
PHYSICAL REVIEW A 106, 053315 (2022)

Quantum criticality in interacting bosonic Kitaev-Hubbard models
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Motivated by recent work on the non-Hermitian skin effect in the bosonic Kitaev-Majorana model, we study
the quantum criticality of interacting bosonic Kitaev-Hubbard models on a chain and a two-leg ladder. In the
hard-core limit, we show exactly that the non-Hermitian skin effect disappears via a transformation from hard-
core bosonic models to spin-1/2 models. We also show that hard-core bosons can engineer the Kitaev interaction,
the Dzyaloshinskii-Moriya interaction and the compass interaction in the presence of the complex hopping and
pairing terms. Importantly, quantum criticalities of the chain with a three-body constraint and unconstrained
soft-core bosons are investigated by the density matrix renormalization-group method. This paper reveals the
effect of many-body interactions on the non-Hermitian skin effect and highlights the power of bosons with
pairing terms as a probe for the engineering of interesting models and quantum phase transitions.
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I. INTRODUCTION

The engineering of exotic quantum phases is one of major
goals in modern physics. The fermionic Kitaev chain is a
well-known quadratic model with p-wave superconducting
pairing [1], which exhibits Majorana zero modes localized at
the ends of the chain [2]. In contrast, for the bosonic coun-
terpart, Majorana bosons are forbidden by the no-go theorems
[3]. In the context of free bosons, another important quantum
phase, the Bose-Einstein condensation, appears near abso-
lute zero [4,5]. Recently, the non-Hermitian skin effect [6]
was proposed and investigated in a one-dimensional bosonic
quadratic Hamiltonian with pairing terms [3,7–13] analogous
to the fermionic Kitaev chain. This phenomenon is particu-
larly interesting as the original bosonic quadratic Hamiltonian
is Hermitian, whereas the physics of free bosons is charac-
terized by a non-Hermitian Bogoliubov–de Gennes (BdG)
Hamiltonian [7,12] that leads to the non-Hermitian skin
effect.

The non-Hermitian skin effect that corresponds to the
localization of bulk states at the boundaries reveals the break-
down of the bulk-boundary correspondence and leads to the
non-Bloch band theory [6]. The non-Hermitian skin effect
has attracted much attention as a unique phenomenon of
non-Hermitian systems without a counterpart in conventional
Hermitian models [6,14–33]. The understanding of the inter-
play between the non-Hermiticity and many-body interactions
is becoming an important research area for many-body sys-
tems. A key issue is whether the non-Hermitian skin effect
remains under the many-body interactions. The study on the
non-Hermitian skin effect has previously been considered in a
few non-Hermitian many-body systems [34–61]. To this end,
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we investigate the non-Hermitian skin effect in the presence of
strong interactions in a Hermitian bosonic model with pairing
terms [7].

The fermionic Kitaev chain can be exactly solved featuring
a quantum phase transition in the Ising universality class [1].
Moreover, the Kitaev chain with many-body interactions has
been investigated via various methods as well [62–65]. On the
other hand, low-dimensional bosonic systems have attracted
great interest during past decades [66,67]. The competition
among hopping terms, interactions, and the chemical poten-
tial induces a large variety of interesting quantum states of
matter [68]. However, interacting Bose-Hubbard models with
nearest-neighbor pairing terms are less explored [69].

In this paper, we introduce bosonic Kitaev-Hubbard (BKH)
models on a one-dimensional chain and a two-leg ladder. The
absence of the non-Hermitian skin effect is exactly proved
for the chain by mapping hard-core bosons to fermions with
the Jordan-Wigner transformation. Surprisingly, a quantum
compass model is found at a multicritical point in which
multiple Ising transitions coalesce. Most importantly, quan-
tum criticalities and the associated universality are studied
by the density matrix renormalization group (DMRG) for
the hard-core bosons, three-body constrained bosons, and
soft-core unconstrained bosons, respectively. Interesting con-
tinuous phase transitions between two ordered phases are
discovered for bosons.

The paper is organized as follows. In Sec. II, we intro-
duce the BKH model on a chain. In Sec. III, we discuss the
non-Hermitian skin effect of the BKH chain for free bosons.
In Sec. IV, we study the BKH chain in the hard-core limit.
In Sec. V, we investigate the BKH chain with three-body
constraint. In Sec. VI, we consider the BKH chain for uncon-
strained soft-core bosons. In Sec. VII, we present the results
of the hard-core BKH model on a two-leg ladder. In Sec. VIII,
we summarize our main results.
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FIG. 1. Schematic geometry of the BKH models studied in the
main text. (a) One-dimensional chain. (b) Two-leg ladder. The defi-
nitions of parameters t , t⊥, �, U , μ, θ , and ϕ for models are shown
in the main text.

II. BOSONIC KITAEV-HUBBARD CHAIN

The fermionic Kitaev chain is a one-dimensional tight-
binding model with the nearest-neighbor hopping and the
superconducting p-wave pairing terms on each bond [1]. The
corresponding BKH Hamiltonian of a chain as shown in
Fig. 1(a) with complex hopping and pairing amplitudes can
be defined by [7,69]

H =
L∑

r=1

(−teiθ b†
rbr+1 − �eiϕbrbr+1 + H.c.) −

L∑
r=1

μnr

+
L∑

r=1

U

2
nr (nr − 1) + U3

∑
r

nr (nr − 1)(nr − 2), (1)

where t � 0 is the hopping amplitude with a gauge phase θ ,
� � 0 is the pairing amplitude with a phase ϕ that can be
gauged out, μ is the chemical potential, U and U3 are the
strengths of the on-site two-body and three-body interactions.
Here b†

r (br) and nr = b†
rbr are the creation (annihilation)

and the local particle number operators at the rth site. The
periodic boundary condition is imposed as bL+1 = b1, where
L is the system size. For U = 0 and U3 = 0, the system is
a free bosonic model in which the ground state is the Bose-
Einstein condensation at � = 0. For U → ∞, the system is
a hard-core bosonic model that can be mapped to a spinless
free fermionic model in terms of the Jordan-Wigner transfor-
mation. In the following, we will discuss this model in detail.

III. FREE BOSONS

Let us first study the case of free bosons (U = 0 and
U3 = 0). In this section, we will only consider t > � as the
opposite regime for t < � is dynamically unstable [7]. For
μ = 0, Eq. (1) can be explicitly written as

H =
L∑

r=1

(−teiθ b†
rbr+1 − �eiϕbrbr+1 + H.c.). (2)

Using the Fourier transformation,

br = 1√
L

∑
k

eikrbk, (3)

the model in Eq. (2) can be transformed into momentum space
with Nambu notations,

H = 1

2

∑
k

(b†
k b−k )HBdG(k)

(
bk

b†
−k

)
, (4)

in which the BdG Hamiltonian HBdG(k) reads

HBdG(k) = − 2t cos θ cos kσ0 + 2t sin θ sin kσz

− 2� cos ϕ cos kσx − 2� sin ϕ cos kσy. (5)

Here σx, σy, and σz are Pauli matrices and σ0 is the identity
matrix. We note that energy eigenvalues of the bosonic Kitaev
model in Eq. (2) are characterized by a modified BdG Hamil-
tonian,

H ′
BdG(k) = σzHBdG(k), (6)

because of the bosonic commutation relation [7]. The corre-
sponding energy spectra of the bosonic Hamiltonian in Eq. (2)
are derived by solving the characteristic equation,

det [H ′
BdG(k) − E (k)] = 0, (7)

which yields

E (k) = 2t sin θ sin k ± 2
√

t2 cos2 θ − �2 cos k. (8)

One easily finds that energy eigenvalues in Eq. (8) are inde-
pendent on the phase ϕ similar to that of the fermionic Kitaev
chain as expected.

It is worth noting that as H ′
BdG(k) can, in principle, become

non-Hermitian, the non-Hermitian physics may occur despite
being a Hermitian bosonic model with pairing terms [7]. To
perceive it, we first consider the hopping phase θ = π/2. The
corresponding energy eigenvalues become complex values
E (k)=2t sin k ± 2i� cos k as shown in Fig. 2(b), indicating
the occurrence of the non-Hermitian skin effect [7] where
all bulk states are localized at the boundaries [cf. Figs. 2(c)
and 2(d)]. For an open chain, the Hamiltonian can also be
diagonalized by the Bogoliubov transformation [7],

H =
∑

n

Enβ
†
nβn. (9)

Here, En = 2
√

t2 − �2 cos kn, and the βn = ∑
r un

r br − vn
r b†

r
is the quasiparticle with the coefficients un

r and vn
r given by

[7],

un
r =

√
2

N + 1
i−r sin(knr) cosh(γ r), (10)

vn
r =

√
2

N + 1
i−r sin(knr) sinh(γ r), (11)

where kn = nπ/(L + 1) (n = 1, . . . , L) and e2γ = (t +
�)/(t − �). The coefficients un

r and vn
r shown in Figs. 2(c)

and 2(d) represent the particle and antiparticle parts of the
wave function [7], which are localized at the boundary of the
chain as expected.

In contrast, in the case of t cos θ > �, the system in
Eq. (2) has real energy spectra E (k) = A cos(k − ψ ) and
E (k) = −A cos(k + ψ ) [cf. Fig. 2(a)], with A = 2

√
t2 − �2

and sin ψ = t sin θ/
√

t2 − �2. Consequently, the choice of
hopping phase θ plays a key role in the emergence of the
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FIG. 2. Energy eigenvalues and the eigenstates of the chain.
(a) Energy spectra of the BKH chain for free boson (blue solid
line) and hard-core bosons (red dashed line) for t = 1, � = 1/2,
μ = 0, and θ = π/8. (b) Energy spectra of the BKH chain for free
bosons (blue ellipse) with E (k) = 2t sin k ± 2i� cos k and hard-
core bosons (red straight line) with E (k) = 2(t ± �) sin k for t = 1,
� = 1/2, μ = 0, and θ = π/2 under periodic boundary conditions.
(c) and (d) Distribution of the coefficients un

r and vn
r for L = 48 lattice

sites with same parameters in (a) under open boundary conditions.

non-Hermitian skin effect [7]. By comparison, the hopping
phase θ is less considered in the original fermionic Kitaev
chain as it might merely shift phase boundaries of the Ising
transition. We will explore it in detail in the next section.

IV. HARD-CORE BOSONS

In the strong two-body interaction limit U → ∞ (hard-
core bosons), the Hilbert space of bosons at each local site can
be truncated into two states |0〉 and |1〉, which can be treated
as effective spin-1/2 states. The transformations between
bosonic operators b†

r , br , and spin operators σ+
r , σ−

r , and σ z
r ,

can be written as σ+
r = br , σ−

r = b†
r , and σ z

r = 1 − 2b†
rbr by

identifying |0〉 → | ↑〉 and |1〉 → | ↓〉. In this respect, the
Hamiltonian in Eq. (1) can be mapped onto a transverse field
spin chain as

HS = −1

2

L∑
r=1

[
(t cos θ + �)σ x

r σ x
r+1 + (t cos θ − �)σ y

r σ
y
r+1

]

+1

2

L∑
r=1

t sin θ
(
σ x

r σ
y
r+1 − σ y

r σ x
r+1

) − 1

2

L∑
r=1

μ
(
1 − σ z

r

)
,

(12)

where the raising (lowering) operators σ±
r = (σ x

r ± iσ y
r )/2

have been used. Here, we obtain the anisotropic XY model
with the Dzyaloshinskii-Moriya interaction. The effective spin

model in Eq. (12) can be transformed into the fermionic Ki-
taev chain,

HF =
∑

r

(−teiθ c†
r cr+1 − �crcr+1 + H.c.) −

∑
r

μc†
r cr,

(13)

under the Jordan-Wigner transformation,

σ+
r =

r−1∏
i=1

(1 − 2c†
i ci )cr, σ−

r =
r−1∏
i=1

(1 − 2c†
i ci )c

†
r ,

σ z
r = 1 − 2c†

r cr . (14)

When θ = 0, the fermionic Kitaev chain exhibits topologi-
cal Majorana bound states in the regime −2 < μ/t < 2. The
phase transition between the topological phase and the trivial
phase occurring at μ/t = ±2 belongs to the Ising universality
class.

As the hopping phase θ in the fermionic Kitaev chain
cannot be gauged out in the presence of the pairing term �, it
is expected that phase θ would modify the phase diagram. The
energy spectrum of the fermionic Kitaev chain for an arbitrary
phase θ is derived as

E (k) = 2t sin θ sin k

±
√

(μ + 2t cos θ cos k)2 + (2� sin k)2. (15)

The critical point is obtained as μc = ±2t cos θ for � >

t sin θ by solving the equation E (k) = 0 in Eq. (15) [70,71].
In order to confirm our analysis, we perform the DMRG

[72,73] calculations for the spin chain in Eq. (12) with t =
� under periodic boundary conditions. The critical values μc

and the correlation-length critical exponent ν are obtained by
the ground-state fidelity susceptibility [74–76],

χF = lim
δλ→0

−2 ln F (λ, λ + δλ)

(δλ)2
. (16)

Here F (λ, λ + δλ) = |〈ψ (λ)|ψ (λ + δλ)〉| is the ground-state
fidelity with a control parameter λ ≡ μ. For second-order
phase transitions, the fidelity susceptibility per site χL ≡
χF /L near the critical point in one dimension scales as
[74–76]

χL ∝ L2/ν−1. (17)

The phase diagram shown in Fig. 3(a) is computed from
the fidelity susceptibility [cf. Fig. 3(c)] for t = � = 1 where
numerical results are consistent with analytical values. The
phase transition remains the Ising transition from the ferro-
magnetic (FM) phase to the paramagnetic (PM) phase [cf.
Fig. 3(b)] with the correlation-length critical exponent ν = 1
[cf. Fig. 3(d)] for a finite θ . We note that the hard-core BKH
chain with periodic boundary conditions is exactly equivalent
to the fermionic Kitaev chain with antiperiodic boundary con-
ditions on a finite system. Interestingly, two Ising transition
lines merge at μ = 0, θ = π/2, implying that this point might
be a multicritical point. We show that this special point cor-
responds to the celebrated compass model with 2L/2−1-fold
degenerate ground states [77–80]. To be more explicit, the
Hamiltonian of the hard-core BKH chain with t = �, θ =
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FIG. 3. Hard-core BKH chain with t = � = 1 for periodic
boundary conditions. (a) The phase diagram with respect to the
hopping phase θ/π and the chemical potential μ/t where the solid
(dotted) lines are obtained by analytical (DMRG) calculations. The
peak triangle symbol at θ = π/2, μ/t = 0 denotes the quantum
compass model. (b) The correlation function 〈σ x

1 σ x
L/2〉 as a function

of μ/t at θ = π/4. (c) The fidelity susceptibility per site χL with
respect to μ/t for L = 18 to L = 48 sites (from bottom to top) with
θ = π/4. (d) The correlation-length critical exponent ν = 0.9969 ±
0.0047 is derived from the finite-size scaling of the maximum fidelity
susceptibility.

π/2, and μ = 0 is given by

H ′
S = − �

2

L∑
r=1

(
σ x

r + σ y
r

)(
σ x

r+1 − σ
y
r+1

)

= − �

L∑
r=1

σ̃ y
r σ̃ x

r+1. (18)

Here, we introduce new spin operators σ̃ x
r = (σ x

r − σ
y
r )/

√
2

and σ̃
y
r = (σ x

r + σ
y
r )/

√
2. Performing a transformation only

for the even sites σ̃
y
2r → σ̃ x

2r , σ̃ x
2r → σ̃

y
2r , and σ̃ z

2r → σ̃ z
2r , we

arrive at the following compass model [78,79]:

H ′
S = −�

L∑
r=1

(
σ̃

y
2r−1σ̃

y
2r + σ̃ x

2r σ̃
x
2r+1

)
. (19)

The ground-state degeneracy of the hard-core BKH chain in
Eq. (1) at t = �, θ = π/2, and μ = 0 is numerically verified
for small systems using the exact diagonalization, which is
consistent with the analytical result [77–80] of the compass
model in Eq. (19).

As the energy eigenvalues E (k) in Eq. (15) are always real
[cf. Figs. 2(a) and 2(b)], the non-Hermitian skin effect cannot
occur for hard-core bosons. This is because hard-core bosons
obey fermionic commutation relation instead of the original

bosonic commutation relation from which the non-Hermitian
skin effect may appear. We note that the non-Hermitian skin
effect of the bosonic BdG Hamiltonian may be instability
against infinitesimal perturbations (i.e., the chemical potential
μ) [12]. It would be more interesting to study the impact of the
finite interaction U on the non-Hermitian skin effect. How-
ever, the huge local Hilbert space of bosons on each lattice
site retards the possibility of exact or numerical simulations
of the full spectrum. Besides, it is still an open question for
the characterization of the non-Hermitian skin effect in nonin-
tegrable many-body systems. The study on the non-Hermitian
skin effect for arbitrary finite U is left for a future study. In the
following, we will mainly focus on the quantum criticalities of
the BKH model with interactions.

V. THREE-BODY CONSTRAINED BOSONS

The interaction between bosons can be tuned by Feshbach
resonances [81] in experiments. In fact, the hard-core bosons
may be realized approximately by a sufficiently strong on-site
repulsion [82] instead of the infinite U . Consequently, we
expect similar phase transitions discussed above for the hard-
core bosons to persist for the large U . First, let us consider
the three-body constraint due to the Zeno-like effect [83,84]
where more than double occupancy is suppressed. The three-
body constraint for the model in Eq. (1) can be achieved in the
strong three-body interaction limit U3 → ∞ [84].

The full phase diagram is presented in Fig. 4(a) for the
Hamiltonian in Eq. (1) with three-body constraint (U3 → ∞),
which is obtained by performing the DMRG calculations
through the fidelity susceptibility shown in Fig. 4(c) with the
maximal on-site occupancy nmax = 2 for t = � = 1 and θ =
ϕ = 0. Meanwhile, the entanglement entropy S = −tr ρAln ρA

is also calculated, where ρA = trBρ is the reduced density
matrix of the subsystem. In the large interaction limit (U  t),
the ground state of the system is the gapped bond pairing
insulator (BPI) phase at μ = 0. We note that the BPI phase
corresponds to the FM phase of the spin model or the Ma-
jorana topological phase of the fermionic Kitaev chain in
the hard-core limit (U → ∞). The half-chain entanglement
entropy of the BPI phase is S ≈ ln 2 [cf. Fig. 4(b)]. Increas-
ing the chemical potential μ, the system undergoes a phase
transition from the BPI phase to trivial insulator (TI) phase
at the filling n̄ ≈ 1. Here, the n̄ ≈ 1 TI phase with the half-
chain entanglement entropy S ≈ 0 [cf. Fig. 4(b)] is related
to the FM phase (or the trivial phase) in the spin model (or
in the fermionic Kitaev chain) in the hard-core limit. The
BPI phase revives between the n̄ ≈ 1 TI phase and the fully
filled insulator (FI) phase (vacuum phase n̄ ≈ 2) by a further
increase in μ. Interestingly, we find the direct phase transition
between the BPI phase and the FI phase even without the
on-site two-body interaction, i.e., U = 0. All phase transi-
tions are found to fall into the Ising universality class [cf.
Fig. 4(d)].

VI. SOFT-CORE BOSONS

Next, let us now discuss the soft-core regime, in which the
three-body constraint is removed (U3 = 0). When the pair-
ing term is absent (� = 0), the model reduces to the usual
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FIG. 4. Phase diagram of the BKH chain with three-body con-
straint at t = � = 1 under open boundary conditions. (a) The phase
diagram as a function of the interaction U/t and the chemical po-
tential μ/t for L = 96 lattice sites. (b) The half-chain entanglement
entropy S with respect to μ/t for U = 25 and nc = 2. (c) The fidelity
susceptibility per site χL with respect to μ/t for L = 48, 72, 96
sites. (d) Correlation-length critical exponents ν = 1.0289 ± 0.0022
(red square), ν = 1.0246 ± 0.0017 (black circle), and ν = 1.0180 ±
0.0011 (blue diamond) are derived from the finite-size scaling of the
maximum fidelity susceptibility (from left to the right) up to L = 192
sites.

Bose-Hubbard model. On one hand, for certain chemical po-
tential μ, the competition between the kinetic-energy t and the
repulsive energy U leads to the transition between the Mott
insulator (t � U ) and the superfluid (t  U ) [66]. When the
kinetic term t is replaced by the pairing term �, (that is
t = 0 but � �= 0), it is argued that no phase transition happens
[85]. Instead, the system may undergo a crossover from the
insulating phase (� � U ) to the squeezed phase (�  U )
[85].

Interestingly, we find a direct phase transition between
the BPI phase and the TI phases [cf. Fig. 5(a)] in the BKH
model. This is because the U (1) symmetry of the original
Bose-Hubbard model is reduced to the Z2 symmetry when
both the kinetic term t �= 0 and the pairing term � �= 0. A
phase transition can, in principle, occur between two gapped
phases. We obtain the global phase diagram presented in
Fig. 5(a) with TI lobes from the fidelity susceptibility [cf.
Fig. 5(c)] by the DMRG with truncated on-site occupancy
nmax = 5, which is analogous to the original Bose-Hubbard
model. The nature of the transition between the BPI phase
and the TI phase remains the Ising transition [cf. Fig. 5(d)],
which can also be described by the entanglement entropy [cf.
Fig. 5(b)] as discussed above. In the strong interaction limit
U  t,�, the results are entirely consistent with the analysis
in the hard-core limit [cf. Fig. 5(a)].

FIG. 5. Phase diagram of the BKH chain for soft-core bosons at
U = 1 under open boundary conditions. (a) The phase diagram as
a function of the interaction t/U and the chemical potential μ/U
for L = 96 lattice sites. (b) The half-chain entanglement entropy S
with respect to μ/U for t/U = 0.03 and nc = 5. (c) The fidelity
susceptibility per site χL with respect to μ/t for L = 48, 72, 96
sites. (d) Correlation-length critical exponents ν = 1.0234 ± 0.0050
(red square), ν = 1.0173 ± 0.0036 (black circle), ν = 1.0338 ±
0.0072 (blue diamond), and ν = 1.0283 ± 0.0060 (green triangle)
are derived from the finite-size scaling of the maximum fidelity
susceptibility (from left to the right) up to L = 192 sites.

VII. HARD-CORE BOSONIC KITAEV-HUBBARD LADDER

Having discussed the interacting bosonic Hubbard chain
with pairing terms, we now turn to a two-leg ladder as shown
in Fig. 1(b) where the interleg hopping is included. For the
sake of simplicity, we will consider only the hard-core bosons.
And the hopping integrals are assumed to be real as the
hopping phase θ would merely shift phase boundaries as
shown in Fig. 3(a) except for the special point θ = π/2. The
corresponding Hamiltonian of the BKH model with the real
hopping matrix t and the real bosonic pairing � on a two-leg
ladder is then given by

HL = −
L∑

l=1,2; r=1

(tb†
l,rbl,r+1 + �bl,rbl,r+1 + H.c.)

−
L∑

r=1

(t⊥b†
1,rb2,r + H.c.) −

L∑
l=1,2; r=1

μnl,r

+
L∑

l=1,2; r=1

U

2
nl,r (nl,r − 1), (20)

where b†
l,r is the bosonic creation operator at the lth leg and

the rth rung, t and t⊥ are hopping matrix elements along legs
and rungs. Here, the bosons are assumed to be paired only on
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FIG. 6. Hard-core BKH ladder with t = � = 1 under open
boundary conditions. (a) The phase diagram with respect to the
rung hopping t⊥/t and the chemical potential μ/t for L = 96 rungs.
(b) The bond order parameters Bα

leg = 〈σα
1,L/2σ

α
1,L/2+1〉 along the leg

and Bα
rung = 〈σα

1,L/2σ
α
2,L/2〉 along the rung as a function of t⊥/t at

μ/t = 3 and θ = π/4, where α = x, y, z. (c) The fidelity susceptibil-
ity per site χL with respect to t⊥/t for L = 48 to L = 144 rungs (from
bottom to top) with μ/t = 3 and θ = π/4. (d) The finite-size scal-
ing of the maximum fidelity susceptibility. The correlation-length
critical exponents ν = 1.0112 ± 0.0034 (blue square symbols) and
ν = 1.0240 ± 0.0088 (red circles) are obtained from fitting first and
second peaks up to L = 192 rungs.

the legs. In order to understand the phase diagram, we map the
hard-core BKH ladder (U → ∞) onto the spin ladder, whose
Hamiltonian is described by

HLS = − 1

2

L∑
l=1,2; r=1

[
(t + �)σ x

l,rσ
x
l,r+1 + (t − �)σ y

l,rσ
y
l,r+1

]

− 1

2

L∑
r=1

t⊥
(
σ x

1,rσ
x
2,r + σ

y
1,rσ

y
2,r

) − 1

2

L∑
r=1

μ
(
1 − σ z

l,r

)
.

(21)

When t⊥ = 0, the system consists of two decoupled bosonic
Kitaev chain as we discussed in Sec. IV. The ground state is an
XY phase with a U (1) symmetry at � = 0. When a nonzero
� > 0 is included, the U (1) symmetry is reduced to the Z2

symmetry. The ground state becomes a FM phase along the
x direction. In the opposite limit t⊥ → ∞, the ground state
of the system evolves into a rung-singlet (RS) phase [86–88].
In between, a direct continuous second-order phase transition
can take place between the FM phase and the RS phase
[86–88]. To verify it, we perform the DMRG calculation with
open boundary conditions up to L = 192 rungs. The full phase
diagram is presented in Fig. 6(a), which is obtained from the
fidelity susceptibility in Fig. 6(c). In addition to the phase
transition between the FM phase and the PM phase, the system

exhibits another second-order phase transition between the
FM phase and the RS phase that can be captured by bond
order parameters B = (Bleg, Brung) exhibited in Fig. 6(b). The
nature of the phase transition as shown in Fig. 6(d) belongs to
the Ising universality class as well.

Furthermore, when many-body interactions HV =
V

∑L
r=1(n1,r − 1

2 )(n2,r − 1
2 ) of hard-core bosons along

rungs is considered, the system can be mapped to a spin-1/2
Ising ladder,

HLI = HLS + 1

4
V

L∑
r=1

σ z
1,rσ

z
2,r, (22)

with the interaction along the z direction. In the case of t⊥ = 0,
the model is decoupled into two interacting fermionic Kitaev
chains [89]. Especially, the system reduces to the quantum
compass ladder that can be solved exactly at t⊥ = 0, � = 1,
and μ = 0 [90]. Hence, hard-core bosons on a ladder with
pairing terms also offer a simple way to mimic various inter-
esting many-body spin models.

VIII. CONCLUSION

To summarize, we have studied the phase diagram and
associated phase transitions for BKH models on a chain and
a two-leg ladder. We show that the one-dimensional BKH
chain in the hard-core boson limit is identical to the fermionic
Kitaev chain and hereby declare that the non-Hermitian skin
effect should vanish.

Moreover, we reveal that in the presence of the hopping
phase the Dzyaloshinskii-Moriya interactions can be engi-
neered for hard-core bosons. The ground state of the system
remains the doubly degenerate Ising phase with the Z2 sym-
metry for any θ (θ �= π/2) in the case � > t sin θ , whereas
the non-Hermitian skin effect can emerge for free bosons
by tuning the phase θ . Interestingly, the effective compass
model can be realized characteristic of a 2L/2−1-fold degener-
ate ground state at θ = π/2. It is surprising that the soft-core
BKH chain exhibits a direct phase transition from a TI phase
to the BPI phase, which are argued to be a crossover with
only the paring term � �= 0. For the two-leg ladder, we find
a continuous phase transition between the ordered FM phase
and the RS phase falling into the Ising universality class as
ever. More relevant interesting models are finally discussed.
It would be more interesting to investigate two-dimensional
many-body systems to explore exotic quantum phases in the
future.
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