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Number-conserving solution for dynamical quantum backreaction in a Bose-Einstein condensate
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We provide a number-conserving approach to the backreaction problem of small quantum fluctuations onto
a classical background for the exactly soluble dynamical evolution of a quasi-one-dimensional Bose-Einstein
condensate, experimentally realizable in the ultracold gas laboratory. A force density exerted on the gas particles,
which is of quantum origin, is uniquely identified as the deviation from the classical Eulerian force density. The
backreaction equations are then explored for the specific example of a finite-size uniform density condens-
ate initially at rest. By assuming that the condensate starts from a noninteracting regime and in its ground state,
we fix a well-defined initial vacuum condition, which is driven out of equilibrium by instantaneously turning on
the interactions. The assumption of this initial vacuum accounts for the ambiguity in choosing a vacuum state for
interacting condensates, which is due to phase diffusion and the ensuing condensate collapse. As a major finding,
we reveal that the time evolution of the condensate cloud leads to condensate density corrections that cannot in
general be disentangled from the quantum depletion in measurements probing the power spectrum of the total
density. Furthermore, while the condensate is initially at rest, quantum fluctuations give rise to a nontrivial
condensate flux, from which we demonstrate that the quantum force density attenuates the classical Eulerian
force. Finally, the knowledge of the particle density as a function of time for a condensate at rest determines, to
order N0 (where N is the total number of particles), the quantum force density, thus offering a viable route for
obtaining experimentally accessible quantum backreaction effects.
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I. INTRODUCTION

Field quantization in curved spacetimes leads to many
intriguing phenomena [1,2]. The most illustrious example,
with the largest impact in the physics community, is prob-
ably the Hawking radiation associated with the formation
of event horizons around black holes. The emitted quantum
particles, however, backreact onto the spacetime metric con-
taining the horizon, causing it to fluctuate around its classical
value. This backreaction problem was (partially) addressed
by Hawking in [3] (where backreaction was stated to be a
“difficult problem”) and was entirely “ignored” in the original
announcement that black holes radiate [4].

The difficulty (essentially, impossibility) in distinguishing
the tiny Hawking radiation of real astrophysical black holes
from the thermal background which surrounds it in the cos-
mos has led to the idea of analogs of Hawking radiation
to be implemented in nonrelativistic parent systems [5–7],
a development which culminated in the recent detection of
this analog Hawking radiation in Bose-Einstein condensates
(BECs) [8,9]. The BEC analog models are not limited to the
simulation of kinematical phenomena on curved spacetimes
such as the Hawking effect, and lend themselves to general
studies of backreaction in a system with well-established mi-
croscopic behavior [10,11].

The backreaction problem of small quantum fluctuations
onto the condensate in a dilute BEC at first glance might
appear to be a straightforwardly soluble one within Bogoli-

ubov theory. A careful inspection, however, reveals that,
due to the nontrivial interchange of particles between the
condensed and noncondensed (depleted) clouds, any proper
notion of the separation of a “classical” condensate and
quantum fluctuations on top of it can only be developed in
a number-conserving theory, with the number of atoms N
being fixed at all times. Therefore, the breakdown of particle-
number conservation by the standard Bogoliubov expansion
requires that expansions different from the latter should be
employed in order to correctly account for backreaction ef-
fects, such as the number-conserving theories developed, e.g.,
in [12–19]. In [10] the authors considered backreaction by
improving the standard Bogoliubov expansion via an expan-
sion in powers of N , which is then capable of accounting for
the interchange of particles between condensed and depleted
clouds. We adopt in our work the same approach, because
its predictions for backreaction can be straightforwardly inter-
preted in terms of possible experimental ramifications. Using
the same approach, the backreaction effect on the analog
background metric was investigated in [20].

Another important aspect of backreaction is related to
using different field variables (e.g., switching to the quan-
tum Madelung representation instead of using the scalar field
operator). Different choices of variables produce conflicting
results on the backreaction. This is illustrated, for example,
by a comparison of a field-theory-inspired effective action
approach to quantum backreaction [21] with an approach
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based on directly measurable quantities such as full density
and current, as performed in [10] (also see [22]).

Thus, when backreaction is not axiomatically defined as
for quantum field theory in curved spaces (cf., e.g., [1,2,23]),
backreaction must be expressed in terms of measurable quan-
tities. Following this principle, an unambiguous quantum
backreaction definition was established in [10] as a quantum
force density exerted on the gas particles which leads to an
in principle measurable departure from classical Eulerian dy-
namics.

In the present paper we explore (and further extend)
the quantum backreaction scheme defined in [10], by thor-
oughly analyzing a concretely soluble dynamical quasi-one-
dimensional (quasi-1D) condensate model. We assume that
our condensate initially has uniform density; such configu-
rations have been experimentally implemented [24,25]. The
system resides initially in the noninteracting ground state and
is then suddenly quenched to an interacting regime, with finite
coupling constant. The uniform density assumption leads to
a set of field equations that can be exactly solved in the
dominant order of condensate corrections.

An important phenomenon occurring in interacting BECs
is that of condensate phase diffusion [15,26–30]. In particular,
phase diffusion means that there is no stationary finite-size
interacting condensate (note that this is distinct from the
divergence of phase fluctuations in infinite one- and two-
dimensional systems [31]). The absence of a stationary state
then leads to the difficulty of properly specifying the initial
configuration.

By assuming that the condensate is initially noninteracting,
we provide a clear characterization of the initial config-
uration that, importantly, can be prepared in a controlled
way in the laboratory. Indeed, this experimental procedure
was adopted, for instance, in [32] in order to create stable
condensates in well-characterized initial states. We show in
this work that associated with the backreaction problem is
a Cauchy problem, which requires the specification of the
initial condensate state in order to produce meaningful solu-
tions. For our quenched condensate, starting from a regime
where the system is stationary, it is then possible to follow
the system evolution in full detail from a well-defined initial
state.

It should be stressed that the backreaction problem can
be approached via a plethora of existing techniques. For
example, within the context of analog gravity, in [33] the
authors studied the problem of backreaction numerically in a
black hole analog by implementing the truncated Wigner ap-
proximation (TWA), which amounts to evolving the system’s
Wigner functional by neglecting higher-order derivatives in
its evolution [34,35]. Also, this approximation is suitable
for numerically studying the evolution of analog Hawking
radiation [36]. However, although the TWA is a numerical
approximation to the full many-body problem and as such can
be used to study even nonlinear regimes, its validity is limited
by the number of quasiparticle modes included in the analysis.
In contrast, the number-conserving Bogoliubov expansion we
adopt here allows for exact solubility of relevant conden-
sate configurations and it is limited only by the mean-field
approximation.

It is also worth mentioning that different sources of backre-
action on the condensate can exist besides the ones considered
in [10]. Our findings reveal, as we will see, that when
measuring, e.g., quantum depletion, one must necessarily
take into account condensate backreaction coming from the
atom interactions. In addition, the very measuring apparatus
might imprint itself nontrivially on the condensate. Indeed, it
was shown in [37] that Josephson-like oscillations between
spatially separated condensates are modified by the nonde-
structive imaging of one of the condensates. Furthermore,
in [38] the authors showed that the nondestructive imaging
of a condensate also reduces atom-number fluctuations at the
expense of increasing the phase spreading (squeezing).

From the number-conserving solution for the condensate
evolution, our model enables the proper interpretation of mea-
surable quantities such as density and current of the gas.
When the interactions are turned on and quantum fluctuations
emerge, we show that it is not possible to discern the quantum
depletion from the corrections to the condensed cloud in den-
sity measurements, revealing a subtle but important aspect of
measuring condensate depletion. Furthermore, we show that
even though the condensate is initially at rest and there is
no phonon flux, number conservation leads to a nonvanishing
condensed particle flux, representing a bona fide quantum
backreaction effect in our system. From the particle current,
we then show that the total force density on the gas particles
is given by a potential function, which, upon comparison with
the Eulerian potential function, is used to show that the quan-
tum force has an attenuating effect over the classical force.

Our work is organized as follows. We present in Sec. II
the formal framework of the number-conserving approach to
quantum backreaction which we employ. In Sec. III the con-
densate model is set up and the quantum fluctuations created
by the coupling constant quench are studied. In Sec. IV we
study quantum depletion, from which we verify the validity
regime of our approach. In Sec. V we present the major results
of our work, the corrections to the condensate resulting from
backreaction of quantum fluctuations onto the condensate. We
finish our discussion with a summary and final remarks in
Sec. VI.

II. NUMBER-CONSERVING FORMULATION
OF QUANTUM BACKREACTION

A. Expansion in powers of N

Let � describe the bosonic field associated with the non-
relativistic dilute gas in 1+1 dimensions under study, whose
evolution is here taken to be ruled in the s-wave approximation
by the field equation

i∂t� =
(

− ∂2
x

2m
+ U + g|�|2

)
�, (1)

where we have set h̄ = 1 and U is the external (trapping)
potential. We note that the theory described by (1) is in-
variant under global U (1) transformations, which ensures the
conservation of the system particle number N according to
the Noether theorem. Specifically, the conservation law ∂tρ +
∂xJ = 0 holds, where ρ = |�|2, J = (�∗∂x� − �∂x�

∗)/2im
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are the system particle and current densities, respectively, and
N = ∫

dxρ.
The number-conserving theory we adopt in this work is

obtained by expanding � in powers of N as

� = φ0 + χ + ζ + O(N−3/2), (2)

with the following set of scaling behaviors [10]:

N → ∞ with Ng = const, (3a)

φ0 = O(N1/2), χ = O(N0), ζ = O(N−1/2). (3b)

The above set of scalings leads, for the assumed contact in-
teractions and at the respective orders of N , to the hierarchy
of coupled equations (4)–(6) below [note that for long-range
interactions, in general other scalings appear in the expansion
(cf. [39])]. The first condition (3a) is necessary to control the
potential g|�|2 in the field equation (1), for when N → ∞ for
a fixed coupling g, � → 0 is the only physical (normalizable)
solution to the field equation. This condition is indeed re-
quired for a rigorous derivation of the Gross-Pitaevskii energy
functional [40] and for complete Bose-Einstein condensation
to occur in the limit N → ∞ [41]. The second condition (3b)
ensures that |ζ | � |χ | � |φ0| and identifies the different
magnitude scales in the system. The field χ is the fluctuating
field and ζ encapsulates the backreaction effects from χ onto
the given condensate configuration φ0. Furthermore, our goal
is to work with a number-conserving theory up to order N0,
i.e., the densities ρ and J should be expanded also up to
order N0. Thus, because both ρ and J are quadratic in �, the
expansion for � must contain terms up to order N−1/2, i.e., up
to the order of ζ .

By plugging the expansion (2) into the field equation (1)
and identifying terms according to their order in N (keeping
in mind that g ∝ N−1), we obtain to leading order the Gross-
Pitaevskii (GP) equation for φ0,

i∂tφ0 =
(

− ∂2
x

2m
+ U + gρ0

)
φ0, (4)

with ρ0 = |φ0|2; in the next order in N the Bogoliubov–de
Gennes (BdG) equation for χ ,

i∂tχ =
(

− ∂2
x

2m
+ U + 2gρ0

)
χ + gφ2

0χ
∗; (5)

and finally a BdG-like equation with χ -dependent source
terms for the final contribution to the expansion ζ ,

i∂tζ =
(

− ∂2
x

2m
+ U + 2gρ0

)
ζ + gφ2

0ζ
∗+ 2g|χ |2φ0 + gχ2φ∗

0 .

(6)

Alternatively, following [10], we can also define the field
φc = φ0 + ζ in such a way that both Eqs. (4) and (6) are
written compactly in terms of the improved GP equation,
which includes subleading terms

i∂tφc =
(

− ∂2
x

2m
+ U + g|φc|2 + 2g|χ |2

)
φc + gχ2φ∗

c . (7)

It should be stressed, however, that within the expansion in
powers of N , Eq. (7) represents only a compact way of writing
Eqs. (4) and (6). Indeed, note that factors involving χ in

Eq. (7) are of order N−1, which should be compared with the
order N0 factors in the remaining terms. Thus, in order to keep
the expansion consistent, the solution φc of Eq. (7) is the sum
of a dominant order-N1/2 term plus a subdominant correction
of order N−1/2. Using the fields φc and χ to describe the gas
dynamics allows us to interpret the field ζ as modeling cor-
rections to the condensate order parameter φ0 due to the field
χ . We will show in the following that this interpretation of the
field ζ facilitates the proper formulation of backreaction of
quantum fluctuations onto the classical background. Finally,
quantization, within our approach, is achieved by promoting
the classical field χ to the operator-valued distribution χ̂ ,
taken to satisfy the equal-time bosonic commutation relation
[χ̂ (t, x), χ̂†(t, x′)] = δ(x − x′).1

In the following, working in the Heisenberg picture, we
will consider only the quasiparticle vacuum state for the
perturbations, for which 〈χ̂〉 := 0. After quantization, the
classical current and density become operator-valued distri-
butions as well, and for the vacuum state under consideration
we have

ρ := 〈ρ̂〉 = |φc|2 + 〈χ̂†χ̂〉 + O(N−1/2), (8)

J := 〈Ĵ〉 = 1

m
Im[φ∗

c ∂xφc + 〈χ̂†∂xχ̂〉] + O(N−1/2). (9)

Furthermore, the field φc is now given by the operator-valued
version of Eq. (7), where it appears as a multiple of the
identity operator. Thus the equation coincides with its vacuum
expectation value and is given by

i∂tφc =
[
− ∂2

x

2m
+ U + g|φc|2 + 2g〈χ̂†χ̂〉

]
φc + g〈χ̂2〉φ∗

c ,

(10)

where the normal ordering prescription was taken.
It is instructive to define the averaged contributions to the

densities stemming from the quantum fluctuations alone as
ρχ := 〈χ̂†χ̂〉 and Jχ := Im[〈χ̂†∂xχ̂〉]/m in such a way that
ρ := ρc + ρχ + O(N−1/2) and J := Jc + Jχ + O(N−1/2). It is
then straightforward to show, from Eqs. (10) and (5), that

∂tρc + ∂xJc = ig
(
φ2

c 〈χ̂†2〉 − φ∗2
c 〈χ̂2〉), (11a)

∂tρχ + ∂xJχ = −ig
(
φ2

c 〈χ̂†2〉 − φ∗2
c 〈χ̂2〉), (11b)

thus ensuring that the theory is conserving (∂tρ + ∂xJ = 0) up
to our working (N0) order in the densities and currents.

B. Corrections to the condensate background

We note that the right-hand sides of both Eqs. (11a)
and (11b) are of order N0, which is in accord with the left-
hand side of Eq. (11b), but seems to fail for the left-hand
side of Eq. (11a), which is of order N . The reason is that
both ρc and Jc are determined by the field φc and thus they
split into dominant O(N ) terms plus O(N0) corrections in
such a way that the dominant terms on the left-hand side of

1Note that it is consistent, to leading Bogoliubov order, with the ex-
pansion (2) and the resulting evolution equations (4)–(6) to quantize
the field χ only (and not also ζ ) (cf. the discussion in [10]).
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Eq. (11a) cancel exactly as they are built from a solution of
the standard GP equation (4). Returning to the definitions of
φc = φ0 + ζ as well as ρc and Jc from Eqs. (8) and (9), we find
that ρc = ρ0 + ρζ + O(N−1/2) and Jc = J0 + Jζ + O(N−1/2),
where J0 = Im[φ∗

0∂xφ0]/m,

ρζ = 2 Re[φ∗
0ζ ], (12)

Jζ = 1

m
Im[φ∗

0∂xζ + (∂xφ0)ζ ∗]. (13)

It thus follows from Eq. (4) that ∂tρc + ∂xJc = ∂tρζ + ∂xJζ =
O(N0), ensuring the consistency of Eq. (11a).

The density ρζ and current density Jζ are the corrections
to the condensate contributions ρ0 and J0. Within the validity
domain of Bogoliubov theory, i.e., when δN := ∫

dxρχ �
N = ∫

dxρ0, the quantum fluctuations modeled by the field χ̂

remain small and independent of the condensate corrections
ζ , which are in turn determined by ρχ and 〈χ̂2〉 through
Eq. (6). In this regime, the dynamics of the field χ̂ is linear.
Furthermore, the very condensate existence in the presence
of interactions (δN/N � 1) leads to a nonvanishing quantum
depletion ρχ and nonvanishing anomalous correlator 〈χ̂2〉,
which in turn correct the condensate via the field ζ . This is
the essence of the backreaction scheme we employ here.

C. Quantum force

We are now able to enunciate the definition of the backre-
action scheme presented in [10]. The motivation for it comes
from the fact that the gas separation into a condensate part
modeled by φc and the one-particle quantum excitations χ̂

is an intricate concept, as the number of particles in each of
these sectors is not conserved separately during the system
development. This follows from Eqs. (11), which describe
the local conservation law of particles in the condensate and
depletion sectors.

Therefore, a consistent definition of the quantum backre-
action must be formulated in terms of measurable quantities,
which, within our nonrelativistic field theory, include the
densities and current densities. By following the discussion
in [10], in the absence of quantum fluctuations, the classical
fluid described by the standard GP equation is ruled by the
Euler equation ∂t J = fcl and the continuity equation ∂tρ +
∂xJ = 0, where the classical force density fcl is

fcl = −∂x(ρv2) − ρ

m
∂x

(−∂2
x
√

ρ

2m
√

ρ
+ U + gρ

)
(14)

and v = J/ρ is the average fluid velocity. However, when
quantum fluctuations are taken into account, we should have
∂t J �= fcl, indicating a departure from the classical description
induced by quantum effects, which unambiguously defines
the quantum force fq := ∂t J − fcl. It then follows from the
various definitions in the above that

fq = ∂t Jχ − v0∂tρχ + ∂x
(
v0Jχ − ρχv2

0

) + Jχ∂xv0

− ρ0

2m
∂x

(
gG(2)

ρ0

)
+ ρχ

m
∂x

(
− ∂2

x
√

ρ0

2m
√

ρ0
+ U + gρ0

)

− ρ0

4m2
∂x

[
1√
ρ0

∂2
x

(
ρχ√
ρ0

)
− ρχ

ρ
3/2
0

∂2
x
√

ρ0

]
(15)

holds up to order N0. Here v0 = J0/ρ0 is the zeroth-order
condensate velocity and the (on-site, second-order) correla-
tion G(2) is defined in terms of the quantum density operator
ρ̂ = (φ∗

c + χ̂†)(φc + χ̂ ) as

G(2) = 〈:(ρ̂ − 〈ρ̂〉)2:〉, (16)

where the colons indicate normal ordering, and is a contri-
bution to the quantum force density originating in the local
condensate density fluctuations. Measurements of the on-site
correlation function G(2) in terms of the atom-number fluc-
tuations are typically limited by the pixel-size resolution of
the optical imaging [42], but more recently superresolution
methods beating the diffraction limit have been developed,
in principle allowing us to resolve the density fluctuations on
scales of the order of the healing length [43,44].

D. Cauchy problem for backreaction analysis

As a final ingredient for the backreaction analysis un-
der construction, in this section we show how the various
equations presented in the above should be used to calcu-
late relevant quantities. Specifically, we note that the unique
identification of classical and quantum forces fcl and fq is not
sufficient to determine the evolution of ρ and J completely
through the system

∂tρ + ∂xJ = 0, (17a)

∂t J = fcl + fq. (17b)

Given the functional forms of both fcl and fq, the system of
equations (17) has to be supplemented with initial conditions
for the system densities ρ and J at some initial time, i.e.,
the gas configuration should be completely known initially in
order for the backreaction problem to become a well-defined
Cauchy problem, with a unique causal solution for ρ and J .

Furthermore, another subtle aspect of backreaction analy-
sis in Bose gases is linked to the determination of the system
initial configuration. Within our expansion scheme, a specifi-
cation of ρ and J at a given time is characterized by φ0, ζ , and
a quantum state for the field operator χ̂ at that instant of time.
Note that although this specification is simple from a mathe-
matical point of view, it has a great impact on the applicability
of the backreaction analysis to experiments devised to probe
quantum effects. Indeed, in order to establish a concrete exam-
ple, let us consider the problem of probing quantum depletion
of a condensate through density measurements using, for in-
stance, the technique of [45]. According to the definitions
of Secs. II A and II B, the system’s total density up to or-
der N0 reads ρ = ρ0 + ρχ + ρζ + O(N−1/2), and measuring
quantum depletion amounts to determining ρχ alone among
the various density contributions. In any number-conserving
analysis, ρχ can only be directly measured in experiments
where it can be distinguished from ρζ . We will return to this
matter when we present our approach to backreaction in more
detail below.

Also related to the notion of initial conditions is the phe-
nomenon of condensate phase diffusion [15] when g �= 0, the
spontaneous destruction of the condensate off-diagonal long-
range order. For our purposes, this phenomenon means that
in the absence of coherent sources, no finite-size stationary
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condensate can exist. In particular, no finite-size condensate
with g �= 0 and ∂tρχ := 0 is physically possible, even in the
case where the field equations are stationary. Within the back-
reaction language, phase diffusion implies that there is no
stationary instantaneous vacuum state that can be used as
a quantum state for the initial system configuration, which
contributes further to the difficulty in assessing condensate
configurations at the laboratory. In the following sections we
thoroughly explore a backreaction model with a well-defined
initial state that is in principle experimentally accessible.

III. QUANTUM FLUCTUATIONS IN A UNIFORM
DENSITY CONDENSATE

As discussed in Sec. II D, within our number-conserving
theory, a condensate configuration is specified by the field φc

or equivalently by φ0 and ζ . We consider a uniform density
condensate at rest inside a box trap of size 	 and at zero
temperature such that ρ0 = |φ0|2 is its density. The condensate
is assumed to be in its ground state in a noninteracting regime
for t < 0, i.e., g = 0 (see, e.g., Ref. [46] for an experimental
realization of condensates in this regime). It thus follows from
the absence of interactions that ρχ = 〈χ̂2〉 := 0 (t < 0) for
the system vacuum state and accordingly ζ := 0 is a trivial
solution to the backreaction equations which we take as the
initial condensate configuration. In order to activate the quan-
tum fluctuations and thus the backreaction, we assume that at
t � 0 the atom interactions are turned on (g = g0 > 0), while
the background condensate order parameter φ0 remains un-
changed. In this section we study in detail the field φ0 and the
quantization of χ for the resulting condensate configuration.

A. Background condensate

Condensates with an essentially uniform density profile
can be prepared using current technology [24], and we assume
for our purposes that the condensate under consideration is
well approximated to be uniform. This might be realizable
ever more accurately experimentally with new trapping tech-
niques being developed (see [25] for an up-to-date review).
A multitude of interesting applications of uniform density
models has been described in [25] and we cite here in addition
the recent application in the context of analog gravity and
Hawking radiation [47].

The major benefit we gain by assuming a uniform con-
densate density is the exact solubility of Eqs. (5) and (6).
Furthermore, we also assume that φ0 has a simple harmonic
time dependence, i.e., φ0 = exp(−iμt )

√
ρ0, where μ is the

chemical potential and ρ0 is constant. This configuration is a
solution of Eq. (4) for the external potential

U = μ + 1

2m
∂x[δ(x − 	/2) − δ(x + 	/2)]. (18)

By plugging this external potential back into Eqs. (1) and
(4)–(6) and integrating them around ±	/2, we obtain that
∂x�|x=±	/2 = 0 and similarly for φ0, χ , and ζ , i.e., this ex-
ternal potential translates to Neumann boundary conditions
at the condensate walls. In what follows, we will omit the δ

derivatives for the sake of notational convenience.
In order to activate the quantum fluctuations, we assume

that at t � 0 the atom interactions are instantaneously turned

on (g = g0 > 0), keeping ρ0 constant. This is achieved by a
time-dependent external potential given by

U = μ − gρ0 (19)

for −	/2 < x < 	/2, and this represents all the input neces-
sary to study backreaction in this system, as we will show.

Once the order-N1/2 field φ0 is determined, the condensate
quantum fluctuations are given by the quantization of the
field χ , and because of the uniform density assumption on
φ0, canonical quantization is straightforward. It consists in
expanding χ in a complete set of eigenfunctions and imposing
the canonical commutation relations, as we show in what
follows. Also, in addition to h̄ = 1, we use units such that
m = 1. We will render all equations dimensionless by scaling
the quantities contained in them with powers of the healing
length ξ0 = 1/

√
ρ0g0. For example, spatial coordinates are

then expressed in units of ξ0, time is expressed in units of
ξ 2

0 , and particle densities indicate the number of particles per
healing length.

B. Canonical quantization of χ

Let χ = exp(−iμt )ψ , where from Eq. (5) ψ is solution of

i∂tψ = −1

2
∂2

x ψ + g

g0
(ψ + ψ∗), (20)

and we observe the boundary conditions ∂xψ |x=±	/2 = 0.
Equation (20) can be cast in a spinorial form by defining the
Nambu spinor � = (ψ,ψ∗)T, where T stands for transpose.
Thus, the field equation (20) implies

iσ3∂t� =
(

−∂2
x

2
+ g

g0
σ4

)
�, (21)

where σi (i = 1, 2, 3) denote the usual Pauli matrices and
σ4 = 1 + σ1. Equivalence between the two representations is
recovered by requiring that the spinor � satisfies the reflection
property � = σ1�

∗ and upon quantization the commutation
relations in terms of �̂ read

[�̂a(t, x), �̂†
b(t, x′)] = σ3,abδ(x − x′). (22)

Moreover, the Neumann boundary conditions (BCs) for ψ

imply that the field � is subjected to the same conditions:

∂x�|x=±	/2 = 0. (23)

If � and �′ are two solutions of Eq. (21) fulfilling the bound-
ary conditions of Eq. (23), then

〈�,�′〉 =
∫

dx �†(t, x)σ3�
′(t, x) (24)

is a conserved (in time) quantity, which will be used as a scalar
product on the space of classical solutions. Also, as the field
modes have compact support, they have finite norms, which
can be taken in general as

〈�,�〉 = ±1. (25)

We stress that even though Eq. (21) may admit nonzero solu-
tions with vanishing norm, we can always find an orthonormal
basis as in Eq. (25). The plus and minus signs in Eq. (25)
correspond to positive- and negative-norm modes, and we
recall that for each solution � of Eq. (21), σ1�

∗ is also a
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solution of opposite norm sign. Thus there exists a one-to-one
correspondence between positive- and negative-norm modes,
which allows us to index the positive-norm solutions as �n,
n = 0, 1, 2, . . .. With this, we can write the most general clas-
sical solution of Eq. (21) as

�(t, x) =
∞∑

n=0

[an�n(t, x) + b∗
nσ1�

∗
n(t, x)], (26)

and in view of the reflection property � = σ1�
∗, it follows

that bn = an. Now canonical quantization is defined by the
promotion of � to the operator-valued distribution �̂ sub-
jected to the condition (22), which corresponds to promoting
each an = 〈�n,�〉 to an operator ân satisfying

[ân, â†
n′ ] = δn,n′ . (27)

Concluding, a vacuum state |0〉 is defined by the kernel condi-
tion ân|0〉 = 0, and from the identification �n = (un, vn)t, we
have, from Eq. (26),

ψ̂ (t, x) =
∞∑

n=0

[ânun(t, x) + â†
nv

∗
n (t, x)]. (28)

Therefore, in order to conclude the quantization procedure we
need to find the set {�n}∞n=0 of positive field modes.

C. Quantum field in the noninteracting regime

The positive-norm field modes �n(t, x) (n = 0, 1, 2, . . .) at
all times can be found by solving the field equation separately
at t < 0 and t > 0, where the system dynamics is stationary.
Let us focus on the noninteracting regime first. In this case,
the field equation reads

iσ3∂t� = −∂2
x

2
�. (29)

The solutions of Eq. (29) can be found as follows. As we
are in a stationary regime, solutions of the form �(t, x) =
exp(−iωt )�ω(x) exist for ω � 0 such that

ωσ3�ω = −∂2
x

2
�ω. (30)

Now because Eq. (30) for −	/2 < x < 	/2 is independent of
x, we can find �ω(x) = exp(ikx)�ω,k with constant �ω,k . This
is possible only if

ω = ±k2

2
, (31)

which has four distinct solutions k1 = √
2ω = −k2 = −ik3 =

ik4, and �ω,k1 = �ω,k2 = (1, 0)T and �ω,k3 = �ω,k4 = (0, 1)T.
Thus a general solution of Eq. (30) must have the form

�ω(x) = eik1x�ω,k1 +
∑

i=2,3,4

Ski e
ikix�ω,ki . (32)

By imposing Neumann BCs at x = ±	/2 we obtain that Sk3 =
Sk4 = 0, k1 := kn = nπ/	 (n = 0, 1, 2, 3, . . .), Sk2 = (−1)n,
and ω := �n = n2π2/2l2, or

�n(t, x) = e−i�nt [eiknx + (−1)ne−iknx]√
2	(1 + δ0,n)

(1, 0)T (33)

(n = 0, 1, 2, 3, . . .) are the positive-norm modes. The nor-
malization constant is added to ensure that 〈�n,�n′ 〉 = δn,n′ .

Accordingly, the quantum field in the noninteracting regime
assumes the form

�̂(t, x) =
∞∑

n=0

[ân�n(t, x) + â†
nσ1�

∗
n(t, x)]. (34)

We show in Appendix A that for t < 0 the commutation rela-
tion (22) for the expansion (34) is verified, which amounts to
saying that the set of field modes just built is indeed complete.

D. Field modes in the interacting regime

In this section we extend the set {�n}∞n=0 of positive-norm
mode functions to the interacting regime (t > 0). In order
to obtain such an extension, we can proceed by solving the
field equation for a complete set of mode functions in the
interacting regime (t > 0) and expand each �n in terms of
these functions. The field equation now reads

iσ3∂t� =
(

−∂2
x

2
+ σ4

)
�. (35)

In contrast to the noninteracting regime, we call attention to
the zero-norm-mode caveat of Eq. (35). Note that

� = �0 := (1,−1)T (36)

is a time-independent solution of Eq. (35), and because
�

†
0σ3�0 = 0, this nonzero solution has zero norm. Moreover,

this is the only time-independent solution of Eq. (35) and
clearly σ1�

∗
0 = −�0, which means that we cannot use the

reflection property to build a second linearly independent
(LI) solution. A procedure to find another LI solution was
presented in [15], and in our case it is enough to see that

�̃0 = 1
2 (1, 1)T − it�0 (37)

is also an admissible field mode with zero norm. We note
that �̃0 is not an eigenfunction of the time translation gen-
erator i∂t , i∂t�̃0 = �0, which is the mathematical expression
for the breakdown of the system time translation symmetry
exhibited by the field equations, implying that no interacting
condensate free of external coherent sources exists in a steady
state. In the language of Bose-Einstein condensates, the field
mode �0 corresponds to a momentum operator, whereas �̃0

corresponds to an unbound phase operator, which gives rise
to the notion of condensate phase diffusion (see for the def-
inition of these operator notions [15,28]). Also, we observe
in connection to analog gravity in BECs that finite-size black
hole analogs present generic dynamical instabilities that also
break the system time translation symmetry [48], and thus our
quantum quench from a noninteracting regime offers a route
for studying backreaction also in these systems.

All the other positive-norm mode functions of Eq. (35) can
be found following the same procedure as before. We find that

�n = e−iωnt [eiknx + (−1)ne−iknx]√
2	

[
1 − (

ωn − k2
n

/
2 − 1

)2] (
1, ωn − k2

n

/
2 − 1

)T

(38)
for n = 1, 2, 3, . . . and ωn = √

k2
n (k2

n/4 + 1). Again, the nor-
malization constant was chosen to guarantee 〈�n,�n′ 〉 =
δn,n′ , n, n′ � 1. Therefore, the set {�0, �̃0,�n, σ1�

∗
n} is
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complete and thus we can write

�n = αn,0�0 + βn,0�̃0 +
∞∑
j=1

[αn, j� j − βn, jσ1�
∗
j ] (39)

for t > 0. The coefficients αn, j and βn, j are then fixed by
the field equation (21): The wave function �n is a con-
tinuous function of t . In particular, we have �n(0+, x) =
�n(0−, x) := �(−)

n . This condition applied to Eqs. (33)
and (39) gives rise to a Fourier decomposition for the function
�(−)

n , implying

αn,0 = 〈�̃0,�
(−)
n 〉

〈�̃0,�0〉
, αn, j = 〈� j,�

(−)
n 〉, (40)

βn,0 = 〈�0,�
(−)
n 〉

〈�0, �̃0〉
, βn, j = 〈σ1�

∗
j ,�

(−)
n 〉, (41)

where j > 0 and the functions �n are evaluated at t = 0. By
performing the integrals we find

αn,0 = δn,0

2
√

	
, αn, j = δn, j√

1 − (
ωn − k2

n

/
2 − 1

)2
, (42a)

βn,0 = δn,0√
	
, βn, j =

(
ωn − k2

n

/
2 − 1

)
(−1)nδn, j√

1 − (
ωn − k2

n

/
2 − 1

)2
, (42b)

where j > 0. This concludes the determination of the com-
plete set of positive-norm mode functions {�n}∞n=0, and we
show in Appendix A that the quantum field expansion of
Eq. (34) satisfies the commutation relation of Eq. (22) for all t .
In the next section we show how this quantization determines
the evolution of the noncondensed cloud.

IV. CONDENSATE DEPLETION

In this section we focus on the evolution of the depleted
cloud as the interactions are turned on. It should be stressed
that the quantization developed in the preceding section and
the results presented in this section are exactly the same
as the ones obtained from the non-number-conserving Bo-
goliubov theory. Major differences between the number- and
non-number-conserving approaches are found when we dis-
cuss connections to measurements in Sec. V.

The depleted cloud is characterized by the quantum de-
pletion ρχ and the phonon flux Jχ , both defined in terms
of χ̂ in the paragraph before Eqs. (11) as ρχ = 〈χ̂†χ̂〉 and
Jχ = Im[〈χ̂†∂xχ̂〉]. Referring back to the quantum field ex-
pansion in Eq. (28) and the definition χ̂ = exp(−iμt )ψ̂ , for
our condensate configuration it follows that Jχ = 0 for all t ,
meaning that the depleted cloud remains at rest with respect to
the laboratory frame as long as the predictions of Bogoliubov
theory are reliable. This is not true, however, for black hole
analogs, in which cases the condensate necessarily flows. In
such cases one has Jχ �= 0.

As for the quantum depletion, we find that ρχ := 0 for t< 0
in the noninteracting regime by definition of the latter and

ρχ = t2

	
+ 1

2	

∞∑
n=1

(−1)n

ω2
n

[(−1)n + cos(2knx)][1− cos(2ωnt )]

(43)

(a) (b)

FIG. 1. (a) Evolution of the condensate depletion for a conden-
sate of size 	 = 40. The curves are plotted for x � 0 only, using
that ρχ is an even function of x [see Eq. (43)]. As time passes, we
observe an overall depletion increase, initially more pronounced at
the condensate wall at x = 	/2. (b) Depletion profile evolution for
a system of size 	 = 100. We note that the bulk depletion increase
is insensitive to the existence of the condensate walls for the time
periods considered in the plots. Here and in the following plots, units
are chosen such that we have the scalings x = x[ξ0] and t = t[ξ 2

0 ] for
the particle densities ρi = ρi[1/ξ0], with i = χ, ζ , and for the current
density Jζ = Jζ [1/ξ 2

0 ].

for t � 0 (interacting regime). Inspection of Eq. (43) reveals
that the first contribution to the system depletion, namely,
t2/	, comes from the zero mode in Eq. (37). It has a simple
interpretation in terms of condensate phase diffusion [15]:
As the condensate phase degrades, particles leave the con-
densed cloud. Moreover, we see that if 	 → ∞ with ρ0 kept
constant, this contribution goes to zero. However, the second
contribution diverges then, as no infinitely extended quasi-1D
condensate exists [31].

In Fig. 1 we plot selected depletion profiles for two system
sizes 	 = 40 and 100, from which we observe that when
the interactions are turned on, depletion increases from zero
following a pattern such that far from the condensate walls
the system is insensitive to the existence of the (Neumann)
boundary conditions, as can be inferred from the comparison
between the plots in Figs. 1(a) and 1(b). Furthermore, as times
passes, depletion increases faster closer to the condensate
walls for both system sizes, giving rise to a wave with growing
amplitude in the depleted cloud, which propagates towards the
condensate bulk. Moreover, still from Figs. 1(a) and 1(b), in
addition to the observed depletion insensitivity on the system
size far from the walls, it also follows that the depletion
profiles for both sizes are similar close to the walls, as shown
in Fig. 2(a) for several system sizes at fixed time t = 5.

From our observation that far from the system walls the de-
pletion growth rate is rather insensitive to the system size [cf.
both Figs. 1(a) and 1(b)], it follows that the growth timescale
depends only on the chemical potential ρ0g0 (remember t is in
units of 1/ρ0g0). Moreover, we recall that the quantum deple-
tion of an infinitely extended homogeneous 3D condensate in
its ground state is proportional to

√
ρ3Dg3

3D [45,49]. However,
no analogous formula exists for the 1D condensate due to the
infrared depletion divergence [31], whereas for (inhomoge-
neous) finite-size condensates the depletion dependence on
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(b)(a)

FIG. 2. (a) Depletion near-boundary behavior for several system
sizes at t = 5. The profiles corresponding to larger condensates are
translated to the left and slightly shifted to allow comparison with
the smaller condensate profile. (b) Total number of particles in the
depleted cloud as a function of time for several condensate sizes.
Larger condensates correspond to faster growth of δN for fixed ρ0.
The long-dashed gray line depicts δN without the phase spreading
contribution t2 for 	 = 40 [cf. Eq. (44)], showing that δN is eventu-
ally dominated by the condensate phase degradation.

ρ0g0 is necessarily model dependent. In our model, depletion
is time dependent and we can obtain information regarding the
depletion growth rate dependence on the condensate chemical
potential ρ0g0 far from the condensate walls for a fixed time
duration. Indeed, Fig. 1(a) suggests that within the interval
1 � t � 5 the depletion growth far from the condensate walls
(x ∼ 0) is fairly linear with t . Within our conventions, t is
expressed in units of ξ 2

0 = 1/ρ0g0 and thus to return to di-
mensionful time we must put t → ρ0g0t . Hence, for a fixed
parameter-independent time period, the quantum depletion in
our model, after the interactions are turned on, is approxi-
mately linear in ρ0g0, which should be compared with the 3D
counterpart which is proportional to

√
ρ3Dg3

3D.
Before solving the backreaction problem in the next sec-

tion, we note an aspect of the quantum depletion which is
of basic importance for our analysis, namely, the validity of
the Bogoliubov expansion and consequently of the number-
conserving expansion presented before Eqs. (3), expressed by
the condition δN/N � 1, where δN is the number of depleted
particles, which from Eq. (43) is found to be

δN = t2 + 1

2

∞∑
n=1

1

ω2
n

[1 − cos(2ωnt )]. (44)

We plot in Fig. 2(b) δN as a function of time for several system
sizes. We recognize the first term in Eq. (44) to be the number
of depleted particles due to the condensate phase spreading,
which is independent of the condensate size. Also, we see
from Fig. 2 that the depleted cloud is initially dominated
by quasiparticle population and, as time passes, the conden-
sate phase degradation becomes more relevant and eventually
dominates the depleted cloud. We observe that for larger sys-
tem sizes δN grows faster, which is expected as larger systems
have more particles for a fixed ρ0. Furthermore, for a system
with size 	 = 40, we notice that for t = 20, δN ∼ 600 (the
timescale ρ0g0t = 20 can be arbitrarily large depending on
the chemical potential ρ0g0). By assuming a condensate with
N = 5000 particles, we find δN/N = 0.12. For definiteness,
in this work we assume δN/N � 0.1 as the validity regime for
the field expansion in powers of N . Thus, for δN/N = 0.12
the results that follow from the expansion might accordingly
not be reliable. We observe that for N = 5000, the results of
Fig. 1 are within the expansion validity.

V. QUANTUM BACKREACTION

In this section we present the major results of our analysis,
namely, the (up to the relevant order in N) exact solutions for
the condensate corrections ρζ and Jζ in the interacting regime,
i.e., for times t > 0. These quantities are determined by the
coupled system of equations (J0 = Jχ = 0)

∂tρζ + ∂xJζ = ig
(
φ2

0〈χ̂†2〉 − φ∗2
0 〈χ̂2〉), (45a)

∂t Jζ = fcl + fq, (45b)

subject to the initial conditions ρζ , Jζ = 0 at t = 0. This
initial-value problem then gives rise to the unique solution
to the problem of how the condensate evolves during the
unavoidable depleted cloud formation.

The system (45) plus initial conditions can be solved
numerically with the aid of the correlations ρχ and 〈χ̂2〉
calculated from the quantum field χ̂ . Notwithstanding, for the
particular condensate model adopted in our work, the exact so-
lution for the backreaction problem can also be constructed by
solving directly for the field ζ in Eq. (6) instead, from which
the ρζ and Jζ can be determined. We describe in Appendix B
the (rather cumbersome) construction of the solution for ζ :
ζ = 0 for t < 0 and the exact solution for t � 0 reads

eiμt√ρ0ζ = − t2

2	
− 1

8	

∞∑
n=1

(−1)n

ω2
n

{
2(−1)n

[
1 − cos 2ωnt + ik2

n

(
sin 2ωnt

2ωn
− t

)]

+ cos 2knx

[
2 − k2

n

k2
n + 1

+ 2 cos 2ωnt − 4iωn

k2
n

sin 2ωnt − k2
n + 4

k2
n + 1

(
cos ω2nt − iω2n

2k2
n

sin ω2nt

)]}
, (46)

which contains all the backreaction information within our
number-conserving expansion to the relevant order. We now

discuss separately the implications of ζ , as specified by
Eq. (46).
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(b)(a)

FIG. 3. (a) Evolution of the condensate correction ρζ for a con-
densate of size 	 = 40. The curves are plotted for x � 0 as ρζ is
an even function of x [see Eq. (47)]. As time passes, we observe
an overall depletion increase, initially more pronounced at the con-
densate wall at x = 	/2. (b) Profile evolution of ρζ for a system
of size 	 = 100. We note that the condensate bulk corrections are
insensitive to the existence of the condensate wall boundary region
for the timescales considered in the plots.

A. Gas density

Let us start by studying the gas density ρ = ρ0 + ρχ +
ρζ + O(N−1/2). As the interactions are turned on, ρ0 remains
constant; ρχ , which models the evolution of the depleted
gas cloud, was studied in the preceding section. Now, as a
response to the evolution of ρχ dictated by the atom-number
conservation, the condensate density ρ0 + ρζ is corrected by
the function ρζ , of the same order (N0) as ρχ . We have from
Eq. (12) that ρζ = 2 Re[exp(iμt )

√
ρ0ζ ] and thus

ρζ = − t2

	
− 1

4	

∞∑
n=1

(−1)n

ω2
n

{
2(−1)n[1 − cos(2ωnt )]

+ cos(2knx)

[
2 − k2

n

1 + k2
n

+ 2 cos(2ωnt )

−k2
n + 4

k2
n + 1

cos(ω2nt )

]}
. (47)

We note first that ρζ given by Eq. (47) is not proportional to
ρχ and it is such that

∫
dxρζ = −δN , where δN is the number

of depleted particles given by Eq. (44). Therefore, we have∫
dxρ = N , and we verify that the total number of particles is

indeed preserved up to order N0.
We present in Fig. 3 selected plots for ρζ . We notice that

ρζ < 0 for all the profiles depicted in Fig. 3, indicating the
decrease of the number of condensed atoms when depletion
occurs. Furthermore, ρζ shares some of the properties of ρχ

discussed in Sec. IV, namely, the overall magnitude of ρζ as a
function of time for the timescales of Fig. 3 does not depend
on the system size.

An important implication of our backreaction solution is
linked to measurement processes in condensates. Let us con-
sider, for instance, that an experiment is devised to determine
quantum depletion in a condensate using the Bragg scattering
technique of [45], where the authors explored the fact that
for a particular condensate configuration the power spectrum
of ρ0 was exponentially suppressed in comparison to the

(b)

(a)

FIG. 4. (a) Evolution of the gas density on top of the condensate
background ρ0 for a system of size 	 = 40 and at several instants of
time. These profiles represent the departure from a uniform density
condensate profile as dictated by number-conserving backreaction
effects. (b) Evolution of the condensate flux Jζ for a condensate of
size 	 = 40 and at several instants of time. The positive plot range
5 � x � 20 is motivated by the fact that Jζ is an odd function in view
of Eq. (48). Note that the flux of particles vanishes at the condensate
walls, reflecting the fact that the particles are indeed trapped inside
the box.

power spectrum of ρχ . Thus a full density measurement is
in principle capable of separating ρ0 from ρχ . However, for
a number-conserving analysis such as the one adopted in
our model, density measurements can only detect the sum
ρχ + ρζ [Fig. 4(a)] on top of the (in our model) constant
background ρ0. Therefore, if no feature exists in ρχ distin-
guishing it from ρζ as it occurs for the system we consider
(cf. Figs. 1 and 3 representing the buildup of ρχ and ρζ ,
respectively), it is not possible to determine ρχ separately by
the density power spectrum or in general via any measure-
ment relying on an analysis of only the total density. As a
corollary, our analysis also reveals that number conservation
renders some measurement processes in condensates sensitive
to the system initial condition, ρζ = 0 in our case. Indeed, a
condensate determined at t < 0 by the uniform density order
parameter φ0 plus a nonzero ζ contribution of order N−1/2,
satisfying the field equations, necessarily presents a distinct ρζ

and the same ρχ after the interactions are turned on at t = 0.
In Fig. 4(a) we plot ρχ + ρζ for a condensate of size 	 = 40

for several instants of time. We observe that as time passes an
oscillatory pattern emerges on top of the condensate density,
which might be visible in the power spectrum of ρχ + ρζ and
thus can be measured.
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B. Induced condensate flow

In this section we discuss perhaps the most intriguing
feature coming from the number conservation. As the inter-
actions are turned on, even though there is no flux of depleted
particles, the condensate particles undergo a nontrivial flow
coming from the backreaction. We recall that the total flux
of particles in the system is given by J = J0 + Jχ + Jζ +
O(N−1/2), and thus for our model, in which J0 = Jχ = 0, a
condensate flow is modeled by a nonzero Jζ . That Jζ is neces-
sarily nonzero follows directly from the number conservation
of Eqs. (11) and ρχ + ρζ �= 0: ∂xJζ = −∂t (ρχ + ρζ ) �= 0 and
thus we must have Jζ �= 0 during the condensate evolution.
The particular form of Jζ can be calculated with the aid of
Eq. (13) and we find, using (46), that Jζ = Im[φ∗

0∂xζ ] is given
by

Jζ =−2

	

∞∑
n=1

(−1)n sin(2knx)

kn

[
sin(2ωnt )

2ωn
− sin(ω2nt )

ω2n

]
.

(48)

We present in Fig. 4(b) the evolution of the particle flux Jζ for
the condensate of size 	 = 40 presented in Fig. 4(a).

We note that although Eq. (48) was found from the ex-
act solution of Eq. (46), as discussed above, the continuity
equation, when Jχ = 0, reads ∂xJζ = −∂t (ρχ + ρζ ) and can
be integrated to find Jζ . Thus, number conservation implies
that we can always find Jζ in any model where J0 = Jχ = 0
and the full density is known, offering a route for determining
the particle flux from density measurements. Note that for
black hole analogs, for which Jχ �= 0, the determination of the
condensate flux J0 + Jζ , which, alongside the condensate den-
sity ρ0 + ρζ , determines the effective metric, also requires the
measurement of the phonon flux Jχ separately, showing how
intricate it is to probe backreaction effects in such systems.

C. Quantum potential

In principle, the only quantized field in our condensate
treatment is χ̂ and accordingly all the effects coming from
χ̂ have a quantum origin. That includes ρζ and Jζ and justifies
the backreaction nomenclature because in the absence of ρχ

and 〈χ̂2〉, the field ζ vanishes; the noninteracting regime is an
example of such a regime. Notwithstanding, as the depleted
cloud evolves, the condensate response can be decomposed,
according to the discussion of Sec. II C into a classical and
a quantum part, which then enables us to identify the part of
the force density which comes from quantum fluctuations, as
defined in Eq. (15), and which we discuss now.

The total force density is defined by the derivative ∂t J =
∂t Jζ (given that both J0 and Jχ vanish) and we notice from
Eq. (48) a mathematical issue with the backreaction analysis:
The time derivative of Jζ results in a slowly convergent series,
preventing the numerical evaluation of the series. This means
in particular that more quasiparticle modes are required in
order to determine the quantum force. In order to circumvent
this mathematical difficulty, we can explore the fact that the
total force density fcl + fq can be expressed as the gradient
∂t Jζ = −∂xV , where

V =−1

	

∞∑
n=1

(−1)n cos(2knx)

k2
n

[cos(2ωnt ) − cos(ω2nt )] (49)

(a)

(b)

(c)

(d)

FIG. 5. Evolution of the total and classical potentials V and Vcl,
respectively, for a condensate of size 	 = 40 and at several instants
of time: (a) t = 0.5, (b) t = 1, (c) t = 3, and (d) t = 5. The slopes
of the curves represent the local force density exerted on the system
particles. We note that for the considered time interval, the quantum
force has the effect of attenuating the classical Eulerian force and
that this attenuation is more pronounced near the condensate walls.

is, fortunately, a series with better convergence. Now it
follows from Eq. (14) that for all condensates at rest the prop-
erty fcl = fcl(ρ, ∂xρ, ∂2

x ρ, ∂3
x ρ) holds, i.e., the classical force

density depends solely on the particle density and its deriva-
tives to our working order N0, and here becomes

fcl = −∂x

[(
1 − ∂2

x

4

)
(ρχ + ρζ )

]
. (50)

In particular, note that fcl can be determined by (total) density
measurements and it is a gradient fcl = −∂xVcl, where

Vcl = 1

	

∞∑
n=1

(−1)n cos(2knx)

k2
n

×
{

ω2
2n

4ω2
n

[1 − cos(2ωnt )] − 1 + cos(ω2nt )

}
. (51)

Hence, V represents the actual potential for the system parti-
cles, whereas Vcl is the expected potential if the particles were
solely subjected to an Eulerian dynamics, therefore enabling
the study of quantum force effects by comparing V and Vcl, as
presented in Fig. 5 for a condensate of size 	 = 40. We recall
that the slopes in the plots of V and Vcl represent the total and
classical force densities, respectively. Hence, from Fig. 5 we
observe that the classical force is the dominant contribution on
the condensate and the overall effect of the quantum force is
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the attenuation of fcl. In fact, this attenuation is even stronger
near the condensate wall, where the observed force vanishes
(no flux of particles) and the classical force is stronger,
showing that near boundaries the quantum backreaction ef-
fects are more pronounced.

Concluding, because both Jζ and the classical force are
determined by the total density ρ for any condensate ini-
tially at rest, we anticipate the possibility of measuring the
quantum force from density measurements alone via the route
presented above.

VI. CONCLUSION

We have shown that the quantum force density deduced
in [10], signaling a departure from Eulerian classical hy-
drodynamics due to quantum fluctuations, can be written
solely in terms of quantities that have direct interpretation: the
quantum depletion, the phonon flux, and the density fluctua-
tions. Furthermore, we presented a discussion regarding the
proper construction of the Cauchy problem for the backreac-
tion analysis and its relation with condensate production at
an experimental level, which revealed subtleties of the mea-
surement of some theoretical predictions (e.g., the quantum
depletion) imposed by the existence of condensates in states
that meet the model assumptions, i.e., condensates in which
ζ is initially known. Our model was then applied to a finite-
size uniform density condensate, which represents an exactly
soluble model and allows for a straightforward interpretation
of the results.

As regards backreaction in BECs, the phenomenon of
condensate phase diffusion plays a prominent role. Indeed,
the existence of finite-size interacting quasi-1D condensates
is associated with the continuous degradation of the system
off-diagonal long-range order, which in particular implies that
these quantum gases are not stationary systems. Accordingly,
because the condensate spontaneously degrades, one has to
add the initial configuration of the gas to the backreaction
equations to study the system evolution. In order to circum-
vent this mathematical obstacle, we assumed that in our solved
model the condensate was initially in a noninteracting regime,
for which the system is indeed stationary and can be taken to
reside in its ground state. By starting from this well-defined
initial configuration, the required interacting regime can be
accessed by driving the system out of equilibrium.

Among the consequences of the solutions of our model,
we quote in particular that it highlights the problem of distin-
guishing condensate corrections from quantum depletion in
measurements accessing properties of the total density (such
as its power spectrum), as shown in Sec. V A. Furthermore,
even though our uniform density condensate was initially at
rest, backreaction from the quantum fluctuations gives rise
to a condensate current dictated by number conservation,
from which the total force density on the system was
determined as a gradient of a potential function. Also, by
explicitly computing the Eulerian force corresponding to
the observed particle density ρ = ρ0 + ρχ + ρζ , it was
possible to conclude that the quantum force density on the
system particles attenuates the classical force, an effect more
pronounced near the condensate walls.

We also call attention to the regime of validity of our
number-conserving expansion: the smallness of the depleted
cloud population, which imposes a timescale for the validity
of the Bogoliubov expansion. The extension our analysis to
longer times therefore requires the use of approximations that
do not rely on the mean-field regime, the TWA being one
possibility. In this sense, as our analysis provides an exact
solution to the problem, it can be used to determine whether
the TWA can be used to simulate the quantum force and other
important quantities within the number-conserving backreac-
tion scheme of [10]. Furthermore, an interesting continuation
of our analysis can be obtained by exploring other sources
of backreaction like the experiment-induce condensate phase
spreading discussed in [38]. We believe that the determination
of how the number-conserving backreaction scheme can be
adapted to include measurement effects deserves a dedicated
analysis.

An immediate application of the present approach is fur-
nished by considering its consequences in analog gravity for,
say, the backreaction of emitted Hawking radiation onto the
condensate background [21,50]. Indeed, it was recently shown
in [48] that the ramp-up of the Hawking radiation after an
analog black hole is formed leads to a characteristic develop-
ment of the depletion cloud outside the event horizon. This
represents an important measurable quantity and indicates
that nontrivial backreaction effects caused by the radiation
on the condensate are expected to occur. Such an analysis in
principle can be conducted via our procedure and can reveal
novel radiation effects to directly measurable quantities. We
also note in this connection that classical backreaction has
already been studied experimentally in shallow water tanks
(cf. Ref. [51]).
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APPENDIX A: CANONICAL COMMUTATION RELATION

In this Appendix we show that the set {�n}∞n=0 of field
modes constructed in Sec. III D is complete, namely, the
corresponding quantum field expansion satisfies Eq. (22) for
−	/2 < x, x′ < 	/2. To this end, it is sufficient to show that
[ψ̂ (t, x), ψ̂†(t, x′)] = δ(x − x′) holds. By means of Eq. (28)
we have

[ψ̂ (t, x), ψ̂†(t, x′)] =
∞∑

n=0

[un(t, x)u∗
n(t, x′)− v∗

n (t, x)vn(t, x′)].

(A1)

Let us consider first the noninteracting regime t < 0. In this
regime, the field modes are given by Eq. (33) and we find

[ψ̂ (t, x), ψ̂†(t, x′)] = 1

2	

∞∑
n=−∞

[einπ�x/	+ (−1)neinπ (x+x′ )/	],

(A2)
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where �x = x − x′. We can write the equation above in terms
of δ functions using Poisson’s summation formula [52]

1

2	

∞∑
n=−∞

einπy/	 =
∞∑

n=−∞
δ(y − 2	n), (A3)

where δ(x) = (1/2π )
∫

dk exp(ikx), from which we obtain

[ψ̂ (t, x), ψ̂†(t, x′)] =
∞∑

n=−∞
[δ(�x − 2	n)

+ δ(x + x′ − 2	n − 	)]. (A4)

By inspecting the right-hand side of the equation above we
conclude that for −	/2 < x and x′ < 	/2 all the δ functions
give zero contribution except δ(�x), thus verifying that the
field is canonically quantized in the noninteracting regime.

In the interacting regime, the field modes assume the form
in Eqs. (39) and (42) and straightforward manipulations lead,
for [ψ̂ (t, x), ψ̂†(t, x′)], to the identical equation (A2).

APPENDIX B: BUILDING THE CONDENSATE
CORRECTIONS

In this Appendix we show how to derive the main result
of our work, the solution of Eq. (6) in the interacting regime,
presented in Eq. (46). We start by making the ansatz

ζ (t, x) = exp(−iμt ) f (t, x)/
√

ρ0, (B1)

where f is a solution of

i∂t f = − 1
2∂2

x f + ( f + f ∗) + 2ρχ + 〈ψ̂2〉, (B2)

with f = 0 at t = 0 and ∂x f = 0 at x = ±	/2 for all times.
Inspired by how the solutions of Eq. (20) pertaining to the
BdG equation were built, we define the spinor F = ( f , f ∗)T,
which is a solution of

i∂tσ3F = −1

2
∂2

x F + σ4F +
(

2ρχ + 〈ψ̂2〉
2ρχ + 〈ψ̂†2〉

)
. (B3)

Thus our goal is to solve Eq. (B3) subject to F = 0 at t = 0
and with the Neumann boundary conditions imposed on F .

It follows from the quantum field expansion of Eq. (28) for
t > 0 that

2ρχ + 〈ψ̂2〉 = t2 − it

	
+ 1

	

∞∑
n=1

(−1)n

k2
n (k2

n + 4)

× [(−1)n + cos(2knx)]

× {(
2− k2

n

)
[1− cos(2ωnt )]− 2iωn sin(2ωnt )

}
.

(B4)

Note that from Eq. (B4) the quantity 2ρχ + 〈ψ̂2〉 is a sum over
the various field mode contributions, and because Eq. (B3)
is linear, F can be constructed by summing the solutions of
Eq. (B3) for each term in Eq. (B4) (indexed by n) subjected to
the initial and spatial boundary conditions. Accordingly, we
write F (t, x) = ∑∞

n=0 Fn(t, x) and solve for each Fn such that
Fn(0, x) = 0 and Fn satisfies Neumann boundary conditions at
x = ±	/2.

We now determine each Fn. For n = 0 the result is straight-
forwardly obtained, F0 = −(t2/2	)(1, 1)T. For n > 0 we need

to solve(
i∂tσ3 + 1

2
∂2

x − σ4

)
Fn

= (−1)n[(−1)n + cos(2knx)]

	k2
n

(
k2

n + 4
) [(

2 − k2
n

)(1
1

)

− e2iωnt

(
ωn − k2

n/2 + 1

−ωn − k2
n/2 + 1

)

−e−2iωnt

(−ωn − k2
n/2 + 1

ωn − k2
n/2 + 1

)]
. (B5)

Suppose that F̃n is a particular solution for the equation above.
Then the required Fn must be of the form

Fn = a0�0 + b0�̃0 +
∞∑
j=1

[a j� j − b jσ1�
∗
j ] + F̃n, (B6)

using that the set of field modes {�0, �̃0,�n, σ1�
∗
n} is com-

plete as discussed in Sec. III D. The coefficients a j and b j are
uniquely defined by the initial condition Fn(0, x) = 0, which
leads to a Fourier expansion of −F̃n(0, x), in the exactly same
fashion as presented in Sec. III D, namely,

a0�0 + b0�̃0 +
∞∑
j=1

[a j� j − b jσ1�
∗
j ] = −F̃n, (B7)

where

a0 = − 〈�̃0, F̃n〉
〈�̃0,�0〉

, a j = −〈� j, F̃n〉,

b0 = − 〈�0, F̃n〉
〈�0, �̃0〉

, b j = −〈σ1�
∗
j , F̃n〉, (B8)

and all the functions are evaluated at t = 0. Moreover, be-
cause F̃n = σ1F̃ ∗

n , we should have b j = −〈σ1�
∗
j , F̃n〉 = b j =

〈�∗
j , σ1F̃n〉 = 〈� j, σ1F̃ ∗

n 〉∗ = 〈� j, F̃n〉∗ = −a∗
j .

Therefore, the problem is reduced to the determination of
the particular solution F̃n, which can be obtained as follows.
We first note that the right-hand side of Eq. (B5) is the sum
of constant terms that depend on x or t only and terms that
depend on both x and t . Thus one strategy for finding F̃n is
to use the field equation’s linearity and solve for each term
separately, which can be done in a straightforward manner.
We find that

F̃n = − (−1)n

2	k2
n

(
k2

n + 4
){

(−1)n

[(
2 − k2

n

)(1
1

)

−e2iωnt

ωn

(
ωn − k2

n/2

ωn + k2
n/2

)
− e−2iωnt

ωn

(
ωn + k2

n/2

ωn − k2
n/2

)]

+ 2 cos(2knx)

[
2 − k2

n

1 + k2
n

(
1
1

)
+ e2iωnt

k2
n

(−ωn + k2
n/2

ωn + k2
n/2

)

+e−2iωnt

k2
n

(
ωn + k2

n/2

−ωn + k2
n/2

)]}
(B9)
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is a particular solution to Eq. (B5). Using this particular solu-
tion and the modes given by Eqs. (36)–(38), we find the set of
coefficients (B8) in the expansion (B6):

a0 = 0, b0 = − 1

	
(
k2

n + 4
) , (B10)

a j = −δ j,2n
2(−1)n

(
2 − ω2n + k2

2n

/
2
)

√
2	

[
1 − (

ω2n − k2
2n

/
2 − 1

)2]
ω2

2n

, (B11)

which give rise to the solution presented in Eq. (46).
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