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Density correlations from analog Hawking radiation in the presence of atom losses
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The sonic analog of Hawking radiation can now be experimentally recreated in Bose-Einstein condensates
that contain an acoustic black hole. In these experiments the signal strength and approximate analog Hawking
temperature increase for denser condensates, which however also suffer increased atom losses from inelastic
collisions. To determine how these affect analog Hawking radiation, we numerically simulate creation of the
latter in a Bose-Einstein condensate in the presence of atomic losses, including nonunitary quantum field
dynamics using the truncated Wigner approximation. In particular we explore modifications of density-density
correlations through which the radiation has been analyzed so far. We find no evidence that losses directly alter
the basic picture of the analog Hawking effect; instead all consequences that we find are indirect: Losses increase
the contrast of the correlation signal, which we attribute to condensate heating by the losses, in turn leading to
a component of stimulated radiation in addition to the spontaneous one. Other indirect consequences are the
modification of the white-hole instability pattern and a change of slope of the Hawking tongue.
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I. INTRODUCTION

Hawking radiation [1–3] is a prominent prediction of quan-
tum field theory in curved spacetime [4,5]. Difficulties with
observing this radiation from an astrophysical black hole are
a key motivation for the development of the analog gravity
program [3,6,7]. The latter is founded on the mathematical
correspondence between the propagation of sound in a fluid
medium and the propagation of quantum fields in curved
spacetime [3,8].

Applying that idea to gaseous Bose-Einstein condensates
(BECs) as a quantum fluid [6,7,9,10], experiments have re-
ported the observation of analog Hawking radiation (AHR)
by measuring density-density correlations to very high pre-
cision [11–13]. Exploiting these correlations as experimental
signature [14,15] offers several advantages, such as a clear
connection between the Hawking particle (phonon) and its
partner [14], a link to entanglement [12], the ability to dis-
criminate AHR from other causes of particle production
[16,17], and high sensitivity to an otherwise very weak signal.

Also, when observing AHR through correlations, signals
are stronger when the surface gravity of the sonic black hole is
larger [14]. For a fixed Mach number profile, the surface grav-
ity increases for denser condensates. However, these are also
subject to stronger atom losses [17], most notably three-body
losses [18–20], the rates for which scale cubicly with density.
The loss channels give rise to a nonunitary component of
quantum field dynamics [21], and it is not a priori clear if and
how this alters the mechanism of AHR. For example, losses
can open new wave-mixing channels in one dimension, by
altering dispersion relations [22]. Losses also drive the quan-
tum many-body state of the Bose gas away from its ground
state and thus cause quasiparticle creation [23], which could
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interfere with Hawking signals. Experiments reporting AHR
have caused a lively debate regarding several aspects of their
interpretation, such as the thermality of the spectrum [24–26],
which motivates inspection of all aspects of the experimental
setting, of which losses are an unavoidable one.

In this article, we numerically explore how one-, two-,
and three-body losses affect AHR, in particular its correla-
tion signals. We find no indications of any major departures
from the fundamental mechanism despite the introduction of
non-Hermiticity into the problem. Characteristic features in
correlation functions that link sonic Hawking radiation to
the black-hole horizon persist also in the presence of losses.
To show this, we utilize the truncated Wigner approximation
[27–30] for the dynamics of fluctuations around the mean field
of a BEC, which has been successfully applied earlier in the
context of analog gravity [15,31–36]. All changes in corre-
lation signals that we can attribute to losses appear indirect,
arising due to loss-induced heating or temporal changes of
condensate density, rather than directly from modifications of
dispersion relations. In contrast to our conjecture in Ref. [17],
we find that correlation features are actually strengthened in
simulations that include losses. We attribute this to an ad-
ditional stimulated population in the quantum field modes
responsible for Hawking radiation [37] due to loss-induced
condensate heating [17,23], giving rise to the same correlation
features [38,39] as the basic spontaneous radiation. Additional
modifications of experimental observables by the losses are a
change in the slope of the AHR tongue, the emergence of ad-
ditional tongues, and the fact that patterns due to instabilities
at the white hole are altered by the noise.

Our results show that the subtle interplay of multiple
aspects of BEC quantum field dynamics is manifest in cor-
relation patterns, and a careful comparison of numerical
simulations and experimental results could thus also provide
insight into features that are not directly pertaining to analog
gravity in the future. Exchanging ideas between the analog
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gravity and condensed matter communities [40], correlated
emission of Hawking quanta by a sonic horizon could thus
become a diagnostic to probe, e.g., dispersion relations and
wave scattering.

This article is organized as follows: A brief description
of the sonic black-hole scenario and the truncated Wigner
method is provided in Sec. II. In Sec. III we review the cor-
relation observable that we focus on and the most important
features it exhibits. Sections therein describe the modification
of these features due to atom losses, with strengthening of
correlations in Sec. III A, discussion of the slope of Hawking
tongues in Sec. III B, and the white-hole correlation pattern in
Sec. III C. In Sec. IV we place these findings in the context of
the most relevant experiment on AHR [12]. Details regarding
the truncated Wigner method have been summarized in Ap-
pendixes A and B, while details regarding white-hole damping
can be found in Appendix C.

II. TRUNCATED WIGNER SIMULATION OF SONIC
BLACK HOLE

We consider a BEC of 87Rb atoms in a one-dimensional
ring trap [41,42]. Following the approach of Ref. [15] to
yield tractable numerical simulations, we assume that both the
external potential V (x, t ) and the interaction strength U0(x, t )
can be varied as a function of the coordinate x along the
ring and in time, t . For atoms of mass m the Gross-Pitaevskii
equation (GPE) [43] that describes the dynamics of the mean
field ψ (x, t ) is then

ih̄
∂ψ

∂t
=

[
− h̄2

2m

∂2

∂x2
+ V (x, t ) + U0(x, t )|ψ |2

]
ψ. (1)

For time t < 0, we assume that the interaction strength is con-
stant in space, U0(x) = Uini, and there is no external trapping
potential, V = 0. In this case,

ψ (x, t < 0) = √
ρ0eik0x, (2)

with density ρ0 and condensate flow velocity v0 = h̄k0/m
related to the wave number k0, is a solution of the time-
independent GPE and thus a steady state of Eq. (1). At t = 0,
we assume the interaction and external potential are modified
(quenched) to

V (x, t > 0) =

⎧⎪⎨
⎪⎩

Vsub + (Vsup−Vsub)
[
tanh

(
x−xh
σsp

)
+1

]
2 , x < 0

Vsup − (Vsup−Vsub)
[
tanh

(
x−xw
σsp

)
+1

]
2 , x > 0,

(3)
with xh the target location of the black-hole horizon, xw the
white-hole horizon, and σsp the length scale of the smoothened
step function, shown also in Fig. 1(a). Choosing further a
constant combination

Usubρ0 + Vsub = Usupρ0 + Vsup ≡ C, (4)

we obtain the variation of the interaction strength U0(x, t > 0)
as

U0(x, t > 0) = C − V (x, t > 0)

ρ0
. (5)

This makes sure the chemical potential μ = h̄2k2
0/(2m) +

Vsub + Usubρ0 is constant and thus preserves Eq. (2) as a solu-

FIG. 1. Potential, interaction, and flow profiles of a BEC in a
periodic one-dimensional (1D) domain (on a ring). The ring is di-
vided into two regions by the black-hole horizon, at xh = −30 µm
and the white-hole horizon, at xw = 30 µm. (a) Shape of the external
potential V (x) in Eq. (3) (orange dashed line) and interaction strength
U0(x) in Eq. (5) (blue line) at times t > 0 with Vsub = 0, Usub =
c2

subm/ρ0, and Usub = c2
supm/ρ0 indicated as text. Vsup is calculated

using Eq. (4). The width of the step is σsp = 0.6 µm. (b) The spatial
variation of the speed of sound, cs(x) (solid red line), with csub =
0.62 mm/s and csup = 0.21 mm/s, and velocity of the condensate v0

(black dashed line) for t > 0.

tion of the time-independent GPE, albeit now an unstable one.
This allows us to focus on the quench dynamics of quantum
fluctuations around the mean field, without distractions by
mean-field dynamics.

The choice of potential divides the ring into a subsonic re-
gion, where v0 < cs(x) = √

U0(x)ρ0/m, with speed of sound
cs, and a supersonic region where v0 > cs(x). The transition
from the subsonic to the supersonic region along the flow di-
rection marks the black-hole horizon, while the reverse marks
the white-hole horizon. Accordingly the interaction strength
and external potential in Eqs. (3) and (5) have been marked by
subscripts {sub, sup}, with “sub” referring to the subsonic re-
gion and “sup” referring to the supersonic region. The change
of parameters described causes a sudden quench, from a flat
analog spacetime in a condensate without flow variation, to a
spacetime containing a black-hole-white-hole pair, in a con-
densate with trans-sonic flow [44,45]. Note that, while it is
in principle realizable, the transition scheme from subsonic
to supersonic flow discussed above has been chosen for nu-
merical convenience only. In practice, one would require a
spatial dependence of the interaction strength by exploiting
a Feshbach resonance with an inhomogeneous magnetic field,
an accordingly tuned external potential V (x), e.g., optically,
while working in a toroidal trap. It is experimentally much
more straightforward to use a straight cigar-shaped trap, in
which the subsonic-to-supersonic transition occurs due to
joint density and velocity variations induced by the external
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potential V (x, t ) only, keeping U0 constant. This has hence
been used in the actual experiment [12]. We expect all our
results to pertain also to that scenario, and make more direct
contact with at least all parameters used there in Sec. IV.

To numerically model AHR, we need to include quantum
fluctuations of the condensate. This is done in the truncated
Wigner approximation (TWA) [27–30]. In the TWA method,
the quantum state is represented by an ensemble of stochastic
trajectories, with initial state given by

ψ (x, 0) = eik0x

[
√

ρ0 +
∑
k �=0

βkukeikx − β∗
k vke−ikx

]
, (6)

where βk is a complex Gaussian random variable with βk =
β2

k = βkβk′ = 0 and βkβ
∗
k′ = δkk′ [2 tanh (εk/2kbT )]−1. Here,

· · · denotes the stochastic average and T is the temperature
of the Bose gas. The Bogoliubov coefficients uk and vk are
defined as usual in terms of the kinetic energy Ek = h̄2k2

2m and
εk = √

Ek (Ek + 2U0ρ0) according to uk ± vk = (Ek/εk )±1/2.
The above stochastic initial state is then evolved using

the TWA equation of motion, which follows from the master
equation that includes atomic (	 = 1, 2, 3)-body loss [21,23]:

d ρ̂

dt
= − i

h̄
[Ĥ, ρ̂] +

3∑
	=1

γ	,1D

∫
dx D[�̂	]ρ̂, (7)

where D[â]ρ̂ ≡ âρ̂â† − â†âρ̂/2 − ρ̂â†â/2, Ĥ is the usual
Hamiltonian giving rise to Eq. (1), and γ	,1D is the 	-body
loss rate after reduction to one dimension (see Appendix D).

We distinguish three major loss types in a BEC, depending
on their scaling with density, arising through a variety of dif-
ferent mechanisms each: (i) one-body loss of the condensate
atoms due to stray photons or vacuum imperfections; (ii) two-
body loss, involving atomic collisions and hence dependent
on density, which can arise through spin flipping two-body
interactions or light assisted collisions; and (iii) three-body
losses, due to inelastic collisions causing two atoms to form
a molecule, which requires a third spectator to balance con-
servation laws and leads to the loss of all three involved
condensate atoms [46].

We find the TWA equations of motion from Eq. (7) with
the help of replacement rules [27] following Ref. [47] (see
Appendix A). The final result is

dψ (x, t ) = dL1 + dL2 + dL3

− i

h̄

[
− h̄2

2m

∂2

∂x2
+ V (x, t ) + U0(x, t )|ψ (x, t )|2

]
×ψ (x, t )dt, (8)

where decay and noise terms dLk for k-body loss are

dL1 = −γ1,1Dψdt + √
γ1,1DdW , (9a)

dL2 = −γ2,1D|ψ |2ψdt + 2
√

γ2,1D|ψ |dW , (9b)

dL3 = −γ3,1D

2
|ψ |4ψdt +

√
3γ3,1D√

2
|ψ |2dW . (9c)

Here γ1,1D, γ2,1D, and γ3,1D are the effective one-
body, two-body, and three-body loss coefficients in one
dimension, respectively (see Appendix A). The symbol

dW = dW (x, t ) denotes complex standard Wiener noise,
with correlations dW (x, t ) = 0, dW (x, t )dW (x′, t ′) = 0, and
dW (x, t )dW ∗(x′, t ′) = δ(x − x′)δ(t − t ′)dt .

Finally, quantum field observables are extracted using sym-
metrically ordered averages [27], such that, for example, the
total atomic density is

〈�̂†(x)�̂(x)〉 = |ψ (x)|2 − 1

2
δp(x, x), (10)

where for a spatial domain −L � x < L the expression

δp(x, x′) = 1

L

∑
k

[
u2

keik(x−x′ ) − v2
k e−ik(x−x′ )] (11)

is a restricted basis commutator, discussed in Appendix B. It
has been shown in Ref. [47] that the truncation restricts the
validity of the TWA method to scenarios where |ψ (x)|2 	
δp(x, x). More details regarding the TWA method can be
found in Ref. [30]. It has been demonstrated first in Ref. [14]
that the creation of analog Hawking radiation can be modeled
using the TWA.

III. DENSITY CORRELATIONS

One of the most straightforward manifestations of AHR,
considered in early works on analog gravity [48], would be
the reheating of the condensate to the analog Hawking tem-
perature,

TH = h̄gh

2πkbch
, with ch = cs(xh), (12)

where cs is the speed of sound, v0 is the velocity of the
condensate, xh is the location of the black-hole horizon, and
gh the surface gravity of the sonic black hole. The last can be
found from [14,45]

gh = 1

2v0

d[c2(x) − v2(x)]

dx

∣∣∣∣
x=xh

. (13)

Demonstrating AHR thermally in this manner would, how-
ever, not be practical, as the temperature is fundamentally
limited by atomic loss processes [16] and remains less than the
equilibrium temperature of loss-induced heating [17]. More
importantly, it has since been realized that the nonphononic
part of the Bogoliubov spectrum causes significant deviations
from a thermal spectrum [25,49], although correlated emis-
sion of quanta persists for all frequencies with a horizon [50].

A popular observable that circumvents these problems is
the density-density correlation function [14]:

G2(x, x′) = 〈�̂†(x)�̂†(x′)�̂(x)�̂(x′)〉
〈�̂†(x)�̂(x)〉〈�̂†(x′)�̂(x′)〉 . (14)

Density-density correlations G2(x, x′) appear between a lo-
cation x outside the horizon and another one, x′, inside the
horizon, since the Hawking particle and its antiparticle are
created from the same entangling event at the event horizon.
In contrast, preexisting thermal excitations or those induced
by losses are not expected to share any correlations that are
linked to the horizon.

The experiments [12,13] thus relied on correlations (14)
as a signature for AHR. The TWA method provides sym-
metrically ordered quantum correlations via averages of the
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FIG. 2. Density-density correlations G2(x, x′) − 1 near a sonic
horizon (at x = −30 µm), including (a) no loss, (b) only one-body
loss, (c) only two-body loss, and (d) only three-body loss. We show
snapshots at t = 48 ms after the initial quench. Movies for the same
scenarios can be found in the Supplemental Material [51]. The fea-
tures indicated by numbered arrows are discussed in the text.

stochastic wavefunction [3,27], which gives us the numerator
of Eq. (14) as

〈�̂†(x)�̂†(x′)�̂(x)�̂(x′)〉
= |ψ (x)|2|ψ (x′)|2 − 1

2
[ψ∗(x)ψ (x′)δp(x, x′)

+ψ∗(x′)ψ (x)δp(x′, x) + |ψ (x)|2δp(x′, x′)

+ |ψ (x′)|2δp(x, x)] + 1

4
[δp(x, x)δp(x′, x′)

+ δp(x, x′)δp(x′, x)]. (15)

The elements of the denominator can be calculated from
Eq. (10).

In this article, we compare the correlation signatures of
AHR with and without the inclusion of atomic losses. These
are shown in Fig. 2, using Ntraj = 2 × 105 stochastic trajec-
tories, i.e., solutions of Eq. (8) at zero temperature, T = 0.
The condensate flow velocity is v0 = 0.415 mm/s, with speed
of sound in the subsonic and supersonic regions csub = 0.62
mm/s and csup = 0.21 mm/s, respectively, roughly matching
conditions of Ref. [12]. The circumference of our ring or
length of the 1D domain is chosen as L = 60 µm, and the
mean density prior to the quench at t < 0 used in the simula-
tions is ρ0 = 66.6 µm−1. Finally, the three-dimensional (3D)
loss coefficients were set to γ1,3D = 3.096 s−1, γ2,3D = 0.39
µm3/s, γ3,3D = 0.06 µm6/s. These values for γ1,3D and γ3,3D

are slightly larger than typical, since we have chosen them
here as the minimal ones for which correlation patterns in the
presence of each loss type separately differ from those without
losses on a 50-ms time scale. We will discuss the scenario with
more typical rates for all three loss channels in Sec. IV.

Loss rates were then converted to the effective 1D loss rates
using Eq. (D6), by assuming a transverse trapping frequency
of ω⊥/(2π ) = 130 Hz. Solutions of Eq. (8) and averages (14)

are obtained using the high-level language XMDS [52]. To
smoothen the correlations, they have been convolved with a
Gaussian filter with kernel width ≈1.7 µm.

Let us first describe the features in the correlation function
G2(x, x′) for the basic scenario without losses in Fig. 2(a),
which have been observed before [15,35]:

(1) The strip of correlations G2(x, x′) < 1 near the di-
agonal, x = x′, appears due to atomic antibunching induced
by repulsive interactions [15,53]. This allows us to verify
the sampling of correlations by comparing the antibunching
feature obtained with that from analytical calculations.

(2) The pattern of fringes that run parallel to the diagonal
and propagate away from it in time are a result of the interac-
tion quench between t = 0 ms and t = 2 ms. These are due to
the dynamical Casimir effect [15,54], similar to cosmological
particle creation [10,55].

(3) The two tongues, which emerge from the diagonal at
the location (x, x′) = (xh, xh), with xh ≈ −30 µm correspond-
ing to the sonic black-hole horizon, are the key signature of
analog Hawking radiation in the density-density correlation
function [14,15]. These tongues indicate correlation between
the two points x and x′ on either side of the horizon, due to the
presence of the Hawking particle and antiparticle analogs at x
and x′.

Our central observation is that these features are not
dramatically altered despite the quantum field evolution be-
coming nonunitarity due to loss channels, suggesting that the
basic mechanism of analog Hawking radiation is unchanged
by this qualitative modification. However, in Figs. 2(b)–2(d),
we have also marked newly appearing features of interest 4
and 5 (and changes to 3), through which results for the case
with atomic losses deviate quantitatively from the loss-free
scenario. These constitute our main results, and are discussed
in the subsequent sections.

A. Stronger correlations in the presence of loss

We find that the contrast of the Hawking tongues increases
with the inclusion of loss in the simulation, pertaining to
feature 3 or feature 4 in Fig. 2(d), the opposite effect to what
was our conjecture in Ref. [17]. To see the effect more clearly,
we show one-dimensional cuts of the correlations along the
tongue in Fig. 3(a), comparing simulations with all three types
of loss.

To understand the physical reason for the increase of con-
trast, recall that Hawking radiation can also be stimulated
[37], in the cosmological as well as in analog systems, in-
stead of being emitted spontaneously [12]. Bogoliubov modes
involved in stimulated AHR are identical to those respon-
sible for spontaneous AHR; hence both processes give rise
to the same correlation patterns, as has been observed ex-
perimentally [38,39]. Since one consequence of atom losses
is heating of the condensate to a temperature Tloss = mc2/2
[23], the strengthening of correlations can be linked to this
heating.

To corroborate this, we first inspect the momentum spec-
trum (and thus Bogoliubov excitation spectrum) of the
stochastic field, for simulations without flow and no horizon,
but starting with the same initial density as in Fig. 3. For
k0 = 0, we find from Eq. (6) that the momentum density at
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FIG. 3. Correlation signal G2(x, x′) − 1 as a function of the dis-
tance d from the diagonal (x = x′) on a 1D cut along the Hawking
tongues, marked as features 3 and 4 in Fig. 2. In (a) we vary the
type of loss added as shown in the legend, and in (b) we vary the
initial temperature of the condensate, while not including loss. Both
panels are for time t = 48 ms. The sampling error for Ntraj = 2 × 105

trajectories is not visible on the scale of the figure.

|k| > 0 is given by

nT (k) = ψ̃∗(k)ψ̃ (k) − δ̃c(k, k)/2

= (|uk|2 + |vk|2)
1

e−εk/(kBT ) − 1
+ |vk|2, (16)

for a BEC in equilibrium at temperature T . Here ψ̃ (k) is the
Fourier transform of ψ (x, 0). By fitting this form into spectra
from the simulation, we demonstrate in Fig. 4 that the loss
can already significantly heat the condensate towards Tloss on
the short time scale t∗ = 48 ms pertaining to Fig. 3. We show

n(k, t ) = ψ̃∗(k, t )ψ̃ (k, t ) − δ̃c(k, k)/2 at t = t∗ sampled from
the stochastic wavefunction (black lines), together with nT (k)
expected from Eq. (16) for the initial vacuum at T = 0 (blue
dashed lines) and for the final heated quasiequilibrium [56]
state at T = Tloss (red dashed lines). In the simulations, the
momentum density n(k, t ) starts out on the blue line at t = 0
and then dynamically approaches the red line due to heating.

FIG. 4. Nonequilibrium heating n(k, t∗) due to loss by time t∗ =
48 ms (black lines), for the scenario as in Fig. 3 but without flow
or horizon, considering (a) one-body loss, (b) two-body loss, and
(c) three-body loss, with rates as used for Fig. 3. We also show
the initial vacuum population as a blue dashed line, and n[Tloss](k)
from Eq. (16) as a red dashed line. The nonequilibrated spectrum
roughly matches (a) T ∗ = 0.7 nK, (b) T ∗ = 1.8 nK, and (c) T ∗ = 1
nK, shown by ×. The sampling error is not visible on the scale of the
figure.

FIG. 5. Density-density correlations near a sonic horizon at
x, x′ ≈ xh = −30 µm, for nonvanishing initial temperatures (a) T =
1.9 nK and (b) T = 2 nK at time t = 48 ms, but not including
dynamical loss processes.

For larger times t than shown here (and not too strong loss
rates), phonon excitations saturate on the red dashed line.
They can slightly overshoot, as in Fig. 4(b), if loss rates are
larger. For the shorter time t∗, relevant to Fig. 3, heating is
mostly incomplete and the spectrum not yet thermal. We can
nonetheless satisfactorily fit a large range of wavenumbers
using a temperature T ∗ = 0.7 nK, 1.8 nK, and 1 nK for one-,
two-, and three-body loss, respectively.

For a final verification whether the temperatures inferred
in Fig. 4 can give rise to the level of correlation modification
shown in the top panel of Fig. 3, we show simulations in the
bottom panel of Fig. 3 where we start at the corresponding
nonzero temperatures T �= 0 initially, but remove loss pro-
cesses. These cases should give rise to a larger fraction of
stimulated AHR, since in these the Bose gas contains phonon
excitations already from the beginning. We see that tempera-
tures inferred from Fig. 4 already give rise to a qualitatively
compatible increase of correlations, while for a quantitative
one slightly higher temperatures would be required. For ex-
ample, the signal including three-body loss in Fig. 3(a) lies
in between the results for T = 1.9 nK and T = 2 nK, with
some deviation in details. Note, however, that a more rigorous
discussion should be based on Bogoliubov–de Gennes (BdG)
modes in the presence of the horizon for quantifying loss
heating, which is challenging.

We also show the entire correlation function for nonzero
initial temperatures T = 1.9 nK and T = 2 nK, but exclud-
ing losses in Fig. 5. The closer resemblance of the Hawking
tongues including losses in Figs. 2(b)–2(d) with the ones in
Fig. 5 compared to Fig. 2(a) again strengthens the association
of signal increase with heating-induced losses. Simulations of
AHR with a finite initial temperature were also presented in
Ref. [15], demonstrating two tongues, the one due to sponta-
neous AHR and a second one due to the reflection of thermal
phonons off the horizon. This is similar to what we observe
in Figs. 2(b), 2(c), and 2(d) at the black-hole horizon near
(xh, xh).

B. Change of slope in presence of loss

Along with an increase in the strength of the Hawking
tongues, we notice in Figs. 2(b)–2(d) a change of the slope
in the x, x′ plane of the Hawking tongue, marked feature
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4. This slope α is dynamically constrained by the propa-
gation velocity of the correlated Hawking phonons in the
moving medium that they are immersed in, and is computed
as α = v0−csub

v0−csup
= 1 for the region x > x′, in the scenario of

Fig. 2(a) [15].
We can attribute the variation of the slope to the decrease

in the speed of sound in both regions, since loss dynam-
ically reduces the density of the system. This leads to a
decrease in |v0 − csub|, since csub reduces from its original
value to become closer to v0, while |v0 − csup| increases, as
csup decreases from its original value to drop further below v0.
Hence, α = v0−csub

v0−csup
decreases in magnitude, which is what we

observe in Figs. 2(b)–2(d), where the tongues bend inwards
towards the diagonal. As an example, for Fig. 2(d), the mean
density has decreased by 36.2% when compared to the mean
density at t = 0 ms, decreasing csup by a factor of ≈1.21 and
csub by ≈1.19.

In principle, the variation of the two speeds of sound causes
the slope of the Hawking tongue to change in time, hence it
should be curved. However, this curvature is small and hence
the Hawking tongue can be well approximated by a line,
justifying our use of linear cuts for Fig. 3.

C. White hole correlation pattern

Let us now discuss feature 5 in Fig. 2(d). It is known
that the system with a black-hole (BH) and white-hole
(WH) horizon is dynamically unstable, forming a black-
hole laser [57,58] through the exponential amplification
of the superluminal partners of analog Hawking radiation
bouncing back and forth between the horizons. The checker-
board pattern visible near the white hole (xw = 3 μm) in
Fig. 2(a) has earlier been attributed to unstable modes of the
white hole [32,34]. Separating the BH and the WH, it has
been shown that it is the WH that causes the instabilities
[59].

We see here that atomic losses strengthen the checkerboard
pattern [compare Fig. 2(a) with Fig. 2(d)]. Our interpretation
is again that this is due to loss-induced heating, which creates
noise that seeds these instabilities more strongly than the
pure vacuum fluctuations in Eq. (6). To demonstrate that the
pattern can be attributed to white-hole instabilities, we show in
Fig. 6(b) the scenario where strong damping is present at the
white hole, which removes the pattern. The density for this
scenario is shown in Fig. 6(a), together with the damping ker-
nel. Further details about the damping potential can be found
in Appendix C. Our simulations indicate that any thermal
excitation or heating of a condensate containing a white hole
must be taken into account when probing instabilities of the
white-hole flow, also if that forms part of a black-hole laser.
Loss should thus be included when attempting to establish
to what extent standing wave patterns and correlations in the
black-hole lasing experiment [11] are due to kinetic effects
[60], number fluctuations [36], or self-amplified Hawking ra-
diation [11,26].

IV. DISCUSSION OF EXPERIMENTS

Our article so far outlined basic mechanisms based on
which dynamical loss of atoms can affect correlation signa-

FIG. 6. (a) Spatial variation of condensate density (blue) and
damping potential (orange), as defined in Eq. (C1). The black ver-
tical line represents the black-hole horizon while the red represents
the white-hole horizon. (b) Correlation pattern G2(x, x′) − 1 in the
presence of strong damping at the white hole. The simulation is for a
BEC with no losses at T = 0 nK.

tures of Hawking radiation, in general. In this section we will
discuss these mechanisms in the context of the experiment
[12] conducted on analog Hawking radiation in a BEC. We
defer a detailed TWA modeling of the experimental sequence
with losses to a future publication (see also Ref. [36]). A thor-
ough assessment of loss heating for that scenario requires an
accurate initial state, such as obtained from BdG modes using
the self-consistent Hartree-Fock-Bogoliubov equations, going
beyond the scope of the present article. Instead, we provide
qualitative statements based on our findings here. Background
density, flow velocity, atomic species, transverse trapping (and
thus 1D interaction strengths), and spatial scale of velocity
variation at the horizon used in Sec. III are already chosen
based on the experiment [12]. However, the loss rates were
adjusted to the lowest ones for which the correlation pattern
begins to visibly deviate from the loss-free scenario. We now
take κ3 = 2 × 10−41m6 s−1 [61]. One- and two-body losses
depend on experimental details such as vacuum properties
and trapping light; hence we simply set them such that the
corresponding atom loss is possibly significant but would not
be a dominant factor in the experiment. For κ1 = 5 × 10−1s−1
and κ2 = 8 × 10−20m3 s−1 the condensate in our simulations
loses only ∼5% of the atoms each until the time of interest,
t∗ = 48 ms.
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FIG. 7. Impact of loss on correlations for parameters closely
resembling the experiment in Ref. [12], albeit using the present sim-
plified trapping scenario. (a) Loss-free case, identical to Fig. 2(a) and
shown for ease of comparison. (b) Correlations in the simultaneous
presence of one-, two-, and three-body losses with rates given in the
text.

For these parameters we compare correlations of the loss-
free scenario with those in the presence of all three channels
in Fig. 7. The latter shares features that we identified for the
separate channels in Fig. 2, albeit more weakly. Overall the
pattern is affected, but not dramatically so.

Losses now cause a reduction of about ∼9.9% of the
initial density during t∗ = 48 ms, accordingly lowering the
upstream speed of sound in the experiment by 5%. Assuming
the downstream speed of sound is not affected due to the much
lower condensate density in that region, this can cause a dy-
namic change of the expected slope of the Hawking tongue by
∼20%. In particular this could cover an inconsistency of about
5–10 % reported in Ref. [62] between the experimentally
observed slope and that expected from the separate density
measurement.

V. CONCLUSIONS AND OUTLOOK

We have modeled the effect of atom loss in a Bose-Einstein
condensate on the correlation signature of analog Hawking
radiation. For this we used the truncated Wigner approxi-
mation to include the dynamics of fluctuations around the
mean field. We find that the contrast of the main correlation
signal increases due to losses. We attribute this to the addi-
tional presence of stimulated Hawking radiation. The latter
is an indirect effect, in which the condensate first heats up
due to the losses [17,23], and thermally populated fluctua-
tions subsequently stimulate AHR [63]. Another consequence
of the same heating effect is a strengthening of the white-
hole instability pattern. Through the density reduction, the
loss additionally leads to a change of slope of the Hawking
tongue.

Our results indicate that measurements of AHR corre-
lations can provide information on additional processes in
the Bose gas, not directly linked to AHR, and that spurious
stimulated contributions should be taken into account when
interpreting experiments. In a next step, it would be inter-
esting to study the effect of losses on entanglement of the
Hawking quanta. This has been studied based on a modified
Peres-Horodecki criterion [64,65] to assess the nonsepara-
bility of the output state [66], Gaussian contangles [67],
logarithmic negativities [50], and through the violation of

Cauchy-Schwarz inequalities [68–70]. Environmental effects
such as losses or heating often degrade entanglement [71],
while it has been shown to persist at finite temperature to some
extent [70]. It would thus be interesting to assess whether
the strengthening of correlations by the effects reported here
extends to quantum correlations.

Some of our results may pertain also to sonic black holes
in exciton-polariton condensates [72–75], where loss balanced
by driving noise is not an undesired side effect, as in atomic
BECs, but an essential feature of the setup.
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APPENDIX A: TRUNCATED WIGNER TREATMENT
OF LOSSES

We now briefly describe the origin of Eqs. (9a), (9b), and
(9c), with more details available in, e.g., Refs. [30,47].

For this purpose we consider the evolution equation due to
three-body losses [47]. The master equation for the three-body
recombination process, in the Schrödinger picture, is [23]

∂ρ̂

∂t
= − i

h̄
[Ĥ, ρ̂(t )] + γ3,1D

6

∫
dx[2�̂(x)3ρ̂�̂†(x)3

− �̂†(x)3�̂(x)3ρ̂ − ρ̂�̂†(x)3�̂(x)3], (A1)

where

Ĥ =
∫

dx

[
�̂†(x)

{
− h̄2

2m

∂2

∂x2
+ V (x)

}
�̂(x)

+ U0

2
�̂†(x)�̂†(x)�̂(x)�̂(x)

]
. (A2)

We can express the density matrix ρ̂ in terms of the Wigner
function W (ψ,ψ∗) as [30]

W (ψ (x), ψ∗(x))

≡ 1

π2

∫
D[λ(x)]D[λ∗(x)]

× exp(−λ(x)ψ∗(x) + λ∗(x)ψ (x))χw(λ(x), λ∗(x)), (A3)

where D[λ(x)] is a functional integration, and the characteris-
tic function χw(λ(x), λ∗(x)) is given by [30]

χw(λ(x), λ∗(x)) = Tr

[
ρ̂ exp

{∫
dx(λ�̂†(x) − λ∗�̂(x))

}]
.

(A4)
One then converts the equation of motion (A1) for the density
operator into an equation of motion for the Wigner function.
By computing the functional derivatives of the displacement
operator,

D̂ ≡ exp

{∫
dx(λ(x)�̂†(x) − λ∗(x)�̂(x))

}
, (A5)

with respect to λ(x) and λ∗, and considering the effect of
the same on the equation of motion of the Wigner function,
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one arrives at the functional Wigner operator correspondences
[27]:

�̂(x)ρ̂ →
[
ψ (x) + 1

2

δ

δψ∗(x)

]
W (ψ,ψ∗, t ), (A6a)

ρ̂�̂†(x) →
[
ψ∗(x) + 1

2

δ

δψ (x)

]
W (ψ,ψ∗, t ), (A6b)

ρ̂�̂(x) →
[
ψ (x) − 1

2

δ

δψ∗(x)

]
W (ψ,ψ∗, t ), (A6c)

�̂†(x)ρ̂ →
[
ψ∗(x) − 1

2

δ

δψ (x)

]
W (ψ,ψ∗, t ). (A6d)

The resultant equation of motion for W when including losses
will contain up to third-order partial derivatives with respect
to ψ and ψ∗, where we discard all down to second order to
reach a Fokker-Planck equation (FPE), in the usual truncation
scheme:

∂W T BL

∂t
= γ3,1D

2

∫
dx

(
δ

δψ
ψ + δ

δψ∗
P

ψ∗ + 3
δ

δψ

δ

δψ∗

)

× |ψ |4W (ψ (x), ψ∗(x), t ), (A7)

with T BL indicating that we consider only terms which arise
from Eq. (9c).

Since solutions of a FPE directly correspond to those of
a stochastic differential equation (SDE), we can solve the
former by expressing it using the SDE:

dψ (x) = −γ3,1D

2
|ψ (x)|4ψ dt +

√
3γ3,1D√

2
|ψ (x)|2dW (x, t ).

(A8)

Adding the usual terms unrelated to loss [27], we finally reach

∂ψ

∂t
= − i

h̄

[
− h̄2

2m

∂2ψ

∂x2
+ V (x) + U0|ψ |2

]
ψ

− γ3,1D

2
|ψ |4ψ dt +

√
3γ3,1D√

2
|ψ |2dW . (A9)

Similar derivations for one- and two-body loss processes yield
Eq. (9a) and Eq. (9b).

APPENDIX B: TRUNCATED WIGNER TREATMENT
OF CORRELATIONS

As stated before, the TWA allows the sampling of quantum
correlations through symmetrically ordered stochastic aver-
ages [30,47]. In this Appendix we describe how these can be
assembled to infer the correlation function (15) that is central
to the present work. The starting point is the association

ψ∗(x)ψ (x′) = 1

2
〈�̂†(x)�̂(x′) + �̂(x′)�̂†(x)〉, (B1)

where the dependence on time has been suppressed since we
will deal with equal time correlations only. With the commu-
tation relation δp(x, x′) = [�(x), �†(x′)], we obtain

〈�̂†(x)�̂(x′)〉 = 〈ψ∗(x)ψ (x′)〉W − 1

2
δp(x, x′), (B2)

providing already first-order phase correlations G1(x, x′) =
〈�̂†(x)�̂(x′)〉. Here δp(x, x′) is a restricted-basis δ function

given by [30]

δp(x, x′) = 1

L

∑
k

[
u2

keik(x−x′ ) − v2
k e−ik(x−x′ )], (B3)

where the index k enumerates the finite number of Bogoliubov
modes onto which we add noise for the numerical simulation,
in Eq. (6). The expression converges to the actual δ function
for k → ∞.

In a similar fashion, we can relate
〈�̂†(x)�̂†(x′)�̂(x)�̂(x′)〉 with ψ∗(x)ψ∗(x′)ψ (x)ψ (x′).
We first write the latter as a symmetric sum of 24 averages
containing all the possible permutations of field operators.
Each can be brought into the form 〈�̂†(x)�̂†(x′)�̂(x)�̂(x′)〉
using the commutation relation. After some algebra, we
finally obtain

〈�̂†(x)�̂†(x′)�̂(x)�̂(x′)〉
= ψ∗(x)ψ∗(x′)ψ (x)ψ (x′) − 1

2
[δp(x, x′)ψ∗(x)ψ (x′)

+ δp(x′, x′)ψ∗(x)ψ (x) + δp(x, x)ψ∗(x′)ψ (x′)

+ δp(x′, x)ψ∗(x′)ψ (x)] + 1

4
[δp(x, x)δp(x′, x′)

+ δp(x, x′)δp(x′, x)]. (B4)

APPENDIX C: WHITE-HOLE DAMPING

In this Appendix, we describe our implementation of
damping on the white hole. For this we add a complex po-
tential

Vdamp(x) = −i
s

h̄
exp

(
− (x − xw )2

2σ 2
d

)
(|ψ (x)|2 − ρ0)ψ (C1)

to the right-hand side of Eq. (1). Here xw is the location of the
white-hole horizon, s the damping strength, and σd the width
of the damping profile while ρ0 is as defined in Eq. (6).

One can see that Eq. (C1) causes exponential damping of
ψ if the local density at the white hole deviates from the mean
value ρ0. Since such deviations are integral to unstable modes,
the growth of the latter is damped.

APPENDIX D: DIMENSIONALITY REDUCTION

Here we briefly discuss the reduction of the 3D equation of
motion to an effective 1D equation. For this purpose, we
rewrite the field operator

�̂(x, y, z) = 1√
πσyσz

e
− y2

2σ2
y e

− z2

2σ2
z �̂(x), (D1)

such that transverse excitations are frozen out, using σy =√
h̄/(mωy), σz = √

h̄/(mωz ), with ωy and ωz the trapping
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frequencies in the y and z directions, respectively. Defining
N = 1√

πσyσz
, we obtain that, e.g.,∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dxdydz�̂†(x, y, z)ρ̂�̂(x, y, z)

= N 2πσyσz

∫ ∞

−∞
dx�̂†(x)ρ̂�̂(x). (D2)

Thus, the 1D master equation for one-body loss is

∂ρ̂

∂t
= γ1,3D

∫
dx[2�̂(x)ρ̂�̂†(x)

− �̂†(x)�̂(x)ρ̂ − ρ̂�̂†(x)�̂(x)]. (D3)

Similarly we reach

∂ρ̂

∂t
= γ2,3DN 4 πσyσz

2

∫
dx[2�̂(x)2ρ̂�̂†(x)2

− �̂†(x)2�̂(x)2ρ̂ − ρ̂�̂†(x)2�̂(x)2] (D4)

for two-body loss and

∂ρ̂

∂t
= γ3,3D

6
N 6 (πσyσz )

3

∫
dx[2�̂(x)3ρ̂�̂†(x)3

− �̂†(x)3�̂(x)3ρ̂ − ρ̂�̂†(x)3�̂(x)3] (D5)

for three-body loss. At this point we can define effective 1D
loss rates

γ1,1D = γ1,3D, (D6)

γ2,1D = γ2,3D
N 4πσyσz

2
= γ2,3D

2(πσyσz )
, (D7)

γ3,1D = γ3,3D
N 6πσyσz

3
= γ3,3D

3(πσyσz )2 , (D8)

which are used in the main article.
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