PHYSICAL REVIEW A 106, 053316 (2022)

Scaling dynamics of the ultracold Bose gas
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The large-scale expansion dynamics of quantum gases is a central tool for ultracold gas experiments and
poses a significant challenge for theory. In this work we provide an exact reformulation of the Gross-Pitaevskii
equation for the ultracold Bose gas in a coordinate frame that adaptively scales with the system size during
evolution, enabling simulations of long evolution times during expansion or similar large-scale manipulation.

Our approach makes no hydrodynamic approximations, is not restricted to a scaling ansatz, harmonic potentials,
or energy eigenstates, and can be generalized readily to noncontact interactions via the appropriate stress tensor
of the quantum fluid. As applications, we simulate the expansion of the ideal gas, a cigar-shaped condensate
in the Thomas-Fermi regime, and a linear superposition of counterpropagating Gaussian wave packets. We
recover known scaling for the ideal gas and Thomas-Fermi regimes, and identify a linear regime of aspect-ratio
preserving free expansion; analysis of the scaling dynamics equations shows that an exact, aspect-ratio invariant,
free expansion does not exist for nonlinear evolution. Our treatment enables exploration of nonlinear effects in
matter-wave dynamics over large scale-changing evolution.
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I. INTRODUCTION

The expansion of quantum gases is a central interroga-
tion tool in experiments, being the canonical approach for
extracting information about atomic momentum distributions.
Absorption imaging after a period of free expansion has pro-
vided many insights into the properties of trapped ultracold
gases, including playing a decisive role in the first observa-
tions of quantum degeneracy [1,2]. Expansion imaging has
been used to probe many phenomena in excited Bose-Einstein
condensates (BECs), including quantum vortex dynamics
[3-7] and quantum turbulence [8—10]; it has also been used as
a quantum simulator of cosmological effects such as inflation
dynamics [11], Hawking effects [12], and particle production
[13].

The simplest scenario is one of linear evolution, for which
the one-body dynamics map the initial momentum distribution
into the far-field position distribution. Interactions complicate
this mapping, rendering it nonexact in general, although some
special cases are tractable analytically. In Fermi gases ex-
pansion interactions can often be neglected [14], or solved
exactly [15], while in a BEC, interactions dominate the scaling
evolution in the Thomas-Fermi regime [16,17]. Interaction
effects can also be somewhat mitigated via a short interval
of rapid expansion along a tightly confined axis to reduce the
particle density [18]. However, a complete understanding of
expansion dynamics remains an important open problem.

The theoretical challenge involves describing the dynam-
ics with sufficient resolution over large changes in system
size and long evolution times. Existing theoretical approaches
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favor a hydrodynamic formulation, applied to the three-
dimensional (3D) collisionless Boltzmann gas [19], the Tonks
regime [20], Fermi gases [15,21-24], degenerate Bose-Fermi
mixtures [25], and BECs [26,27]. The central tool is the
scaling ansatz for the wave fuction [15-17,28,29], leading
to dynamics of the Ermakov type for the scaling parameters
[30,31]; this approach has been employed to great effect to
construct shortcuts to adiabaticity (STA) [32-35]. Ultimately,
these works rely on scale invariance, which applies to a class
of systems with scaling dimension of the interaction potential
equal to that of the Laplacian [28,36]; the scale invariant for-
mulation can be used to analyze STA for a class of monomial
potentials [37], including the special case of time-dependent
harmonic confinement. A wide range of other external po-
tentials have been treated in STA; for a review see [35].
Expansion dynamics have also been studied using numerically
intensive large-scale direct simulation of the Gross-Pitaevskii
equation (GPE), giving insights into vortex imaging [38] and
rapidly rotating condensates [39].

Here we take an alternative approach to the general prob-
lem of scale changing dynamics in the GPE. We combine a
scaling-like transformation of the wave function with a phys-
ical definition of the scaling parameters in terms of system
size parameters. In contrast with previous works that solved
for scaling parameters approximately or via an ansatz, this
enables an exact reformulation of the GPE in coordinates
that dynamically adapt to changes in the system size. The
resulting equations of motion for the scale parameters account
for internal stresses of the quantum fluid that drive scaling
dynamics. Our formulation can describe cold scalar BECs

©2022 American Physical Society
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with s-wave interactions manipulated by arbitrary external
potentials. As our reformulation only relies on the existence
of a fluid continuity equation and stress tensor, a broader class
of quantum fluids such as spinor and dipolar systems may be
handled via the appropriate stress tensor [40—42].

The paper is structured as follows: in Sec. II, we briefly
outline the GPE theory of the ultracold Bose gas. In Sec. III
we develop the scaling dynamics formulation of the GPE. In
Sec. IV, we test our formulation on the ideal gas and Thomas-
Fermi regimes, and identify a regime of linear aspect-ratio
invariant expansion. In Sec. V, we offer some perspectives on
our findings, and point to interesting future directions.

II. BACKGROUND

A. Gross-Pitaevskii equation

At temperatures well below the BEC transition a sys-
tem of identical bosonic atoms is well described by the
Gross-Piteavskii equation [43]. Choosing the convenient nor-
malization

/ddrwf(r,tnz _1 (1)

for N atoms in d spatial dimensions, the GPE Hamiltonian is

H= /d”’( V2 + Vg + 8 |x/f|) )

where V(r,t) is the external trapping potential, and g, is
the s-wave interaction parameter reduced to dimension d by
integrating over the tightly confined transverse state (assumed
separable) in 3 — d dimensions. Hamilton’s equation for v,

indv _ oH 3)
ot Syr*
gives the GPE
2 2
m% _ ( hz +V(r.0) + gaNIY . r)|2)wr,r>-

“)
Local particle conservation enforces continuity,
olw|* +0'J; =0, (5)

where the current density is J; = ili/2m)(Y o,y * — ¥*0;¢),
and 9; = 9/0x;. We will make use of tensor index notation and
the Einstein summation convention; however, there is a trivial
metric: there is no difference between raised and lowered
indices.

The superfluid current density evolves according to the
equation of motion [44,45]

a,J+—af +—|1/f| o,V =0, (6)

with fluid stress tensor

CgaNlyt R

W*aijlﬂ + C.C.].
)

Equations (6) and (7) are exact for the GPE, and similar
expressions can be derived for bosonic quantum fluids with
different interaction potentials. Notably for our purposes, the

current and stress tensor are free from pathologies that arise
at zeros of the wave function (e.g. vortex cores) in a hydro-
dynamic formulation using the Madelung transformation. In
what follows we avoid hydrodynamics and use the GPE stress
tensor, Eq. (7), to develop an exact reformulation of the GPE;
we find that the diagonal terms of the stress tensor generate
a fluid pressure that plays a central role in BEC expansion
dynamics.

B. Dynamical coordinate scaling

To derive a GPE suitable for describing expanding systems
of ultracold Bose atoms we formulate the dynamics in a
scaled coordinate system, where in general the scaling can
take on any time dependence [16,17]. We introduce scaled
coordinates

xi = pi(HAi (@), 3

where both the coordinates p; and scaling parameters A; de-
pend upon time, in such a way to render the laboratory frame
time-independent. We have, for example,
o= B g =0 9)
%= — — b =0,
1 dt IOl 1 pl 1
without summation. The scaled coordinates evolve according
to
b
i = —Pi—, 10
Pi pis. (10)
so that a scaling expansion corresponds to a coordinate con-
traction that preserves the product p;A;.
The scaled wave function ¢(p;, t) conserves probability
under rescaling:

/ddx|w<x,-,r)|2 _ /ddp S OP =1. (1)

We use the component shorthand ¢(p;,t) to represent
¢ (ox, Py, Pz, 1), and similarly for ¥ (x;, 7). The coordinate
transformation defines a rescaling of ¢ up to a local gauge
transformation. We define the transformation to a scaled wave
function ¢(p;, t) as

#(pi.1) = 1YY (o Y exp (~ T2 pip ip ). (12)

in d spatial dimensions, allowing for arbitrary A;(t), with
initial conditions A;(0) = 1. The geometric mean A(t) =
(TT, Ai(2))"/ enforces probability conservation. The conve-
nient phase removes the phase gradients generated by scaling
[16]. Note that we have not imposed any constraints on the
wave function: this definition does not enforce a scaling ansatz
as the field ¢(p;, t) is unconstrained by the transformation;
however, the dynamics of ; and ¢ remain to be determined.

III. SCALING DYNAMICS: EQUATIONS OF MOTION

Thus far we have summarized well known results required
for our reformulation of the GPE, to which we now turn. To
make use of the definition (12) we also require a definition
of the scaling parameters in terms of ¥ (x;, 7). We work in
laboratory coordinates initially centered on the mean position
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of the condensate [46]. The parameters characterizing the
system size are then

ar(t) = /ddxx?|1p(xi,t)|2. (13)
We define the scaling parameters in terms of the system size
parameters as
a(r)
a2(0)’

defined such that A;(0) = 1. In the scaling coordinates the
quadratic moments

HOE (14)

/ dp o716, D) = a; (0) (15)

are time independent by definition. Hence, whatever form the
new GPE for ¢(p;, t) takes, the system size is time invariant
in our chosen coordinates defined by (8) and (14). These
definitions form an essential feature of the scaling dynamics
formulated below.

Our aim now is to find equations of motion for the scaling
parameters X;(¢), and wave function ¢(p;, t), for an arbitrary
time-dependent trapping potential V (x;,7). We can do this
now that we have an appropriate definition of the scaling
parameters in terms of the time-dependent system size. To
keep notation light, we use the shorthand a; = a;(0) for initial
widths of the BEC, hereafter declaring any time dependence
explicitly. It will also be convenient to reduce all dynam-
ical equations to first order in time, introducing additional
variables o;(t) = Xi(t) for the rates of change of the scaling
parameters.

We start by differentiating Eq. (14), using continuity, and
integrating by parts (discarding surface terms), to find

d 1

- — T 5 dd i‘I[a 16
dt kia? o (16)

the equation of motion for the scaling parameters in terms
of the field ¢(p;, t). We do not need to evaluate this directly
due to our reduction to first order. Differentiating Eq. (16) and
using Eq. (6) to replace d,J;, we find the equation of motion
do; o? 1
— =-L+ dx (Ty — [Y *x:9;V). 17
7 . kimcﬂ/ ( ¥l ) a7

i

Note that the off-diagonal terms in the stress tensor do not
contribute since

/ddxxia-jﬂj = —5ij/ddeii. (18)
We can write the equation of motion as

do; _f,-+ri—a-2

containing the force exerted by the trapping potential
1 d 2
fi=——5 | dx|¥"xidiV, (20)
ma;
the stress tensor term
1 d
n=—5 [ dxT;, 21
ma;

and the inertial term ox o/?. The diagonal elements of the fluid
stress tensor generate hydrostatic pressure [47] in equilibrium,
and in this dynamical setting they provide forces driving scal-
ing dynamics. The scaling equation of motion, (19), holds
for any quantum fluid stress tensor and external potential,
providing a general description that can accommodate beyond
s-wave systems, such as spinor or dipolar interactions, via the
appropriate stress tensor of the fluid.

Hereafter we specialize to the GPE stress tensor, Eq. (7).
We can simplify further by integrating by parts and discarding
surface terms to give the equivalent form

1 N "2
0= [t (S D). e
ma; 2 m

showing kinetic and interaction contributions to the superfluid
pressure. Equation (19) describes the GPE dynamics of the
scaling parameters for arbitrary initial conditions and external
potentials. Our remaining task is to find an equation of motion
for ¢.

Differentiating with respect to time, including the explicit
coordinate time dependence, we have total time derivative

dp 9 i .
— = — — — '3, 23
dt ot )Jp ¢ 23)

where we used Eq. (10), and 9;¢ = 0¢/0 " is the derivative
in p’ coordinates. After some algebra, given in Appendix A,
we find that ¢(p;, ) evolves according to a GPE-like equa-
tion similar to that found by Castin and Dum [16], except that
we now have a completely general time-dependent external
potential. To complete the transformation to scaling coordi-
nates, we transform Eq. (19), and use Eq. (A3) to simplify the
kinetic term [48], and arrive at a coupled system of first-order
time evolution equations for our complete set of dynamical
variables A;(t), 0;(t), ¢(p;, t). Writing all equations and the
initial conditions in terms of the scaling coordinates, we arrive

I . L, (19) the scaling dynamics equations (SDEs)
dki‘
=), 24
% - m [ o (% X"(”t';, 16 PoidY (ki) 1) + #;)zwimz), 25)
maa_‘f = (-% +V(pidi(t). 1) + fé]; o1 + gdia)x"(z)pm")qs, (26)

053316-3



BRADLEY, CLARKE, NEELY, AND ANDERSON

PHYSICAL REVIEW A 106, 053316 (2022)

starting from the initial conditions

2:(0) = 1, Q7)

1
0i(0) = — / d’p pidi(pi, 0), (28)

i

(0, 0) = w(p,,0>exp< s o,<0>) (29)

in response to the arbitrary external potential V (x;, ).

We have derived a complete reformulation of the GPE in
the form of a scaling GPE containing scaled kinetic, potential,
and interaction terms. Equations (19) and (24)—(29) are our
main results. To the best of our knowledge such a reformu-
lation, starting from (8), (12), and (14) has not appeared in
the literature. In our derivation we made no hydrodynamic or
other approximations. As we show in Sec. IV, the scaling GPE
is able to accommodate arbitrary changes in scale by adapting
with the system size. Relying only on the quantum fluid stress
tensor and the volume current density, our treatment also pro-
vides a general starting point for scaling dynamics in a range
of quantum fluids with different interparticle interactions.

To conclude this section, note that in scaling coordinates
the GP energy may be found using the transformed Laplacian
(A3), giving

. (100l sl 191°
i=[at (2 er TV T S
m i i 52
+ 2o pio'lo1 ). (30)

In the case of free expansion, H is a constant of the motion,
and the initial kinetic, interaction, and trap energy transforms
into energy of expansion stored in the steady expansion rates,
0;(t) — 6, reached in the long time limit. This contrasts with
the laboratory frame where H is simply the kinetic energy.

IV. APPLICATIONS

Our aim is to verify that the scaling GPE reproduces well-
known behavior of the GPE, and discuss some interesting
special cases that may be easily described by the scaling GPE.

We initially proceed numerically: we simulate the free
expansion of an ideal gas with anisotropic initial confine-
ment, and a highly prolate system in the Thomas-Fermi
regime. We consider applying a strong parabolic antitrap-
ping potential to extract the position distribution. Finally, we
consider the situation relevant to quantum turbulence experi-
mental measurements [8], by considering conditions where an
anisotropic initial state can evolve while preserving its aspect
ratios.

In the following we solve the first order system of equa-
tions using the DifferentialEquations.jl [49] package written
in Julia [50], and plot the results using Makie.jl [51].

A. Ideal gas expansion

We first consider the free expansion of an ideal gas. The
full dynamics can be found analytically, as developed in detail

in Appendix B. Here we use this linear evolution as a test of
numerical simulations of the scaling GPE.

We consider the implications of the scaling GPE dynamics
after long expansion times. In particular, the aspect ratios of
the trapped system should eventually invert. For a noninter-
acting system, the dynamics approach a steady state solution
for Eq. (19), given by the balance of the stress tensor term
with the inertial term: o7 = 7;. The system reaches a finite
steady-state rate of expansion, &;, which takes the following
form in laboratory coordinates:

2

6= —— i /ddx|aw(t—>oo)| (31)
i 2 2

During free expansion of an ideal gas,

h2
ihdy = —— V2, (32)
2m

the kinetic term is only a quadratic phase winding in momen-
tum space. The momentum-space wave function ¥ (p;, t) is
then simply

- pir't\ -

U (pit) = exp | =i | ¥ (p;. 0), (33)
2mh

and the steady expansion rate &; is set by the initial kinetic

energy:

1 .
6= —— f d’p p} 19 (pi, O)[*. (34)

For the harmonic oscillator ground state with oscillator
lengths o; = (h/mw;)'/?, (p?) = h*/(2a;)?, and (x?) = a?/2,
the scaling dynamics approach the constant rate &; = ;.

We numerically simulate ideal gas expansion for a system
with trap frequencies (wy, wy, @;) = (3,2,1). We work in
length and time units of «, and 1/w, respectively. We evolve
an initial anisotropic domain (L, Ly, L;) = 5(a,, , ), with
(Ny, Ny, N;) = (64, 64, 64) points. Integrating the scaling dy-
namics equations numerically up to t = 20/w,, we observe
the evolution shown in Fig. 1. The aspect ratios are seen to
invert for long expansions, with timescale set by 1/w,, the
longest trap period of our chosen parameters. The aspect ratio
inversion is due to the well-known mapping of initial momen-
tum information into the final position distribution. Note that
the equations are numerically stable, allowing simulation of
arbitrary expansion times.

As a final and essential check on the scaling GPE formula-
tion, in Appendix B we show analytically that the momentum
distribution is mapped into the position distribution in the
long-time limit of linear evolution.

B. Expansion of a Thomas-Fermi ground state

The scaling coordinates are well suited for identifying
scaling solutions. For an interacting ground state of a har-
monic trap that is then allowed to expand in a time dependent
harmonic trap V (x;, 1) = mwiz(t)(x" )?/2, we should expect to
recover the scaling solution of Castin-Dum [16]. We make a
Thomas-Fermi ansatz for the particle density, which is time
independent in the scaling coordinates. The TF ansatz initially
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FIG. 1. Simulated expansion dynamics of the ideal Bose gas
using Egs. (24)—(29) on a grid of 64° points. The ground state in a
harmonic trap with (., @, ®;) = (3, 2, 1) has initial density in the
x-z plane shown in (a), evolving to (b) after free expansion for t =
20/w;. (c) Scaling parameters rapidly become linear in time; (d) the
scaling derivatives approach the initial trap frequencies o;(t) — w;;
(e) position aspect ratios invert on timescale ~1/w,, and approach
the initial momentum aspect ratios for # > 1/w, (inset).

has parabolic density,

2 2 2
M Py P

lp(p, 0)]> = g—Nmax<1 — R—; — o), (35)
X y Z

with radii R? = ZM/ma)?(O), and is by definition time in-
dependent in the scaling coordinates. For geometric mean
R = (RRyR,)"/3, the TF solution has

N = uR387 /(15g), (36)
a =R/, (37)
/ &Il = 4/ (Tg). (38)

Using these properties, and applying the TF approximation by
neglecting the kinetic term in Eq. (25), we recover the Castin-

=

-10 S0tk
= E
s

Castin-Dum equations
— Scaling dynamics
10° . . - y
10 1 0 1 2 3 4 5
z/a, w,t

FIG. 2. Simulated expansion dynamics in the Thomas-Fermi
regime on a grid of 64° points. A GPE ground state in a harmonic
trap with (wy, @y, w;) = (15,15, 1) has initial density in the x-z
plane shown in (a), with large w. The density evolves to (b) after
free expansion for r = 5/w, > 1/w,. The scaling parameter A,(r)
rapidly becomes ~w,?, as seen in (c), expanding by a factor of ~60
by the final time. The z evolution is almost frozen over the same
time interval. (d) o,(t) and oy (¢) rapidly approach their steady state
(0y, 0y) = (@, wy). (e) The aspect ratio follows Castin-Dum scaling
(Egs. (20) and (21) of Ref. [16]) for high anisotropy at short times,
departing slowly at longer times due to perturbative corrections to
the anisotropic limit.

Dum scaling equations [16] in the form

do; _ w?(0)

— = WX 39
@ g o0 59

We numerically integrate the scaling dynamics equa-
tions (24)—(26) for an initial condition in the TF regime u >
hw; and prolate geometry w, = w, > w;; in this case an ana-
Iytical expression for the scalings is known for free expansion.
To test this regime, we evolve a system with (w,, wy, @;) =
(15, 15, 1), working again in units of w,, g3 = O.IEwZaS, w=
25hw, well into the Thomas-Fermi regime. We use an initial
domain (L, Ly, L;) = 3(Ry, Ry, R;) with N, = N, = N, = 64
points.

The dynamics are presented in Fig. 2. The expansion dy-
namics agrees closely with Castin-Dum analytic solution for
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a prolate system [16]. In particular, the expansion rapidly
approaches the scaling o; — w;, and the ratio A, (¢)/A.(¢)
follows the scaling predicted analytically for highly elongated
cigar traps.

C. Strong antitrapping: Position distribution

Consider a system that is subject to a time-dependent anti-
trapping potential [52,53] of the form

V. t) = —%Qiz(t)(xi)z. (40)

For sufficiently large antitrapping potential energy the kinetic
and interaction terms may be neglected from Eq. (25), and the
scaling parameters evolve according to

do;(t)
dt

The system state plays no role in the scaling as the external
trap dominates the dynamics. Remarkably, for such parabolic
potentials the gauge potential in Eq. (26) is exactly canceled
[54], leading to simplified scaling dynamics.

For time-independent antitrapping in this regime, the scal-
ing is exponential,

= Q;(t)*A;(1). 41)

Ai(t) = e, (42)
with GPE dynamics
d¢ 7292 2N
h— = —=—— + = ) 43
P ( i T ?)? (43)

For d = 3 the interaction term vanishes rapidly, followed by
the kinetic term. For d = 2 with symmetric antitrapping, 2, =
0,2, = Q, =, and A,(r) = A,(t) = A(¢), and the kinetic
and interaction terms have identical scaling; as discussed in
Appendix B, isotropic scaling can be absorbed into an effec-
tive time increment ds(t) = dt/A(t)*. After physical time ¢
the GPE wave function evolves according to Eq. (43), with
effective evolution time

todr "o 1 20
= | Lo ey = —(1— 2%, (44
s© /OW)Z /oe T @

Hence as t — oo, s(t) — (2€2)~!. Provided A2 > u [55],
the GPE dynamics will be essentially frozen while the system
size increases exponentially. Finally, we note that, for d = 1,
X(t) = A(t), and the kinetic term vanishes rapidly, followed
by the interaction term; expansion in a narrow tube is domi-
nated by interactions before all dynamics are frozen.

D. Aspect-ratio invariance: Linear evolution

The SDE can be used to identify interesting regimes of
evolution for the scaling parameters A;(¢), as these are the size
parameters of the condensate.

We can seek a class of aspect-ratio invariant solutions with
aspect ratios that are preserved under expansion. This is an ap-
proximate self-similar evolution that is directly accessible in
experiments through observations of the cloud widths; it has
also been interpreted as a signature of isotropic 3D quantum
turbulence [8]. These states are distinct from self-similar dy-
namics introduced in STA in that the system shape parameters

maintain their relative sizes, rather than the state preserving a
particular functional dependence on scaling parameters.

For simplicity we will ignore initial changes in the scaling
parameters [0;(0) = 0]. The dynamics can be analyzed simply
in the laboratory frame coordinates. As shown in Appendix B,
the ideal gas evolves according to

2
dO’,‘ T; — 0

A , 45
dt Ai (43)
where the three independent stress tensor elements 7; are
" 2K;
= —— /w’x|az»w|2 =— =4 (46)
m2a; ma;

Here the kinetic energies K; are independent constants of the

motion, and, in terms of the momentum widths b; = (p?)!/,
b
Bi=— (47)
ma;

are frequencies.
For aspect-ratio invariance Eq. (45) is required to be
isotropic:

d .
ik =7 =p, (48)

with solution that preserves aspect ratios:

Ai(t) =/ 1+ (Bt)2. (49)

The expansion timescale 1/8 causes the asymptotic rate
Ai(t) — P to be reached when Bt > 1. The isotropy required
for linear self-similar expansion, that b;/a; are all equal, can
be rewritten as the set of conditions
bi a ..
J J

Such a property is not exhibited by a harmonic trap ground
state, for which the aspect ratios are inverses; a state satisfying
Eq. (50) will thus involve a nontrivial superposition of trap
eigenstates.

As a simple test of linear aspect-invariant expansion, we
evolve a system with w, : w, : @, =1 : 4 : 4, consisting of the
trap ground state in y and z directions. In the x direction, the
weaker trap means a wider position distribution, requiring a
wider momentum distribution for isotropy of quadratic mo-
ments. We create a superposition of ground states in each
direction, translating in the =£x direction. Again, in space
and time units of +/%i/mw, and 1/w,, respectively, for the x
part of the separable wave function, ¥ (x), we set ¥ (x) =
do(x) (€ + e717%)/ V2, having similar position width as the
trap ground state ¢o(x) but momentum width increased by ~g.
For ¢ >> Aky = 1/+/2, the ground state momentum width,
V AKS + ¢
The momentum-space wave function consists of two ground-
state wave packets shifted to £¢. Choosing k = 2.719 gives
Ak = 2.791 and, for our chosen trap frequencies, isotropic
Bi =3.99.

The results are shown in Fig. 3, where the initial state
exhibits interference in the x direction, and the final state is
a scaled version of the initial momentum distribution, consist-
ing of two separated wave packets located at +-k.

the width of the superposition approaches Ak =~
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FIG. 3. Simulation of aspect-ratio invariant expansion from a
superposition of counterpropagating trap ground states. The trap
frequencies are (wy, wy, w;) =(1,4,4), and the superposition of
translating ground states increases the momentum width in the x
direction to create isotropic 8 = 3.99. (a) The initial position dis-
tribution is shown on the x-z plane, where interference along x is
evident. (b) The final state is a scaled version of the initial state,
consisting the two wave packets located at =k (see text). (c) The
scaling parameters evolve isotropically, and the system maintains
constant aspect ratio (d).

E. Aspect invariance: Nonlinear evolution

Now that we have identified a linear aspect-invariant
regime, how is this picture modified by contact interactions?
For free expansion in 3D the scaling equation reads

do; 1 s (&N lol* i )
dr  a(Oma? / “r (7 Tap e ! )
(51)

where both terms evolve in time, and transforming to scaling
coordinates removes the —0[2 term from Eq. (45). These two
changes together with the interactions hamper analytic solu-
tion. However, we can use this formulation to gain insight into
aspect-invariant dynamics.

We proceed by assuming that a nontrivial aspect-invariant
solution exists. Starting from an anisotropic initial state (a;
not all equal), the solution is required to evolve isotropically:
Ai(t) = A(t). Such dynamics will occur provided there is an
isotropic form of the equations of motion do;/dt = do /dt,
or a consistent solution to the equation

do 1 gN |o* R 5
e[| dp (2 a0l%). (52
d x(r)»*/ p(zma3 o a9l (52)

Since each term is positive definite, a regime of self-consistent
aspect-invariant dynamics exists only if each term can be
written in a form independent of i. As shown in the previous
subsection the linear term can be isotropic provided 8; = 8
are independent of i. However, due to the anisotropic aiz de-
nominator, the otherwise isotropic interaction term cannot be
cast into isotropic form. We thus arrive at a contradiction: for
s-wave interactions an exact aspect-invariant solution of the
GPE does not exist.

V. DISCUSSION AND OUTLOOK

A. Discussion

We can note that the condition for linear aspect-invariant
expansion, Eq. (50), is in sharp contrast with a common inter-
pretation of self-similar expansion in the context of nonlinear
quantum turbulent BEC [8]. It was proposed that self-similar
expansion is a consequence of an isotropic momentum dis-
tribution associated with well-developed quantum turbulence.
However, momentum isotropy in a spatially isotropic system
would violate Eq. (50), unless it is spherically symmetric in
both position and momentum space—an uninteresting special
case. We conclude that a state with momentum isotropy and
position anisotropy cannot undergo exact nonlinear aspect-
invariant expansion. Approximate aspect-invariant dynamics
may occur if isotropic B; condition holds and the interaction
term decays faster than the kinetic term, possible in the regime
of rapid initial expansion due to the A(f)~> interaction-term
scaling in (51). A system could enter a regime of approxi-
mate linear aspect-ratio invariance if the interaction energy
is much smaller than the kinetic energy, provided that the
average momentum per unit length, as defined in Eq. (47),
is isotropic. States with relatively high initial kinetic energy
could more easily enter this regime, which may offer a partial
explanation for the observations in Ref. [8] for high-energy
turbulent states.

Another possible explanation of nonlinear aspect invari-
ance reported in Ref. [8] was put forward by Caracanhas
et al. [56,57]. A semiclassical rotational velocity field was
introduced within a variational ansatz, and shown to cause
approximate aspect-invariant expansion under specific condi-
tions of alignment with that trap anisotropy. Such a rotational
field would be associated with long-range velocity coherence
in the superfluid. The relevance of this mechanism for aspect-
invariant expansion and quantum turbulence remains an open
problem.

Returning to the equations of motion, in principle Eq. (26)
alone could be used to simulate the entire expansion dynamics
without the need for extremely large numerical grids. How-
ever, without Eq. (25) there is a significant limitation as the
scalings are not known a priori. A number of works have
approached this problem by various analytic approximations
for A;(t), including the Castin-Dum scaling solution [16], the
hydrodynamic self-similarity ansatz [19,26,27], and a linear
approximation for the scaling parameter time dependence
[58]. The exact equation of motion for A;(¢) found here is able
to accommodate the evolution of arbitrary initial states and
external potentials.

B. Outlook

In this work we have recast the dynamics of a cold BEC
described by the GPE in scaling coordinates determined by
the size parameters of the system. The scaling GPE self-
consistently adapts as the system size evolves, driven by
diagonal elements of the quantum fluid stress tensor. We have
verified our formulation by evolving three-dimensional sys-
tems in the ideal gas and Thomas-Fermi regimes, observing
close agreement with known analytical results. We identi-
fied a linear regime of aspect-ratio preserving expansion for

053316-7



BRADLEY, CLARKE, NEELY, AND ANDERSON

PHYSICAL REVIEW A 106, 053316 (2022)

spatially anisotropic states. The aspect-invariant dynamics
was shown to be a consequence of the system having identical
aspect ratios in position and momentum space, equivalent
to isotropic average momentum per unit length. Numerical
simulation of a superposition of counterpropagating ground
state wave packets verified this aspect-invariant expansion
condition for the noninteracting gas. Analysis of the nonlinear
scaling dynamics shows that there are no solutions with exact
aspect invariance under free expansion.

An interesting future direction would be to further investi-
gate conditions for aspect-invariant expansion and its precise
connection to different states of 3D quantum turbulence [8].
The expansion problem is also closely linked to construction
of shortcuts to adiabaticity [35,59] involving matter wave ma-
nipulation over large spatial and temporal scales. The scaling
GPE enables large-scale numerical modeling of shortcuts by
simulating the full matter wave evolution. As shortcuts are
sometimes easily constructed for a subset of system parame-
ters, the scaling GPE could be used to investigate uncontrolled
degrees of freedom excited during a shortcut, such as the
parasitic excitations reported in [34].

Finally we note that as our treatment only relies on the fluid
continuity equation and stress tensor, fairly generic properties
of cold quantum gases, a fruitful direction would be to ex-
tend the scaling GPE approach to more exotic interactions, to
systems of Fermions or Bose-Fermi mixtures, and to settings
beyond the scope of mean field theory.
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APPENDIX A: SCALING GPE

In the scaling coordinates 9; = d/dp;, we can find the
transformed derivative

Di = e—imp/-pj)\jijﬁhaieimpg,o")u”)lg/2h (Al)
and Laplacian D'D; in the form
D; =0+ i%)\ij‘ipi» (A2)
i i U m oo
D'D; = 9'9; + lﬁ)\i)\ 2p'0; + 1) — ?()\ik Y pip'. (A3)

Using the definition Eq. (12), in laboratory frame coordinates
the GPE reads

EY d¢p anfd 1 m . (d i
ih— = (ih— + inA?| — — )¢ — —x'x;)[ — =
o ( o T (du\d/z o= vl g )?
).\. eim)'\jxjx//ZhA/
()» )2x8¢ 2d/2

292
= (——+V(x 1)+ glvl )W

5 (A4)

In the scaling coordinates this can be written as

d¢ d (A
ih— = |V(p'A, ¢ rir o p;
ih= [ (o' )+ |¢| +2 ppdt< )

d 1
— i — — 4 in = ,08:|¢

dt 2d/2
52 - .
_ i (efimpjpf)»f)»,'/Zh828impgp”A”Ag/25)¢.
2mAi(t)? !
(AS)
Using the identities
. .. . 2
d A; Ai Ai
dt A M ()J) (A6)
_ d 1 1 A;
242 S—_—— A7
<dt /\d/Z) 2\ (A7)

and the Laplacian, (A3), after significant cancellation of
terms, we find that ¢(p;, t) evolves according to Eq. (26).

APPENDIX B: FREE EXPANSION OF THE IDEAL GAS

In the simplest noninteracting scenario, the evolution is
governed by the one-body Hamiltonian

2
=2, (B1)
2m
for momentum operator p = (P, py, p;)-
The wave function v (r, 0), with momentum-space repre-

sentation

U (p,0) = W/ddre—ip'f/hw(r, 0). (B2)
evolves to
- P\
J(p, 1) =exp (—iL— )i (p, 0). (B3)
2mh
The density
) 4 4 /ei(pz—p/z)t/(2mh)+i(p/—p)-r/h
D= d d
[¥(r, 1) / p/ p iy
x 9 (p, 0¥ (p', 0) (B4)

can be written more usefully with the change of variables P =
(P+p)/2,q=p —pas

5 J J £l (@=Pr/m)/h
t d°P | dq
[y (r, 1) / / — G

x y*(P—q/2,00y(P+q/2,0).  (B5)

For t > 0 we can use the scaled variable x = qf/m, giving
zx P—mr/t)/h
/ d‘p / dix———
(2mh)
.y ~ mx
¥ (P+ 2—t,o)w(P - E’O>‘ (B6)

For long times, a Taylor series in mx/2¢ can be truncated
at lowest order, and the x integral

[y (r, t))* =

/ d¥x eX®=mr/D/h — Qi) §D (P — mr /1) (B7)
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gives the long-time limit of the particle density,

2
; (B8)

. 2 m\49| . ymr
tim [y, 0P = (%) [7(%. 0)
t—>00 t t
in terms of the initial momentum distribution evaluated at the
rescaled momentum mr/¢. The long-time limit provides a use-
ful test of our reformulation of the Gross-Pitaevskii equation.
We can solve the free expansion problem exactly for the
case of the ideal Bose gas, to gain further insight into the
scaling GPE. Without interactions and external potential, we
have

dor _ 1 /"dd AP (BY)

dt — A(t)’ma? P o

a¢ 1?92 m . . .
2l (- M ox e’ )6, (BIO
ih~ ( zmw(z)2+ 2cr() ()pp>¢ (B10)

where there is no obvious analytical solution. However, in
laboratory frame coordinates, the o;(¢) equation is

dGi T, — 0'-2
— = =, (B11)
dt Ai
where
i d 2 <P12>
Ti = mza? /d x|0y|” = mz_aiz (B12)
is a constant of the motion. We can recast Eq. (B11) as
oy dik
Aiki + A = (dz ) _ T, (B13)

and integrate with initial condition 1:(0) = 0;(0) to give
hiki = 0i(0) + T, (B14)

and integrate again with initial condition A;(0) = 1 to give the
general solution

ri(0) = [1 + 20;(0)t + 7,621/, (B15)

We can now simplify the scaling GPE for free expansion by
using equations of motion (B14) and (B15) to find

i — 0i(0)°

di)‘-i = )\12

(B16)

The scaling Schrodinger equation (B10) hence reduces to

By 1 P om o,
h— = ——= | ——=— + zajpip' |$,

B17
2m 2 ( )

where o; = /1, — 0;(0)? determines whether the effective
harmonic trap is attractive, repulsive, or vanishing. There are
thus three cases to consider depending on the size of the initial

momentum widths and accelerations: momentum dominated
regime, acceleration dominated regime, and critical regime.

We can characterize the dynamics of Eq. (B17) by not-
ing that direction i evolves with an effective time increment
dsi(t) = dt /»;(t)?. Physical time evolution ¢ is thus equiva-
lent to axis-dependent effective time:

o /" du /" du
s)= | — = )
0 Ai(u)? o 14+20i(0)u+ ru?

We now consider three cases of the dynamics, according to
the discriminant of the denominator, «;.
(i) Momentum dominated regime: ozi2 > 0 and real valued

a; = +/1; — 0;(0)%, with solution

1 ot
s;(t) = —arctan | ——— ).
i 1+ 0;(0)t

In this most common case «; is an effective trapping fre-
quency. We can check that the long time limit is physical by
noting that, after long free expansion times, ¢ >> 1/«;, the total
effective evolution time in the harmonic potential is s;(#) —
7 /(2e;), one quarter period at frequency «;, independently of
the initial stress ;. Since one quarter period transforms a posi-
tion distribution into its momentum distribution in a harmonic
trap, in this regime we recover the well-known long-time limit
of free expansion, as discussed in this Appendix.

(i1) Acceleration dominated regime: otl-2 < 0 and real val-

ued &; = /0;(0)? — 7;, with solution

1 a;t
si(t) = — arctanh [ ————— ],
i 1+ 0:(0)t

corresponding to antitrapping with effective trap frequency
&;. This regime has a very different long-time limit. When
t > 1/@&;, the effective time approaches s;(t) — oo and the
evolution with large initial acceleration is simply the long time
limit of antitrapped expansion.

(iii) Balanced regime: o; = 0, and 0;(0) = /7, with so-
lution

(B18)

(B19)

(B20)

t
i) = /7=

. B21
1+ Tt ( )

The balance of initial acceleration and momentum width
causes the effective trap in Eq. (B17) to vanish and the scaling
dynamics proceeds according to the free-space Schrodinger
equation. In the long-time limit, ¢ > 1/,/7;, the effective evo-
lution time approaches s;(t) — 1/.,/7;.

We have verified that the scaling dynamics equations re-
produce the well-known result for free expansion in the
momentum-dominated regime: long time-of-flight maps the
momentum distribution into the position distribution.
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