = 0, this equation is reduced to the von Neumann
equation describing unitary time evolutions. In the presence
of nonzero γ , additional terms describing dissipation effects
come out. It is also convenient to introduce the adjoint equa-
tion. For a Heisenberg operator Â, the corresponding adjoint
equation is written as [27]

∂τ Â = i[Ĥ, Â] + γ

[
d̂†

0 Âd̂0 − {d̂†
0 d̂0, Â}

2

]
. (7)

By using the above, the operator of the particle number growth
rate in each reservoir is given by

∂τ N̂L(R) = i
∑

k

tkψ̂
†
L(R),kd̂−N (N ) + H.c., (8)

where we use

[N̂L(R), d̂0] = [N̂L(R), d̂†
0 ] = 0. (9)

Similarly, the operator of the energy absorption rate in each
reservoir is given by

∂τ ĤL(R) + μL(R)∂τ N̂L(R) = i
∑

k

tkεkψ̂
†
L(R)d̂−N (N ) + H.c., (10)

where we note that μL(R)∂τ N̂L(R) is added in order to describe
the energy flow. By using these operators, the particle and
energy current operators flowing between reservoirs are re-
spectively expressed as

Î = ∂τ (−N̂L + N̂R)

2
, (11)

ÎE = ∂τ (−ĤL − μLN̂L + ĤR + μRN̂R)

2
, (12)

where of course μL(R) is assumed to be a constant in time [28].

053320-2



COMPARATIVE STUDY FOR TWO-TERMINAL TRANSPORT … PHYSICAL REVIEW A 106, 053320 (2022)

In order to evaluate the averages of the operators defined above, we harness the functional integral formulation of the Keldysh
formalism [29]. There, we can consider the following partition function [26] (see also the Appendix),

Z =
∫

D[ψ̄, ψ, d̄, d]eiSL+iSR+iS1D+iST +iSloss , (13)

where

SL(R) =
∫ ∞

−∞
dτ [ψ̄+

L(R)i∂τψ
+
L(R) − ψ̄−

L(R)i∂τψ
−
L(R) − H+

L(R) + H−
L(R)], (14)

S1D =
∫ ∞

−∞
dτ

[
N∑

i=−N

{d̄+
i (i∂τ − εi )d

+
i − d̄−

i (i∂τ − εi )d
−
i } +

N−1∑
i=−N

ti{d̄+
i d+

i+1 + d̄+
i+1d+

i − d̄−
i d−

i+1 − d̄−
i+1d−

i }
]
, (15)

ST =
∫ ∞

−∞
dτ

∑
k

[tkψ̄
+
L,kd+

−N + t∗
k d̄+

−Nψ+
L,k + tkψ̄

+
R,kd+

N + t∗
k d̄+

N ψ+
R,k − tkψ̄

−
L,kd−

−N − t∗
k d̄−

−Nψ−
L,k − tkψ̄

−
R,kd−

N − t∗
k d̄−

N ψ−
R,k], (16)

Sloss =
∫ ∞

−∞
dτ iγ

[
d̄+

0 d+
0 + d̄−

0 d−
0

2
− d̄−

0 d+
0

]
. (17)

Here, the superscripts + and − represent forward and backward contours, respectively, and H±
L(R) = ∑

k(εk −
μL(R) )ψ̄±

L(R),kψ
±
L(R),k. Although the expressions above are available regardless of bosons or fermions, we note that the fields

are expressed with complex numbers for bosons and Grassmann numbers for fermions. As can be seen from the expressions
above, an advantage of this formalism is that the seemingly complicated dissipator terms that consist of non-Hermitian and
quantum jump terms can be replaced by the quadratic action term Sloss.

In place of the representation based on the forward and backward counters, we convert to the following rotated representation
[29]: (

ψcl

ψq

)
= 1√

2

(
1 1
1 −1

)(
ψ+
ψ−

)
,

(
dcl

dq

)
= 1√

2

(
1 1
1 −1

)(
d+
d−

)
, (18)

(
ψ̄cl

ψ̄q

)
= 1√

2

(
1 1
1 −1

)(
ψ̄+
ψ̄−

)
,

(
d̄cl

d̄q

)
= 1√

2

(
1 1
1 −1

)(
d̄+

d̄−

)
. (19)

Under this transformation, the reservoir action is expressed as

SL(R) =
∑

k

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′(ψ̄cl

L(R) ψ̄
q
L(R)

)
τ

(
0

[
g−1

L(R)(k, τ − τ ′)
]A[

g−1
L(R)(k, τ − τ ′)

]R [
g−1

L(R)(k, τ − τ ′)
]K

)(
ψcl

L(R)
ψ

q
L(R)

)
τ ′
, (20)

where [g−1]R(A) and [g−1]K are the retarded (advanced) and Keldysh components in inverse Green’s function, respectively. In
addition, Sloss is transformed into

Sloss =
∫ ∞

−∞
dτ

(
d̄cl

0 d̄q
0

)( 0 − iγ
2

iγ
2 iγ

)(
dcl

0
dq

0

)
. (21)

Thus, noninfinitesimal imaginary parts appear in the inverse Green’s function at the center site. It is also instructive to note that
the conventional representation for fermions is the so-called Larkin-Ovchinnikov one where ψ and d fields transform in the same
way as Eq. (18), while ψ̄ and d̄ fields transform in the following way [29]: (ψ̄

1

ψ̄2 ) = 1√
2
(1 −1
1 1 )(ψ̄

+
ψ̄−), and (d̄1

d̄2 ) = 1√
2
(1 −1
1 1 )(d̄+

d̄−).
In this paper, however, we stick to using Eq. (19), which allows us to discuss both bosonic and fermionic transport in a unified
manner.

We are interested in steady transport in which average currents do not depend on time. In this case, it is convenient to move
onto the frequency space. By taking into account the fact that the origins of the frequencies between reservoirs are shifted by a
chemical potential difference �μ ≡ μL − μR, the reservoir action in the frequency space is given by

SL/R =
∑

k

∫ ∞

−∞

dω

2π

(
ψ̄cl

L/R ψ̄
q
L/R

)( 0
[
g−1

L/R(k, ω ∓ �μ/2)
]A[

g−1
L/R(k, ω ∓ �μ/2)

]R [
g−1

L/R(k, ω ∓ �μ/2)
]K

)(
ψcl

L/R
ψ

q
L/R

)
. (22)

Here, the retarded and advanced components are determined as

[g−1(k, ω)]R/A = ω − ξk ± i0+. (23)

Since we deal with the two-terminal transport system in which two macroscopic reservoirs are in thermal equilibrium where the
fluctuation-dissipation relation holds in each reservoir [29], [g−1]K obeys

[g−1(k, ω)]K = ([g−1(k, ω)]R − [g−1(k, ω)]A)[1 ± 2n(ω)], (24)
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where n(ω) = 1
eω/T ∓1 with temperature T is the distribution function and the upper and lower signs are for bosons and fermions,

respectively.
On the other hand, the partition function in the three-terminal system described by Eq. (4) is straightforwardly obtained as

Z̃ =
∫

D[ψ̄, ψ, d̄, d]eiSL+iSR+iS1D+iS̃T +S3 , (25)

where

S3 =
∫ ∞

−∞
dτ [ψ̄+

3 i∂τψ
+
3 − ψ̄−

3 i∂τψ
−
3 − H+

3 + H−
3 ], (26)

S̃T = ST +
∫ ∞

−∞
dτ

∑
k

[t̃kψ̄
+
3,kd+

0 + t̃∗
k d̄+

0 ψ+
3,k − t̃kψ̄

−
3,kd−

0 − t̃∗
k d̄−

0 ψ−
3,k]. (27)

For a calculation of physical quantities, one needs to eval-
uate the Green’s functions. In fact, it is easy to confirm that
the particle and energy currents are respectively expressed as

I (τ ) =
∑

k Re
[ ± tkGK

dL(k, τ, τ ) ∓ tkGK
dR(k, τ, τ )

]
2

=
∫ ∞

−∞

dω

4π

∑
k

Re
[±tkGK

dL(k, ω) ∓ tkGK
dR(k, ω)

]
,

(28)

IE (τ ) =
∑

k εk Re
[ ± tkGK

dL(k, τ, τ ) ∓ tkGK
dR(k, τ, τ )

]
2

=
∫ ∞

−∞

dω

4π

∑
k

εkRe
[±tkGK

dL(k, ω) ∓ tkGK
dR(k, ω)

]
.

(29)

Here,

GK
dL(k, τ, τ ′) = −i〈[d̂−N (τ ), ψ̂†

L,k(τ ′)]±〉, (30)

GK
dR(k, τ, τ ′) = −i〈[d̂N (τ ), ψ̂†

R,k(τ ′)]±〉, (31)

and the upper and lower signs are again for bosons and
fermions, respectively. A straightforward way to calculate
GK

dL(R) is to invert the matrix of the action defined in (13),
which becomes an efficient algorithm for numerical analyses
of the average currents [24,30–33] With this method, how-
ever, it is not so easy to establish analytic structures of the
currents. To overcome this, we therefore adopt an approach
based on Dyson equations [34], where the action is split
into nonperturbative and perturbative parts. For the dissipa-
tive (three-terminal) situation, one can treat SL(R), the on-site
energy term in S1D, and Sloss(S3) as the former part, and the
hopping term in S1D and ST (S̃T ) as the latter part. Under this
setting, a calculation in the presence of dissipation can be done
similarly with one in the absence of dissipation. We note that
the analysis with Dyson equations becomes exact by treating
the perturbative part at all order levels, in which case the result
corresponds to the one with the matrix inversion of the action.

III. SINGLE-SITE CASE

In order to see the essential structure of the average parti-
cle and energy currents both in dissipative two-terminal and
three-terminal systems, we start to analyze the L = 1 case,

i.e., the noninteracting quantum dot system. For the appli-
cation of Dyson equations in the Keldysh formalism in our
system, it is convenient to use the following relation [35],∑

k

tkGK
dL(R)(k, ω) = −

∑
k

|tk|2
[
GR

d (ω)gK
L(R)(k, ω)

+ GK
d (ω)gA

L(R)(k, ω)
]
, (32)

where g is the uncoupled Green’s function that is obtained
from the inverse of the matrix (22), and Gd is the full Green’s
function of the 1D chain that contains the effects of the per-
turbative part. Notice also that in order to obtain the above,
we applied the Langreth rule in the Keldysh formalism [34].
Owing to this deformation, the remaining task is to calculate
GR/K

d .

A. Dissipative situation

We first look at the dissipative situation corresponding to
the situation of Fig. 1(a). There, the retarded and advanced
Green’s function in the single site obey the following Dyson
equation [34]:

[
GR(A)

d (ω)
]−1 = [

gR(A)
d (ω)

]−1 − �R(A)(ω). (33)

We note that the retarded or advanced component is decou-
pled and therefore satisfies [G−1]R(A) = [GR(A)]−1. We also
introduce the retarded and advanced components of the self-
energy,

�R(A)(ω) =
∑

k

|tk|2
[
gR(A)

L (k, ω − �μ/2)

+ gR(A)
R (k, ω + �μ/2)

]
. (34)

By introducing

R(ω) ≡ 2
∑

k

|tk|2 Re
[
gR

L(k, ω − �μ/2)
]

= 2
∑

k

|tk|2 Re
[
gR

R(k, ω + �μ/2)
]
, (35)


(ω) ≡ −2
∑

k

|tk|2 Im
[
gR

L(k, ω − �μ/2)
]

= −2
∑

k

|tk|2 Im
[
gR

R(k, ω + �μ/2)
]
, (36)

053320-4



COMPARATIVE STUDY FOR TWO-TERMINAL TRANSPORT … PHYSICAL REVIEW A 106, 053320 (2022)

the full retarded and advanced Green’s functions are obtained
as

GR/A
d (ω) = 1

ω − ε0 − R(ω) ± i
[

γ

2 + 
(ω)
] . (37)

In addition, the Keldysh component obeys the following
Dyson equation:

GK
d (ω) = [

1 + GR
d (ω)�R(ω)

]
gK

d (ω)
[
1 + �A(ω)GA

d (ω)
]

+ GR
d (ω)�K (ω)GA

d (ω). (38)

By using

�K (ω) =
∑

k

|tk|2
[
gK

L (k, ω − �μ/2) + gK
R (k, ω + �μ/2)

]
= −2i
(ω)[1 ± nL(ω − �μ/2) ± nR(ω + �μ/2)],

(39)

and [
1 + GR

d (ω)�R(ω)
]
gK

d (ω)
[
1 + �A(ω)GA

d (ω)
]

= GR
d (ω)

[
gR

d (ω)
]−1

gK
d (ω)

[
gA

d (ω)
]−1

GA
d (ω)

= −GR
d (ω)

[
g−1

d (ω)
]K

GA
d (ω), (40)

the Dyson equation for the Keldysh component can be solved
as

GK
d (ω) = −2i

[
γ

2 + 
(ω)
] ∓ 2i
(ω)[nL(ω − �μ/2) + nR(ω + �μ/2)]

[ω − ε0 − R(ω)]2 + [
γ

2 + 
(ω)
]2 . (41)

In total, the average current is determined as

I =
∫ ∞

−∞

dω

2π

[
T (ω) + L(ω)

2

]
×[nL(ω − �μ/2) − nR(ω + �μ/2)], (42)

where we introduce

T (ω) = [
(ω)]2

[ω − ε0 − R(ω)]2 + [
γ

2 + 
(ω)
]2 , (43)

L(ω) = 
(ω)γ

[ω − ε0 − R(ω)]2 + [
γ

2 + 
(ω)
]2 . (44)

Physically, T (ω) and L(ω) represent the transmittance and
loss probability, respectively. When γ = 0, T (ω) is indeed
reduced to transmittance in the noninteracting quantum dot
system [35,36]. In addition, when γ 
= 0, T (ω) is reduced
to one in a phenomenological model with inelastic widths in
which L(ω) is absent [37]. On the other hand, the presence of
L(ω) is peculiar to the lossy system. The physical meaning
of L(ω) becomes clearer by noting that the average of the
particle loss rate is expressed as

−Ṅ = −ṄL − ṄR

=
∫ ∞

−∞

dω

2π
L(ω)[nL(ω − �μ/2) + nR(ω + �μ/2)]. (45)

It is also instructive to point out the relation with Refs. [24,25].
When the frequency dependence of 
(ω) is neglected and
R(ω) = 0, the particle current obtained in this work is identi-
cal to the one in Refs. [24,25]. The first condition is called the
wide-band approximation and is reasonable for low-energy
transport such that the frequency dependence in 
 is negli-
gible is concerned. In addition, the second condition means
that the energy shift due to the couplings with the reservoirs is
negligible, and corresponds to the situation where the Lamb
shift is neglected in the context of quantum optics. For in-
stance, these conditions are simultaneously satisfied if tk is

momentum independent such as the point contact tunneling
[38,39] and the constant density-of-states approximation in
the reservoir that is often used in fermionic systems is rea-
sonable. In contrast, our formulation is available even if such
conditions are not valid, which contains superfluid bosonic
systems [40–42].

With the use of the above results, we can also obtain the
energy current. To this end, we note∑

k

|tk|2εk Im
[
gR

L/R(k, ω ∓ �μ/2)
]

=
∑

k

|tk|2(ω + μ)Im
[
gR

L/R(k, ω ∓ �μ/2)
]
, (46)

where we use Im[gR
L/R] ∝ δ(ω + μ − k2

2m ) with the average
chemical potential between reservoirs μ = μL+μR

2 . By us-
ing this relation, the average energy current is shown to be
expressed as

IE =
∫ ∞

−∞

dω

2π
(ω + μ)

[
T (ω) + L(ω)

2

]
×[nL(ω − �μ/2) − nR(ω + �μ/2)]. (47)

In order to compare with the result in Ref. [14], we bear
in mind that while ω adopted in Ref. [14] corresponds to
the absolute energy, ω = 0 in our formulation corresponds to
the energy at the average chemical potential. By taking into
account this energy shift between two formulations, it turns
out that the formal expressions of Eqs. (42), (45), and (47) are
consistent with ones found in the non-Hermitian Landauer-
Büttiker analysis [14].

B. Three-terminal situation

We now consider the situation where atom loss is absent
but instead the noninteracting dot is attached to three terminals
[Fig. 1(b)]. In this case, the retarded and advanced compo-
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nents of the self-energy are given by

�R(A)(ω) =
∑

k

[|tk|2gR(A)
L (k, ω − �μ/2)

+|tk|2gR(A)
R (k, ω+�μ/2)+|t̃k|2gR(A)

3 (k, ω+V )
]
,

(48)

where V ≡ μ − μ3 with the chemical potential of the third
reservoir μ3. As in the case of the previous section, we intro-
duce

R3(ω) ≡ 2
∑

k

|t̃k|2 Re
[
gR

3 (k, ω + V )
]
, (49)


3(ω) ≡ −2
∑

k

|t̃k|2 Im
[
gR

3 (k, ω + V )
]
. (50)

Then, the full retarded and advanced Green’s functions are
obtained as

GR/A
d (ω) = 1

ω − ε0 − R(ω) − R3(ω)
2 ± i

[

(ω) + 
3(ω)

2

] .
(51)

In addition, the Keldysh component of the self-energy is

�K (ω) = −2i
(ω)[1 ± nL(ω − �μ/2) ± nR(ω + �μ/2)]

−i
3(ω)[1 ± 2n3(ω + V )], (52)

where the upper and lower signs are for bosons and fermions,
respectively, and n3 is the distribution function of the third
reservoir. Since [g−1]K = 0 in the absence of single-particle
loss, we obtain

GK
d (ω) = −i
3(ω)[1 ± 2n3(ω + V )][

ω − ε0 − R(ω) + R3(ω)
2

]2 + [

3(ω)

2 − 
(ω)
]2

− 2i
(ω)[1 ± nL(ω − �μ/2) ± nR(ω + �μ/2)][
ω − ε0 − R(ω) − R3(ω)

2

]2 + [

3(ω)

2 + 
(ω)
]2 .

(53)

Now that the full Green’s functions are obtained, we turn
to compare Eqs. (37) and (41) and Eqs. (51) and (53). Then, it
turns out that the full Green’s functions in the three-terminal
system coincide with the ones in the dissipative two-terminal
system when the following conditions are satisfied:


3(ω) = γ , (54)

R3(ω) = 0, (55)

n3(ω + V ) = 0. (56)

Equations (54) and (55) represent the wide-band approxi-
mation and the disregard of the Lamb shift, respectively. In
addition, Eq. (56) means that the third reservoir is empty.
The last condition is physically sound, since the dissipator
in Eq. (6) (terms proportional to γ ) does not contain the
gain effect [27]. In total, when Eqs. (54)–(56) are satisfied, it
follows that the transport quantities calculated in the previous
section such as the particle and heat current and particle loss
rate also coincide with those in the lossy two-terminal system.

Although the conditions of (54)–(56) are necessary for
exact correspondence including the frequency dependences of

T and L, one can relax them as far as a formal correspondence
is concerned. In particular, it is straightforward to confirm that
without (54)–(56), the average particle and energy currents
from left to right are expressed as

I =
∫ ∞

−∞

dω

2π

[
T̃ (ω) + L̃(ω)

2

]
× [nL(ω − �μ/2) − nR(ω + �μ/2)], (57)

IE =
∫ ∞

−∞

dω

2π
(ω + μ)

[
T̃ (ω) + L̃(ω)

2

]
× [nL(ω − �μ/2) − nR(ω + �μ/2)], (58)

where

T̃ (ω) = [
(ω)]2(
ω − ε0 − R(ω) − R3(ω)

2

)2 + [

3(ω)

2 + 
(ω)
]2 ,

(59)

L̃(ω) = 
(ω)
3(ω)(
ω − ε0 − R(ω) − R3(ω)

2

)2 + [

3(ω)

2 + 
(ω)
]2 . (60)

We note that Eqs. (57) and (58) are formally equivalent to
Eqs. (42) and (47) in that the currents are expressed with
transmittance and loss probability in a similar manner. The
only difference from the dissipative situation is that the addi-
tional frequency dependences originating from the frequency
dependence of g3 and momentum dependence of t̃k come
out in T̃ and L̃. What is especially remarkable is that the
average currents do not depend on the distribution of the third
reservoir.

It should also be noted that all the average quantities in
the three-terminal situation are not independent of n3. In fact,
the average particle loss rate in the three-terminal situation,
which is merely the particle gain rate of the third terminal, is
expressed as

−Ṅ =
∫ ∞

−∞

dω

2π
[L̃(ω){nL(ω − �μ/2) + nR(ω + �μ/2)}

−2L̃(ω)n3(ω + V )]. (61)

The expression above is not formally consistent with Eq. (45)
due to the presence of the last term proportional to n3. Thus,
for generic L̃, the condition (56) is essential to the consistency
of the particle loss rate between the dissipative and three-
terminal situations. At the same time, notice that∫

dωL̃(ω)n3(ω + V ) = 0 (62)

can also be achieved for a nonempty third reservoir. Indeed,
the above equality is satisfied, if L̃(ω) = 0 for ω’s such that
n3(ω + V ) 
= 0. Moreover, μ3 < μL, μR is also necessary to
obtain nontrivial effects of L̃ in transport. In this case, the
gain effect from the third reservoir is neglected and lossy two-
terminal transport corresponds to the lossless three-terminal
one.
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IV. MULTISITE CASE

Although the essential structure of the correspondence be-
tween lossy two-terminal and lossless three-terminal systems
already appears in the single-site problem, in order to con-
vince ourselves of it, we now look at the multisite case.

To this end, we point out the following relations,

∑
k

tkGK
dL(k, ω) = −

∑
k

t2
k

[
GR

d,11(ω)gK
L (k, ω − �μ/2)

+ GK
d,11(ω)gA

L(k, ω − �μ/2)
]
, (63)∑

k

tkGK
dR(k, ω) = −

∑
k

t2
k

[
GR

d,LL(ω)gK
R (k, ω + �μ/2)

+ GK
d,LL(ω)gA

R(k, ω + �μ/2)
]
, (64)

which is the multisite generalization of Eq. (32). Here, we
introduce the following L × L matrix of a Green’s function

in the 1D chain:

Gd =

⎛
⎜⎜⎜⎝

Gd,11 Gd,12 · · · Gd,1L

Gd,21 Gd,22
...

...
. . .

...

Gd,L1 Gd,L2 · · · Gd,LL

⎞
⎟⎟⎟⎠. (65)

For example, GR
d,11(LL)(τ, τ

′) = −iθ (τ − τ ′)〈[d−N (N )(τ ),

d†
−N (N )(τ

′)]±〉. As in the case of the single site, what we
need to do for the determination of the current formulas is to
evaluate the retarded, advanced, and Keldysh components of
Gd .

A. Dissipative situation

In the multisite case, the Dyson equation for retarded and
advanced components is expressed as[

GR/A
d (ω)

]−1 = [
gR/A

d (ω)
]−1 − �R/A(ω). (66)

Since

[
gR/A

d

]−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ω − εN ± i0+ 0 · · · 0
0 ω − εN−1 ± i0+ 0
... 0 . . .
...

... ω − ε0 ± i γ

2
. . .

0 · · · ω − εN ± i0+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (67)

and

�R/A =

⎛
⎜⎜⎜⎜⎜⎜⎝

R(ω)∓i
(ω)
2 −tN−1 0 · · · 0

−tN−1 0 −tN−2

0 −tN−2 0
...

0 −tN−1

0 · · · −tN−1
R(ω)∓i
(ω)

2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (68)

we obtain

GR/A
d (ω)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω − εN − R(ω)
2 ± i 
(ω)

2 tN−1 0 · · · 0
tN−1 ω − εN−1 ± i0+ tN−2

0 . . .
... ω − ε0 ± i γ

2
. . . tN−1

0 tN−1 ω − εN − R(ω)
2 ± i 
(ω)

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

.

(69)

Thus, it turns out that the inverse of the retarded or advanced Green’s function is expressed with the so-called tridiagonal matrix.
In general, a nonsingular tridiagonal matrix,

T =

⎛
⎜⎜⎜⎝

a1 b1 0 0

c1 a2
. . . 0

0 . . .
. . . bL−1

0 0 cL−1 aL

⎞
⎟⎟⎟⎠, (70)

is known to be inverted as [43–46]

T −1
i, j =

⎧⎨
⎩

(−1)i+ jbi · · · b j−1θi−1φ j+1/θL, i < j,
θi−1φ j+1/θL, i = j,
(−1)i+ jc j · · · ci−1θ j−1φi+1/θL, i > j.

(71)
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Here, θi and φi satisfy the following recurrence relations,

θi = aiθi−1 − bi−1ci−1θi−2, i = 2, 3, . . . , L, (72)

φi = aiφi+1 − biciφi+2, i = L − 1, . . . , 1, (73)

with initial conditions θ0 = 1, θ1 = a1, φL+1 = 1, and φL = aL. Thus, by applying the above formula, GR/A
d can be exactly

obtained.
On the other hand, since

[
g−1

d

]K =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0
...

. . .

iγ
. . .

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠, (74)

and

�K =

⎛
⎜⎜⎝

−i
(ω)[1 ± 2nL(ω − �μ/2)] 0 · · · 0
0 0
...

. . .

0 · · · −i
(ω)[1 ± 2nR(ω + �μ/2)]

⎞
⎟⎟⎠, (75)

the Keldysh component is expressed as

GK
d (ω) = −GR

d (ω)
[
g−1

d (ω)
]K

GA
d (ω) + GR

d (ω)�K (ω)GA
d (ω)

= GR
d (ω)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−i
(ω)[1 ± 2nL(ω − �μ/2)] 0 · · · 0
0 0
...

. . .

−iγ
. . .

0 · · · −i
(ω)[1 ± 2nR(ω + �μ/2)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

GA
d (ω). (76)

Based on the results obtained above, we obtain the average particle current and particle loss rate. By using symmetries such
as GR/A

d11 = GR/A
dLL and GR/A

d,1L = GR/A
d,L1, the particle current is expressed as

I =
∫ ∞

−∞

dω

2π

(ω)

[
−Im

[
GR

d,11(ω)
] − 
(ω)

{∣∣GR
d,11(ω)

∣∣2 − ∣∣GR
d,1L(ω)

∣∣2}
2

]

× [nL(ω − �μ/2) − nR(ω + �μ/2)]. (77)

In addition, the particle loss rate is expressed as

−Ṅ =
∫ ∞

−∞

dω

2π

[ ∓ 
(ω)
{
2 Im

[
GR

d,11(ω)
] + 
(ω)

{∣∣GR
d,11

∣∣2 + ∣∣GR
d,1L

∣∣2} + γ
∣∣GR

d,1 L+1
2

(ω)
∣∣2}

+
(ω)
{ − 
(ω)

{∣∣GR
d,11

∣∣2 + ∣∣GR
d,1L

∣∣2} − 2 Im
[
GR

d,11(ω)
]}

[nL(ω − �μ/2) + nR(ω + �μ/2)]
]
. (78)

In order to obtain convenient forms, we consider the following identity:

GR
d − GA

d = GR
d

{(
GA

d

)−1 − (
GR

d

)−1}
GA

d . (79)

This leads to

2 Im
[
GR

d,11(ω)
] = −
(ω)

{∣∣GR
d,11

∣∣2 + ∣∣GR
d,1L

∣∣2} − γ
∣∣GR

d,1 L+1
2

(ω)
∣∣2. (80)

Thus, the particle current and particle loss rate are obtained as

I =
∫ ∞

−∞

dω

2π

[
T L(ω) + LL(ω)

2

]
[nL(ω − �μ/2) − nR(ω + �μ/2)], (81)

−Ṅ =
∫ ∞

−∞

dω

2π
LL(ω)[nL(ω − �μ/2) + nR(ω + �μ/2)], (82)
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where

T L(ω) = [
(ω)]2
∣∣GR

d,1L(ω)2
∣∣, (83)

LL(ω) = 
(ω)
[ − 
(ω)

{∣∣GR
d,11

∣∣2 + ∣∣GR
d,1L

∣∣2} − 2 Im
[
GR

d,11(ω)
]]

, (84)

are the transmittance and loss probability, respectively. It is also straightforward to show that the energy current is obtained as

IE =
∫ ∞

−∞

dω

2π
(ω + μ)

[
T L(ω) + LL(ω)

2

]
[nL(ω − �μ/2) − nR(ω + �μ/2)]. (85)

Equations (81), (82), and (85) are multisite generalization of Eqs. (42), (45), and (47).
In the case of L = 1, it is easy to check that the transmittance [Eq. (83)] and loss probability [Eq. (84)] coincide with those

that appeared in the single-site case. For multisites, explicit forms of Eqs. (83) and (84) in a generic 1D chain are lengthy. If
ε ≡ ε0 = ε1 = · · · εN and t ≡ t0 = t1 = · · · tN−1, and R(ω) = 0, however, one can obtain simpler expressions. For the L = 3
case, we obtain

T L=3(ω) = [
(ω)]2t4

(ω − ε + [
(ω)]2/4)[(ω − ε)4 + (ω − ε)2([
(ω)]2/4 − 4t2 + γ 2/4) + (2t2 + 
γ /4)2]
, (86)

LL=3(ω) = 
(ω)t2γ

(ω − ε)4 + (ω − ε)2([
(ω)]2/4 − 4t2 + γ 2/4) + [2t2 + 
(ω)γ /4]2
, (87)

and for the L = 5 case, we obtain

T L=5(ω) = [
(ω)]2t8/[(ω − ε)2[
(ω)]2/4 + [(ω − ε)2 − t2]2]

× [(ω − ε)6 + t4[
(ω) + γ /2]2 + (ω − ε)4([
(ω)]2/4 − 6t2 + γ 2/4) + (ω − ε)2{t2(9t2 − γ 2/2)

+ (−4t2 + γ 2/4)[
(ω)]2/4}], (88)

LL=5(ω) = 
(ω)t4γ /
[
(ω − ε)6 + t4[
(ω) + γ /2]2 + (ω − ε)4([
(ω)]2/4 − 6t2 + γ 2/4)

+(ω − ε)2{t2(9t2 − γ 2/2) + (−4t2 + γ 2/4)[
(ω)]2/4}]. (89)

In this way, one can obtain the explicit forms of T L(ω) and LL(ω), provided that the number of the sites is fixed and the
corresponding GR

d,11 and GR
d,1L are determined.

B. Three-terminal situation

In the case of three terminals, the retarded or advanced component of the self-energy is given by

�R/A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R(ω)∓i
(ω)
2 −tN−1 0 · · · 0

−tN−1 0 −tN−2

0 . . .
... R3(ω)∓i
3(ω)

2
. . . tN−1

0 · · · −tN−1
R(ω)∓i
(ω)

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (90)

and we obtain

GR/A
d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω − εN − R(ω)
2 ± i 
(ω)

2 tN−1 0 · · · 0
tN−1 ω − εN−1 ± i0+ tN−2

0 . . .
... ω − ε0 − R3(ω)

2 ± i 
3(ω)
2

. . . tN−1

0 tN−1 ω − εN − R(ω)
2 ± i 
(ω)

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

.

(91)
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In addition, the absence of particle loss means [g−1
d (ω)]K = 0, and therefore the Keldysh component of the self-energy is given

by

�K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−i
(ω)[1 ± 2nL(ω − �μ/2)] 0 · · · 0
0 0
...

. . .

−i
3(ω)[1 ± 2n3(ω + V )]
. . .

0 · · · −i
(ω)[1 ± 2nR(ω + �μ/2)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(92)

Thus, the Keldysh component of the full Green’s function is obtained as

GK
d (ω) = −GR

d (ω)
[
g−1

d (ω)
]K

GA
d (ω) + GR

d (ω)�K (ω)GA
d (ω)

= GR
d (ω)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−i
(ω)[1 ± 2nL (ω − �μ/2)] 0 · · · 0
0 0
...

. . .

−i
3(ω)[1 ± 2n3(ω + V )]
. . .

0 · · · −i
(ω)[1 ± 2nR(ω + �μ/2)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

× GA
d (ω). (93)

By comparing Eqs. (91) and (93) with Eqs. (69) and (76), the full Green’s functions in the three-terminal system correspond to
the ones in the lossy two-terminal system when Eqs. (54)–(56) are satisfied. In this case, it follows that the current formulas of
the three-terminal system obey Eqs. (81), (82), and (85).

When it comes to the formal correspondence between lossy and lossless transport, we can relax those conditions as in the
case of the single site. Indeed, the average particle and energy currents are generally shown to be reduced to Eqs. (81) and (85),
respectively. In addition, by using the following relation,

2 Im
[
GR

d,11(ω)
] = −
(ω)

{∣∣GR
d,11(ω)

∣∣2 + ∣∣GR
d,1L(ω)

∣∣2} − 
3(ω)
∣∣GR

d,1 L+1
2

(ω)
∣∣2, (94)

the particle loss rate is obtained as

−Ṅ =
∫ ∞

−∞

dω

2π
LL(ω)[nL(ω − �μ/2) + nR(ω + �μ/2) − 2n3(ω + V )], (95)

which is consistent with the single-site case.

V. THREE-TERMINAL LANDAUER-BÜTTIKER ANALYSIS

So far, we have examined the correspondence between the
lossy two-terminal and lossless three-terminal systems. When
this correspondence holds, the current formulas are given by
Eqs. (81), (82), and (85) whose formal expressions are consis-
tent with the non-Hermitian Landauer-Büttiker analysis. Such
a coincidence anticipates that a similar result may be obtained
with the three-terminal Landauer-Büttiker analysis [Fig. 1(c)].

To see this, we point out that in the Landauer-Büttiker
formalism, the particle current operator in each reservoir is
given by

Î j (τ ) =
∫

dω

2π

∫
dω′ei(ω−ω′ )τ [â†

j (ω)â j (ω
′) − b̂†

j (ω)b̂ j (ω)],

(96)

where j = L, R, 3, and â and b̂ are annihilation operators for
the incoming and outgoing states, respectively. We note that
the positive current direction is from each reservoir to the
channel. The operators â and b̂ are connected through the

following symmetric S matrix:⎛
⎝bL

bR

b3

⎞
⎠ =

⎛
⎝ r t tL

t ′ r′ tR
t ′
L t ′

R r3

⎞
⎠
⎛
⎝aL

aR

a3

⎞
⎠. (97)

In the Landauer-Büttiker, it is assumed that the incoming
operators (â j and â†

j ) obey

〈â†
L(ω)âL(ω′)〉 = δ(ω − ω′)nL(ω − �μ/2), (98)

〈â†
R(ω)âR(ω′)〉 = δ(ω − ω′)nR(ω + �μ/2), (99)

〈â†
3(ω)â3(ω′)〉 = δ(ω − ω′)n3(ω + V ), (100)

〈â†
i (ω)â j (ω

′)〉 = 0, i 
= j. (101)

In addition, the S matrix obeys the unitary condition

SS† = 1, (102)

which leads to

|r|2 + |t |2 + |tL|2 = 1, (103)

|r′|2 + |t ′|2 + |tR|2 = 1, (104)

|r3|2 + |t ′
L|2 + |t ′

R|2 = 1. (105)
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Thus, each average current is obtained as

IL =
∫ ∞

−∞

dω

2π
[|t (ω)|2[nL(ω − �μ/2) − nR(ω + �μ/2)]

+ |tL(ω)|2[nL(ω − �μ/2) − n3(ω + V )]], (106)

IR =
∫ ∞

−∞

dω

2π
[|t ′(ω)|2[nR(ω + �μ/2) − nL(ω − �μ/2)]

+ |tR(ω)|2[nR(ω + �μ/2) − n3(ω + V )]], (107)

I3 =
∫ ∞

∞

dω

2π
[|t ′

L(ω)|2[n3(ω + V ) − nL(ω − �μ/2)]

+ |t ′
R(ω)|2[n3(ω + V ) − nR(ω + �μ/2)]]. (108)

Up to now, we were dedicated to the generic three-terminal
Landauer-Büttiker analysis. In order to obtain a connection to
the dissipative two-terminal system discussed in the previous
sections, we consider

|t |2 = |t ′|2, (109)

|tL|2 = |tR|2. (110)

The first condition above represents the symmetry of the con-
duction channel such that the transmittance from the left to
right reservoirs is identical to the one from the right to left
reservoirs. In addition, the second condition means that the
transmittance into the third reservoir is common between the
left and right reservoirs. For example, an S-matrix introduced
in Ref. [47] satisfies these conditions.

When the above conditions hold, the average particle cur-
rent from left to right is reduced to

I = IL − IR

2
=

∫ ∞

−∞

dω

2π

[
|t (ω)|2 + |tL(ω)|2

2

]
×[nL(ω − �μ/2) − nR(ω + �μ/2)]. (111)

In addition, the particle loss rate is

−Ṅ = IL + IR

=
∫ ∞

−∞

dω

2π
|tL(ω)|2[nL(ω − �μ/2) + nR(ω + �μ/2)

− 2n3(ω + V )]. (112)

Thus, by treating

|tL(ω)|2 = L(ω), (113)

|t (ω)|2 = T (ω), (114)

the expressions above are consistent with the ones obtained in
the previous sections, and∫

dωL(ω)n3(ω) = 0 (115)

is necessary to neglect the gain effect from the third reservoir.
Moreover, we can obtain the following relation,

T (ω) + R(ω) + L(ω) = 1, (116)

with reflectance R = |r|2 = |r′|2. The relation above is ex-
actly the one obtained in Refs. [14,48,49]. We also note that

by using the following energy current operator,

ÎE , j (τ ) =
∫

dω

2π

∫
dω′ei(ω−ω′ )τ

[
ω + ω′

2
+ μ

]

× [â†
j (ω)â j (ω

′) − b̂†
j (ω)b̂ j (ω)], (117)

it is straightforward to see that a similar correspondence oc-
curs in the energy current [50].

Although one may think that the non-Hermitian Landauer-
Büttiker analysis may contain a deficiency on the treatment
of the quantum jump term, it is indeed consistent with the
three-terminal analysis that does not drop any term. The
reason is interpreted as follows. In the Landauer-Büttiker
formalism, the scattering region and leads (reservoirs) play
separate roles and especially what happens in the scattering
region is assumed not to affect the thermodynamics of the
leads. A modification of the distribution in a system occurs
by the quantum jump term, yet it is irrelevant to the present
Landauer-Büttiker analysis, since the dissipation takes place
in the scattering region and the distribution function appearing
in the Landauer-Büttiker formula is entirely determined by the
leads.

VI. SUMMARY AND OUTLOOK

In this work, we have investigated the analytic structure
of the two-terminal flows through the lossy one-dimensional
chain. By using the analysis in the basis of the Dyson equa-
tions, we have succeeded in obtaining the generic expressions
for the particle current (81), the loss rate (82), and the energy
current (85), which are identical to the ones in a certain three-
terminal system without particle loss. Although the theoretical
backgrounds are not exactly the same between analyses with
and without the Lindblad formulation, the formal correspon-
dence occurs if the gain effect of the third reservoir is
negligible.

It is also remarkable that the formal expressions on the cur-
rents are consistent with the non-Hermitian Landauer-Büttiker
analysis [14] and with a certain three-terminal Landauer-
Büttiker analysis. In the context of mesoscopic transport, the
incoherent scattering of electrons has been explained with
the introduction of additional reservoirs [51]. Our analyses
gave a prescription and a theoretical basis of lossy meso-
scopic systems with the Landauer-Büttiker formalism, and
paves the way to simulate lossy two-terminal transport with
three-terminal transport and vice versa.

The universality discussed in this work may be applied
to other mesoscopic systems. In particular, applications both
for bosonic [40–42] and fermionic [32,33,52] superfluid
reservoirs are relevant to cold-atom experiments. It is also
interesting to look into the dissipation effects of mesoscopic
spin transport in which interactions neglected in this work
may play important roles [53–59]. In addition, a microscopic
understanding of the dissipation effects for internal meso-
scopic transport systems [60] could also be an interesting
future work.

053320-11



SHUN UCHINO PHYSICAL REVIEW A 106, 053320 (2022)

ACKNOWLEDGMENTS

The author thanks T. Esslinger, P. Fabritius, T. Giamarchi,
M.-Z. Huang, J. Mohan, M. Talebi, A.-M. Visuri, and S.
Wili for stimulating discussions that motivated this work.
This work is supported by MEXT Leading Initiative for
Excellent Young Researchers, JSPS KAKENHI Grant No.
JP21K03436, and Matsuo Foundation.

APPENDIX: DERIVATION OF THE PARTITION
FUNCTION

In order to make this paper self-contained, here we give
a derivation of the functional integral form of the partition
function whose density matrix obeys the Lindblad master
equation. Our derivation relies on Ref. [26]. where the bosonic
action has explicitly been derived.

For this purpose, it is useful to consider the coherent state
obeying

ψ̂ |ψ〉 = ψ |ψ〉, (A1)

〈ψ |ψ̂† = 〈ψ |ψ̄, (A2)

where ψ̂ and ψ̂† are the field annihilation and creation op-
erators, respectively, and ψ and ψ̄ are complex numbers for
bosons and Grassmann numbers for fermions. The coherent
state satisfies the following overcomplete relation,

1̂ =
∫

d[ψ̄, ψ]e−ψ̄ψ |ψ〉〈ψ |, (A3)

where d[ψ̄, ψ] = dψ̄dψ

π
for bosons and d[ψ̄, ψ] = dψ̄dψ for

fermions. In addition, the overlap of two coherent states is

given by

〈ψ |ψ ′〉 = eψ̄ψ ′
. (A4)

By means of the coherent state, the partition function Z =
Tr ρ(τ ) can be expressed as

Z =
∫

d[ψ̄, ψ]e−ψ̄ψ 〈±ψ |ρ̂(τ )|ψ〉. (A5)

Here, the upper and lower signs are respectively for bosons
and fermions, and especially the minus sign for fermions
originates from the anticommutation property of Grassmann
numbers [29].

We next look at the density matrix operator whose dynam-
ics obeys the following Lindblad master equation,

∂τ ρ̂ = Lρ̂

= −i[Ĥ , ρ̂] + γ

[
L̂ρL̂† − {L̂†L̂, ρ̂}

2

]
, (A6)

where L and L are Liouvillian and Lindblad operators, re-
spectively. The solution of the above equation is formally
expressed as

ρ̂(τ f ) = e(τ f −τ0 )Lρ̂(τ0)

= lim
N→∞

(1 + δτL)N ρ̂(τ0). (A7)

We now decompose the time evolution from τ0 to τ f into a
sequence of small steps of duration δτ = (τ f − τ0)/N , and
denote the density matrix operator after the nth step at τn =
τ0 + δτ n by ρ̂n = ρ̂(τn). We then have

ρ̂n+1 = (1 + δτL)ρ̂n + O
(
δ2
τ

)
. (A8)

By using the coherent state, the density matrix operator is expressed as

ρ̂n =
∫

d[ψ̄+
n , ψ+

n , ψ̄−
n , ψ−

n ]e−ψ̄+
n ψ+

n −ψ̄−
n ψ−

n |±ψ+
n 〉〈±ψ+

n |ρ̂n|ψ+
n 〉〈ψ−

n |, (A9)

ρ̂n+1 =
∫

d[ψ̄+
n+1, ψ

+
n+1, ψ̄

−
n+1, ψ

−
n+1]e−ψ̄+

n+1ψ
+
n+1−ψ̄−

n+1ψ
−
n+1 |±ψ+

n+1〉〈±ψ+
n+1|ρ̂n+1|ψ−

n+1〉〈ψ−
n+1|. (A10)

Since

〈±ψ+
n+1|ρ̂n+1|ψ−

n+1〉 = 〈±ψ+
n+1|ρ̂n|ψ−

n+1〉 + δτ 〈±ψ+
n+1|Lρ̂n|ψ−

n+1〉, (A11)

we have

〈±ψ+
n+1|ρ̂n|ψ−

n+1〉 =
∫

d[ψ̄+
n , ψ+

n , ψ̄−
n , ψ−

n ]e(ψ̄+
n+1−ψ̄+

n )ψ+
n +ψ̄−

n (ψ−
n+1−ψ−

n )〈±ψ+
n |ρ̂n|ψ−

n 〉, (A12)

〈±ψ+
n+1|Lρ̂n|ψ−

n+1〉 = −i〈±ψ+
n+1|[Ĥ, ρ̂n]|ψ−

n+1〉 + γ 〈±ψ+
n+1|

(
L̂ρ̂nL̂† − {L̂†L̂, ρ̂n}

2

)
|ψ−

n+1〉

=
∫

d[ψ̄+
n , ψ+

n , ψ̄−
n , ψ−

n ]e(ψ̄+
n+1−ψ̄+

n )ψ+
n +ψ̄−

n (ψ−
n+1−ψ−

n )

×
[
−iH+

n + iH−
n + γ

(
L+

n L̄−
n − L̄+

n L+
n + L̄−

n L−
n

2

)]
〈±ψ+

n |ρ̂n|ψ−
n 〉. (A13)

Here, H+(−)
n = H (±ψ̄

+(−)
n+1(n),±ψ

+(−)
n(n+1)) consists of fields on the +(−) contour only, and the same holds true for L±

n . By using

∂τψ
±
n = ψ±

n+1 − ψ±
n

δτ

, (A14)
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we obtain

e(ψ̄+
n+1−ψ̄+

n )ψ+
n +ψ̄−

n (ψ−
n+1−ψ−

n ) = eδτ [∂τ ψ̄
+
n ψ+

n +ψ̄−
n ∂τ ψ

−
n ]. (A15)

In addition, we note

1 + δτ

[
−iH+

n + iH−
n + γ

(
L+

n L̄−
n − L̄+

n L+
n + L̄−

n L−
n

2

)]
≈ e

δτ

[
−iH+

n +iH−
n +γ

(
L+

n L̄−
n − L̄+

n L+
n +L̄−

n L−
n

2

)]
. (A16)

Therefore, we obtain

〈±ψ+
n+1|ρ̂n+1|ψ−

n+1〉 =
∫

d[ψ̄+
n , ψ+

n , ψ̄−
n , ψ−

n ]eδSn〈±ψ+
n |ρ̂n|ψ−

n 〉, (A17)

where

δSn = δτ

[
ψ̄+

n i∂τψ
+
n − ψ̄−

n i∂τψ
−
n − H+

n + H−
n − iγ

(
L+

n L̄−
n − L̄+

n L+
n + L̄−

n L−
n

2

)]
. (A18)

Thus, the partition function is obtained as

Z = Tr e(τ f −τ0 )Lρ̂(τ0)

=
∫

D[ψ̄+, ψ+, ψ̄−, ψ−]eiS〈±ψ+(τ0)|ρ̂(τ0)|ψ−(τ0)〉.
(A19)

When we are interested in a steady state, we take τ0 → −∞
and τ f → ∞. There, we can make an assumption that the ini-
tial state in the infinite past does not affect the steady state, and
we can ignore the boundary term, 〈±ψ+(τ0)|ρ̂(τ0)|ψ−(τ0)〉.

In this case, the partition function is reduced to

Z =
∫

D[ψ̄+, ψ+, ψ̄−, ψ−]eiS. (A20)

Finally, we apply the above formula into our system, where
L̂ = d̂0. There, we should be aware of the sign of the quantum
jump term in the action −iγ L+L̄−. Especially, for fermions
where the antiperiodic boundary condition is adopted (A5),
the jump term is expressed as iγ d0d̄0, which has the opposite
sign to bosons. This is in contrast to systems with two-particle
loss where the sign difference between fermions and bosons
does not matter, since the Lindblad operator is bosonic [61].
By using the anticommutation relation for Grassmann num-
bers, however, we obtain the partition function (13) whose
formal expression is independent of quantum statistics.
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