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Interaction-controlled impurity transport in trapped mixtures of ultracold bosons
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We explore the dynamical transport of an impurity between different embedding majority species, which
are spatially separated in a double well. The transfer and storage of the impurity is triggered by dynamically
changing the interaction strengths between the impurity and the two majority species. We find a simple but

efficient protocol consisting of linear ramps of majority-impurity interactions at designated times to pin or unpin
the impurity. Our study of this highly imbalanced few-body triple mixture is conducted with the multilayer mul-
ticonfiguration time-dependent Hartree method for atomic mixtures, which accounts for all interaction-induced
correlations. We analyze the dynamics in terms of single-particle densities and entanglement growth and provide

an effective potential description involving mean fields of the interacting components. The majority components
remain self-trapped in their individual wells at all times, which is a crucial element for the effectiveness of our
protocol. During storage times each component performs low-amplitude dipole oscillations in a single well.
Unexpectedly, the interspecies correlations possess a stabilizing impact on the transport and storage properties

of the impurity particle.

DOI: 10.1103/PhysRevA.106.053314

I. INTRODUCTION

Tunneling of microscopic particles through a classically
forbidden barrier is an exceptionally important quantum-
mechanical phenomenon. It is a direct consequence of the
particle-wave duality and the uncertainty principle. Tunneling
has a wide range of real-world applications: it imposes a
fundamental limit for the size of transistors [1] and lies at the
heart of numerous technological devices such as the scanning
tunneling microscope [2,3], the tunnel diode [4], ultrasensi-
tive magnetometers (SQUID) [5], and superconducting qubits
[6]. The concept has been used to explain fundamental prob-
lems in physics, chemistry, and biology with great success,
including radioactive decay processes [7,8], nuclear fusion
[9], astrochemical synthesis [10], chemical reactions [11], and
DNA mutations [12].

Tunneling can be observed on a macroscopic scale between
two phase-coherent spatially overlapping matter waves [13],
and has been detected via a current between two supercon-
ductors separated by a thin insulating layer (SJJ), even though
no external voltage is applied (dc-Josephson effect). An ex-
ternal voltage gives then rise to a rapidly oscillating current
(ac-Josephson effect). The Josephson effect [14,15] was also
reported for superfluid helium [16—19], cavity polaritons [20],
and ultracold atomic gases [21-28]. The latter platform is of
particular relevance for a quantitative analysis of the tunneling
effect, as it provides an exquisite control over system parame-
ters and versatile detection techniques [29]. Atomic Josephson
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junctions [30] have been suggested as a standard of chemical
potential [31], to perform measurements of gravity [32,33]
and off-diagonal long-range order [34] with a high spatial
resolution.

A double well loaded with a many-body ensemble of ultra-
cold bosons, known as the bosonic Josephson junction (BJJ)
[35-37], has drawn particular attention due to its fundamen-
tal nature and conceptual simplicity. Two wells separated by
a barrier is a paradigmatic external potential to investigate
tunneling dynamics [21-28], interference of matter waves
[23,38-41], the Shapiro [42,43] and ratchet effects [44],
macroscopic superposition states [45—49], and entanglement
[50-52]. Furthermore, it serves as a prototype model for finite-
size lattices [53-57].

BJJ can be understood in a two-mode approximation
(lowest band Bose-Hubbard model) [58—68]. Noninteracting
particles, initially prepared in one well, will perform Rabi
oscillations between the two wells with a well-defined fre-
quency. For an ensemble of particles, the spectral response
is strongly affected by tunable interparticle interactions and
the initial population imbalance, evincing dc- or ac-Josephson
effects and plasma oscillations [59-61,65]. Moreover, inter-
actions give rise to novel dynamical regimes, not possible
with SJJ, such as m-phase modes [62,63] and, above a
critical value of the interaction strength, the macroscopic
quantum self-trapping (MQST) [58,59], i.e., a suppression of
tunneling even though the particles repel each other. Interest-
ingly, the two-mode model has a classical analog, namely it
can be mapped to a nonrigid pendulum [45,59-61,63]: the
population and relative-phase difference between two con-
densate fractions translate to the angular momentum and
displacement, respectively. In particular, MQST corresponds
to the pendulum making full revolutions, implying a nonzero
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average population imbalance and the relative phase increas-
ing monotonically in time.

Alternatively, MQST can be understood from a few-body
perspective [69-81] via correlated tunneling [71-74]. At weak
interactions a single-frequency Rabi oscillation evolves grad-
ually into a two-mode beating with characteristic collapse and
revival sequences [58,62]. As interactions become stronger,
the discrepancy among frequencies increases [72,73], result-
ing in a high-frequency mode describing first-order tunneling
of single atoms and a low-frequency mode corresponding to
a simultaneous cotunneling of atoms, which in fact can be
measured in experiments [54-56,78]. Beyond a critical value
of interactions (correlated with the number of atoms), the low-
frequency mode becomes dominant, realizing MQST, which
is eventually destroyed for sufficiently long propagation times
[62,64,72-74,82].

Even though the two-mode model displays good agreement
with experimental data on BJJ dynamics at short-time scales
[21,26], there is a number of studies reporting discrepancies
at longer times, especially in one-dimensional BJJs featuring
enhanced correlations among particles. For instance, solu-
tions obtained with the multiconfiguration time-dependent
Hartree method for bosons (MCTDH [83,84] respectively
MCTDHB [85]), a variational approach for solving the time-
dependent Schrodinger equation, report enhanced interband
effects [73,76], universal long-time fragmentation dynam-
ics [77], conditional tunneling of fragmented pairs [72]
and MQST being overall reduced by high-order correlations
[74].

An interesting extension of the tunneling problem involves
mixtures of distinct species, such as binary Bose [86-96] or
Fermi mixtures [97-103] realized by different atoms, iso-
topes, or hyperfine states of the same kind of atoms. In
optical double-well traps we can even have spinor condensates
[87,104-109], where spatial tunneling (external Josephson
junction) is augmented by spin tunneling (internal Joseph-
son junction) [104]. The underlying correlations in spin and
motional degrees of freedom realize an atomic analog of
macroscopic quantum tunneling of magnetization (MQTM)
with potential applications in the framework of magnetic tun-
neling [110].

The interplay of intraspecies and interspecies interactions
greatly impacts the tunneling period of the individual com-
ponents and produces novel dynamical regimes, such as a
symmetry-restoring dynamics where the two species avoid
each other by swapping places between the two wells [111],
a symmetry-broken MQST where the two species localize in
separate wells or coexist in the same well [91], and where one
component realizes an effective nonrigid material barrier, see
Refs. [93,94,112] for the definition and use of this concept,
which can interact with tunneling atoms in contrast to a rigid
barrier realized by an external trap.

In the context of binary mixtures, a special case of an
impurity immersed into a medium warrants a particular at-
tention. A single atom [113,114] or ion [115-117] placed
in between the two wells of a tunneling medium realizes a
controlled BJJ. The internal state of the impurity serves as an
additional tunneling channel and can act as a switch between
coherent transport and MQST. In a similar spirit, the tunneling
of an impurity can be controlled by a background medium

[118,119] allowing to change the tunneling period and even
to pin it inside the barrier.

In this work we combine several of the above physical
insights to study the transport and tunneling of an impurity
in a symmetric double well when it becomes immersed into a
background of two different bosonic species. Relevant ques-
tions to be addressed are the possibility to control the state
of the impurity via these embeddings, the realization of an
efficient and at the same time reliable transfer of the impurity
between the two wells, as well as the quest for a localization
and long-time storage of the impurity. These questions are
not straightforward to answer, considering that the buildup
of interaction-induced correlations is difficult to predict and
even more challenging to control often leading to unexpected
outcomes. Moreover, in order to control the impurity we also
need to ensure some sort of control over the two majority
components. Our idea is to initialize the two majority com-
ponents in opposite wells in the MQST regime. In particular,
by manipulating the sign and strength of majority-impurity
interactions at designated times we can make each majority
species to act either as an attractor or as a repeller for the
impurity, assuming of course that the majority species stay
self-localized for the complete time during the dynamics.

The dynamics is simulated numerically by the multilayer
multiconfiguration time-dependent Hartree method for atomic
mixtures (ML-X) [120-122], which takes into account all
interaction-induced correlations. We work out a successful
protocol and analyze the resulting dynamics of, among others,
the one-body densities to visualize the motion of particles and
quantify the performance of our protocol. Furthermore, we
investigate the buildup and impact of entanglement for any
pair of species, and employ an effective potential description
for the impurity, which is reminiscent of tunneling in an
asymmetric double well [47,73,89,123] where the asymmetry
changes over time.

This work is structured as follows. In Sec. II we introduce
our Hamiltonian. In particular, we characterize the initial state
and motivate a time-dependent control sequence of majority-
impurity interactions meant to realize a controlled transport.
In Sec. III we provide essential details on the numerical
approach and formulate explicitly our variational ansatz for
the many-body state. The obtained results are described, dis-
cussed, and analyzed in Sec. I'V. Finally, in Sec. V we provide
our conclusions and a corresponding outlook.

II. SETUP, HAMILTONIAN, AND
PROPAGATION PROTOCOL

We study a three-component particle-imbalanced mixture.
We assume equal masses m, = m with o € {A, B, C} denot-
ing the component label. The components A and B have ten
bosons each, Ny = Np = 10, and are referred to as majority
species, while the component C is composed of a single
particle, Nc = 1, called the impurity. Each species is sub-
ject to a one-dimensional double-well confinement realized
as a cigar-shaped harmonic oscillator potential (w; > w))
superimposed with a Gaussian barrier along the longitudinal
direction (x axis). By introducing dimensionless units £ =

I for the length and #; = L

he) for the energy, x| = moy I
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FIG. 1. (a) llustration of the initial (t = 0) setup for the subse-
quent dynamics. The colored areas indicate the one-body densities of
the different species. The majority species A (red) and B (blue) are
displayed broader and with a larger maximum as compared to the
impurity C (gray), indicative of the corresponding particle-number
ratios. The species A and C start in the left well (x < 0), whereas the
species B is positioned in the right well (x > 0). The interactions
among identical bosons are weakly repulsive, whereas the inter-
species interactions are switched off. (b) Spectrum of a single particle
(impurity C) in a symmetric double-well potential, see Eq. (2).

for the time with 7 being the Planck constant, the external

2

potential reads Vgy(x) = %xz + ﬁe‘fﬁ, where the width
w = 0.5 and the height & = 8 of the barrier are fixed for
the remainder of this work. The corresponding single-particle
energy spectrum is depicted in Fig. 1(b). Finally, we assume
the zero-temperature limit. Thus, a particle of component o
interacts with a particle of component ¢’ via a s-wave contact-
type potential of strength g,,/, which is tunable by Feshbach
[124] or confinement-induced resonances [125-127].

Explicitly, the single-species Hamiltonian #, takes the
following form:

He = H +W,, (1)

oo 1@ ,
HO =) —EWJrde(xi) ; @)

i=1
Wo = 800 Y 8(x) —x7), 3)
i<j

with x7 the spatial coordinate of the ith particle of component
o and g,, the intraspecies interaction strength among identi-
cal particles. The triple-mixture Hamiltonian reads:

N, Nj
M= Y Ho+3 3 gD D807 —x)). @
o J

o#G i

with g,5(¢) the time-dependent interaction strength among
distinct particles (o # &).

In the following, we aim to switch between tunneling and
single-well localized regimes for the impurity. To this end, we
first initialize our system in the ground state of a Hamiltonian
H.ax (see Sec. IIA). It describes a disentangled (g,; = 0)
mixture, which is augmented by a species-dependent tilt po-
tential. In particular, we prepare the two majority species
at different wells in a self-trapped regime and trigger tun-
neling oscillations of the impurity between the two wells,
see Fig. 1(a). Subsequently, in Sec. [I B we exploit the two
spatially separated majority-species embeddings and employ
a simple time-dependent control sequence of the majority-
impurity couplings, i.e., gac(¢) and gpc(?), to either trap the
impurity inside one particular well or release it to tunnel again.
The dynamics is then governed by H, in Eq. (4).

A. Relaxation

The initial setup is illustrated in Fig. 1(a). The two ma-
jority species are prepared spatially separated on opposite
sides of the double-well barrier in a self-trapped regime. The
impurity can be localized in any of the two wells. Here, we
choose the left well. Explicitly, we set g,, = 0.2 and over-
lay a species-dependent linear tilt V, (x) = —d, - x with dy =
—dp = dc = 0.5 to energetically favor a particular side of the
double well, i.e., to account for the loading process. Thus,
species A and C experience a force to the left (x < 0) and
species B to the right (x > 0). The two majority components
will act as site-dependent species embeddings for the impurity
during propagation, but for now the interspecies interaction
parameters are switched off, i.e., g,5 = 0. The corresponding
Hamiltonian reads:

How =Y Ho + Vo (x). 5)

Our initial many-body state is the ground state of Eq. (5). It is
obtained using ML-X by time propagating the noninteracting
ground state of Y H + V, (x) in imaginary time.

Note that the tilt |d,| required to realize a self-trapped
regime for a single-component condensate depends in a non-
trivial way on the number of particles and the strength of
intracomponent interactions. For absent intercomponent in-
teractions, we have verified long-term localization of the two
majority species in the initialized wells, which is a dynamical
property we want also to maintain at finite majority-impurity
interactions. That this must be the case is by far not obvious.
What is rather more likely is that the self-trapping becomes
destabilized or even destroyed by the impurity.

Alternatively to the species-dependent tilt potential V, (x)
for the initial state preparation one can set g4 to be repulsive
such as to realize a phase-separated state between the majority
species A and B and then impose a species-independent tilt. A
sufficiently repulsive gap can ensure that the species A and
B stay localized at opposite wells, whereas the impurity C
relocates to a well favored by the chosen tilt.

B. Propagation

Given the initial state of a decoupled mixture (g,s = 0)
from Sec. II A at + =0, we instantaneously switch off the
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FIG. 2. (a) Interaction protocol transfer-pin-store-unpin charac-
terized by a fixed transfer time f, = t,,, — 1, which is determined by
the tunneling time #, /¢, = 90 according to the splitting of the lowest
doublet in Fig. 1(b), flexible storage time 7, and short (un)pinning
times At /ty = 1. Att = 0, the impurity C starts in the left well, occu-
pied by species A. First, at 0 < t < t,, it tunnels (yellow shaded area)
to the right well, occupied by species B. Then, at 0 < ¢t —#, < At, it
is quickly pinned inside the right well by a linear ramp (narrow white
shaded area) of majority-impurity interactions with gsc — g+ be-
coming repulsive and ggc — g_ attractive. Note that in the figure the
linear ramp resembles a quench due to very short times. Once pinned,
at 0 <t —t, — Ar <t,, it is stored (green shaded area) inside the
right well, here #,/t; = 310. Finally, at 0 <t — f,, — At —t, < At it
is unpinned by a linear ramp of interactions back to zero. (b) Inter-
action scheme back-and-forth-transfer with variable storage times #;,
and f,,. Att = 0, the impurity starts in the left well. First, we perform
transfer-pin-store-unpin to the right, similar to Fig. 2(a) except for a
different storage time #,, /t; = 110. Afterwards, we perform transfer-
pin-store-unpin to the left with a storage time #,, /ty = 110. Note
that for the back transfer the interactions have been inverted with
gac — g- becoming attractive and ggc — g, repulsive.

tilt to recreate the symmetric double well, i.e., d, = 0. The
dynamics is now governed by H, from Eq. (4). The ma-
jority components become self-trapped owing to repulsive
intraspecies interactions, whereas the impurity undergoes tun-
neling. When the strength of majority-impurity interactions is
at zero, the tunneling period t,,, = 7 /AE for the impurity is
determined by the energy gap AE between the two lowest
eigenstates of Eq. (2) with o = C, which for the selected
double well in Fig. 1(b) equals #y, = 90 in harmonic units.
Now, we keep gap(t) = 0 and control only the majority-
impurity interactions gac (), gpc(t) such as to transfer the
impurity to the opposite side of the double well and freeze
it there. To this end, we devise a simple time-dependent inter-
action scheme depicted in Fig. 2(a). It is a four-step procedure,

which we call the transfer-pin-store-unpin protocol, which is
characterized by the following durations: the fixed transfer
time #; = fyy, — 1, short (un)pin time Af = 1, and flexible
storage time #;.

In the first step, the transfer, the majority-impurity inter-
action parameters are kept at zero, which lasts for #, (yellow
shaded area). During this time the impurity is allowed to freely
tunnel. Once the tunneling to the opposite well is almost
accomplished, the impurity features a large overlap with the
component B. In the second step, the pin, we apply a linear
ramp within a very short time window Ar with gac — g4 be-
coming repulsive and ggc — g_ attractive. The final values of
interactions are g = 0.2 and g_ = —2. Note that in Fig. 2(a),
this step resembles a quench (very narrow white shaded re-
gion). As a result, the impurity is captured by the component
B and is prevented from tunneling back. In the third step, the
storage, we keep interactions constant for a flexible duration
t; (green shaded area). Finally, in the last step, the unpin, we
very quickly ramp down the majority-impurity interactions
linearly back to zero, within a very short time window At
(very narrow white shaded area). From there, the impurity
resumes its interrupted tunneling.

To transfer the impurity forth and back, we employ the
protocol depicted in Fig. 2(b). Essentially, it applies transfer-
pin-store-unpin from Fig. 2(a) two times. First, we transfer
the impurity to the right well and hold it there for ¢, = 110
with species A being repulsive and B attractive. Second, we
transfer the impurity back to the original well and hold it there
for ¢, = 110. As opposed to the first sequence, the species
A is now attractive and B repulsive. Note that in the second
sequence we use the same transfer period #,, even though the
state of the impurity is different from the one at r = 0.

Let us note that, in principle, many other protocols could be
imagined and applied. Indeed, we have explored several other
strategies, which, however, turned out to be much less suc-
cessful. Nevertheless, we want to give a brief sketch of some
alternative protocols and why they do not work. First, we
investigated much slower linear ramps by starting to change
the majority-impurity interactions right at the start of transfer
periods. As it turns out, already for a forward transfer this
results in a fraction of the impurity density to be left behind,
i.e., a suboptimal transfer, whereas the majority component,
interacting attractively with the impurity, sustains a sizable
decay of self-trapping, thereby making it an unreliable con-
tainer for the impurity during storage times. Second, we tried
to quench the majority-impurity interactions at times immedi-
ately before and after the storage period, i.e., infinitely steep
ramps. While the forward transfer was very promising, the
subsequent back transfer was less efficient as compared to
the protocol from Fig. 2(b) in every aspect and, on top of
that, extremely sensitive to the particular time of the impurity
release.

III. METHOD AND COMPUTATIONAL APPROACH

To obtain the initial state and to simulate the subsequent
dynamics we need to solve the many-body Schrodinger equa-
tions for imaginary time 9; |W(¢)) = Hyx |W(¢)) and for real
time i9; |\W(¢)) = H; |W(t)), respectively. One method is par-
ticularly well tailored to this problem, especially in the context
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of multicomponent systems of indistinguishable particles, the
multilayer multiconfiguration time-dependent Hartree method
for atomic mixtures [120—-122], usually abbreviated as ML-
MCDTHX but here, for short, we call it ML-X.

This ab initio approach expands the many-body wave func-
tion in a finite orthonormal basis whose vectors are time
dependent and have a product form, properly symmetrized
to account for the corresponding exchange symmetry of the
identical particles. Both the basis and expansion coefficients
are variationally optimized to span the relevant part of the
full Hilbert space at each time step of the state evolution.
This allows us to reduce the total number of configurations
as compared to a time-independent basis, which provides a
great boost in convergence and makes larger system sizes
numerically accessible. The multiconfiguration ansatz takes
interaction-induced interparticle correlations into account,
whereas the multilayer structure introduces a hierarchy of
Hilbert-space truncations by clustering together strongly cor-
related degrees of freedom (see below).

Our ansatz for a triple mixture has three layers of ex-
pansion. First, we formally group the spatial degrees of
freedom of indistinguishable particles |_J;x{ into three col-
lective coordinates ¢°. Each ¢ is then provided with a set
of S, time-dependent orthonormal species wave functions
W7 (q%,t). In the first step, we expand our wave function
|W(t)) according to the following product form:

Sa Sp Sc
DY A [Wro) @ [WEon) © [wE o),

i=1 j=1 k=1
(6)
where A;j(t) € C are time-dependent expansion coefficients.
This partitioning turns out to be particularly useful when cor-
relations among species are considerably weaker compared to
correlations among identical particles.

Next, since a species wave function characterizes identical
bosons, each of them is expanded in terms of symmetrized
and normalized product states |7i°(¢)) [so-called permanents
encoding that n? particles occupy a time-dependent single-
particle orbital ¢f (x, 1)]:

(1)) =

(W) = D Coar I (1)), (7

1i%|Ny

where C;j-(t) € C are time-dependent expansion coeffi-
cients, 7% |N, restricts the Fock space to configurations with
a fixed number of particles ) ;ny = N,, further truncated
to s, single-particle orbitals, which can be occupied. The
Flgcf splace dimension is thus given by a binomial coefficient

Fmally, applying any of the, in case of analyticity, equiv-
alent time-dependent variational principles [128] leads to a
set of coupled time-differential equations for A;x(¢), Ci s (1),
and ¢? (x, t). The single-particle functions are represented in
a time-independent basis of s, spatially localized functions
Xa(xp) = 84,5 (grid DVR) [129]:

|07 () = Zd ()] X, ®)

where d7,(t) € C are time-dependent expansion coefficients.
Note that our grid does not depend on the species label o.

The parameter s, defines the number of grid points to
resolve spatial variations of time-evolving single-particle
functions. To fulfill this requirement, we choose an equally
spaced grid with s, = 300 spanning an interval [Xmin, Xmax] =
[—7,7]. The parameter S, truncates correlations between
distinct particles, the so-called interspecies correlations or
entanglement. For selected physical parameters we find Sy =
Sg=Sc —1=23 to be suitable to faithfully capture the
dynamical buildup of entanglement. The parameter s, trun-
cates correlations among identical particles, the so-called
intraspecies correlations or fragmentation. We find s, = 4 to
be sufficient to account for majority depletion, which is pri-
marily caused by majority-component interactions of strength
goo- Note that S, < (N H"_l) Simulations performed with
the above choice of numerical parameters Sy, 55 and s, will be
referred to as ML-X simulations. Additionally, let us mention
two kinds of approximate solutions. Setting S, = 1 neglects
entanglement among species and is called a species-mean-
field (SMF) ansatz. Setting s, = 1, implying also that S, = 1,
neglects all types of correlations and is known as a mean-field
ansatz or coupled Gross-Pitaevskii equations (cGPE).

IV. RESULTS, ANALYSIS AND DISCUSSION

A. Single transfer

First, we apply the interaction protocol from Fig. 2(a).
The goal of this scheme is to realize a smooth transfer of an
initially localized impurity to the opposite well and, subse-
quently, to store it inside that well for a specified time period
t; while maintaining the shape of the underlying density distri-
bution to resemble a Gaussian of a similar width as the initial
wave packet. The majority components are required to remain
self-trapped and well localized during the entire protocol. It
goes without saying that such a transfer where the impurity
is embedded into separate background majority species on the
left and on the right well is not only a physically very different
situation from the transfer of an isolated single atom but is also
much more difficult to achieve.

In Figs. 3(al)-3(a3) we show the time evolution of
one-body densities pf (x, t) for each species. In Figs. 3(b1)—
3(b3) we present the corresponding integrated quantities:
1) pi(t) = fi)oo dx p{(x,t) =1 — p%(t), which indicates the
probability for a particle of species o to be located on the left
side with respect to (w.r.t.) the double-well barrier, and (ii)
To(t) = v [dx x*07 (x,1) — [ [ dx xp{ (x, 1)]?, which is the
standard deviation of the corresponding density distribution.

The majority component A, see Figs. 3(al) and 3(bl),
initialized in the left well, the same as the impurity, is barely
affected by the protocol. During the transfer period #;, when
the majority-impurity interactions are at zero, the observed
dynamics is a result of the initialization procedure, namely
quenching the tilt of the external potential to zero triggers
low-amplitude high-frequency dipolelike oscillations in the
initial density distribution. Note that this dynamics does not
destroy the self-trapping regime of the majority component
for long times. By the time the majority-impurity interactions
are switched on, the impurity has tunneled from the left to the
right well and the component A, interacting now repulsively
with the impurity, has no sizable overlap with it during the
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FIG. 3. Time-evolution of several observables after quenching the tilt of the external potential to zero and, subsequently, following the
majority-impurity interaction scheme as depicted in Fig. 2(a). (al)—(a3) The one-particle density distribution p{ (x, t) of species o: A(B)
denotes a self-trapped majority component while C stands for the impurity. The gray solid line at x = 0 indicates the position of the double-well
barrier and the gray dashed lines at x/x; &~ £1.27 the position of the double-well minima. (b1)—(b3) The integrated probability p] () or 1-p] (¢)
(gray solid line) to find a particle of component o on the left or right side of the double-well potential, respectively, and the standard deviation

of the density distribution I'? (¢) (green dotted line).

storage time ¢, to be noticeably affected. Thus, the species A
remains self-trapped and localized in the left well the whole
time as desired. In particular, it acts as a material barrier
for the impurity making it energetically unfavorable for the
impurity to tunnel back to its initial left well.

The majority component B, see Figs. 3(a2) and 3(b2),
initialized in the right well exhibits a mirror dynamics com-
pared to component A during the transfer time f,. During
the storage period #,, when the interactions between the com-
ponent B and the impurity become attractive and there is
a large overlap between them, the component B becomes
slightly compressed while density fluctuations get reduced.
Importantly, the species B also remains self-trapped and well
localized. On top of that, it acts as a container for the impurity
preventing it from dispersing within the storage well.

The impurity C, see Figs. 3(a3) and 3(b3), first undergoes
a free tunneling process during the transfer time #,: the den-
sity distribution delocalizes and finally localizes again at the
opposite well. Then, the impurity becomes quickly pinned
accompanied by an additional compression of the density.
During the storage time ¢, it remains highly localized and
features only minor fluctuations of the mean position and
width reminiscent of sloshing oscillations.

B. Back-and-forth transfer

Next, we analyze the interaction protocol depicted in
Fig. 2(b). The goal of this scheme is to demonstrate the re-
verse process, i.e., that the impurity can be just as smoothly
transported back and pinned at the left well, by applying
a mirror protocol starting at t = i + 2At 4 ¢;,. This is by

far not obvious, since the many-body wave function has be-
come species entangled (see later) as compared to the initial
species-disentangled state at zero interspecies interactions.
Importantly, we find (see Sec. IV D) that the storage perfor-
mance of the second sequence (at the left well) is not sizably
affected by the storage time #;, of the first sequence (at the
right well), which is yet another benefit of the protocol from
Fig. 2(b) in addition to its simplicity.

The corresponding observables are shown in Fig. 4. The
majority component A, see Figs. 4(al) and 4(bl), is visibly
affected by the interaction protocol only when it becomes
attractive to the impurity, namely during the second transfer-
and-storage sequence. At this time interval (r > 291), it
sustains very minor density losses to the opposite well, which
can seen by an overall decrease of pf (gray solid line), but
remains otherwise well localized as indicated by only minor
fluctuations in T (green dotted line). The majority compo-
nent B, see Figs. 4(a2) and 4(b2), is also visibly affected by the
interaction protocol only when it is attractive to the impurity,
namely during the first transfer-and-storage sequence. After
the interactions have been ramped down, the density sustains
slight losses to the opposite well, but otherwise restores (to a
large extent) its initial shape from # = 0. Overall, both major-
ity components remain self-trapped and localized as intended.
The impurity C, see Figs. 4(a3) and 4(b3), features slightly
higher density losses to the opposite well during the second
storage time and is on average less compressed. Nevertheless,
the second transfer-and-storage sequence is just as smooth and
stable. Considering that a back-and-forth transfer includes a
single transfer as its first sequence, we concentrate on the
former from now on.
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FIG. 4. Time-evolution of several observables after quenching the tilt of the external potential to zero and, subsequently, following the
majority-impurity interaction scheme as depicted in Fig. 2(b). (al)—(a3) The one-particle density distribution p{ (x, t) of species o: A(B)
denotes a self-trapped majority component while C stands for the impurity. The gray solid line at x = 0 indicates the position of the double-well
barrier and the gray dashed lines at x/x; ~ £1.27 the position of the double-well minima. (b1)—(b3) the integrated probability p7 (¢) or 1-pJ (t)
(gray solid line) to find a particle of component o on the left or right side of the double-well potential, respectively, and the standard deviation

of the density distribution I'? (¢) (green dotted line).

C. Entanglement measures and analysis

We proceed by analyzing the buildup of entanglement for
the back-and-forth transfer based on the protocol provided
in Fig. 2(b). To this end, we employ two measures: the von
Neumann entropy Syn and the logarithmic negativity £ .

The von Neumann entropy Syn characterizes entanglement
of a bipartite system. Our system, however, is tripartite. To
render it bipartite, we partition it into a single-component and
a double-component subsystems. This gives us three measures
defined as follows:

Sw(pe) ==Y 27 log (A7), ©)

J
po =Trsolol = Y0 [07)(03]. (10
J

where p, is the reduced density matrix of a component o
obtained from a pure many-body state p by tracing out all par-
ticles from other components ¢’ # o. Here, it is represented
in terms of natural orbitals |d>3f) (eigenvectors) and natu-
ral populations A7 (eigenvalues) satisfying > ;A7 =1 and
A1 > --- > Ag, . In the absence of entanglement A; = 1 and
Sy~ = 0 vanishes. For a maximally entangled state all natural
populations are the same, i.e., A; = 1/S, Vj (see Sec. III),
which gives Syxy = log S,.

The von Neumann entropy is depicted in Fig. 5(a). Keep in
mind that it tells us whether a single component is entangled
with a pair of other two components. In particular, it lacks
the ability to resolve entanglement between any specific two
components of a tripartite system. During the first transfer

044 (@) i
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FIG. 5. Time-evolution of entanglement measures after quench-
ing the tilt of the external potential to zero and, subsequently,
following the majority-impurity interaction scheme as depicted in
Fig. 2(b). (a) The von Neumann entropy Syn(p,), see Eq. (9), of
a reduced single-species density p,. (b) The logarithmic negativity
L (ps5), see Eq. (12), for a two-component subsystem described
by a mixed state p,; With o # &.
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period, which is free of intercomponent interactions, there is
no entanglement as expected. After the ramp up, at r = 90,
the components B and C have (individually) accumulated a
sizable and comparable amount of entanglement, whereas the
component A is not (notably) entangled. This is in accordance
with our expectations: during the ramp up B and C feature a
large overlap with each other and almost no overlap with A.
Thus, it might be reasonable to assume a product state be-
tween subsystems A and B-C. During the subsequent storage
time, when interactions are kept fixed, we observe fluctuations
of the entropy in components B and C. After the ramp down,
at t = 200, the entropy of B and C has dropped considerably
and, for the next transfer period at zero majority-impurity
interactions, becomes frozen. The component A is still not
noticeably affected for the same reasons as before.

At the start of the second ramp up at ¢ = 290, the relations
become alternated: C has returned to the left well occupied
by A, such that now A and C become (individually) strongly
entangled. During the subsequent storage time, the corre-
sponding entropies undergo larger-amplitude fluctuations as
opposed to B and C in the first storage period. In addition, they
do not exactly match each other. Regarding the component
B, it preserves the value of entropy accumulated after the
first storage-and-transfer sequence and features only minor
fluctuations during the second storage period.

Thus, the evolution of the von Neumann entropy follows a
particular pattern. It remains frozen at noninteracting transfer
times. For overlapping components it builds up when inter-
actions are ramped up, and abruptly decays but stays finite
when interactions are ramped down. Moreover, it features
large-amplitude fluctuations during storage times. To resolve
to which extent one single component is entangled with an-
other single component, we require a different measure.

The logarithmic negativity £ quantifies pairwise entan-
glement between two distinct components o and &, which are
described by a mixed state p,. The latter is obtained from a
pure many-body state p by tracing out all particles from the
third component o’ ¢ {0, 5}:

pos = Trogaalpl = D by | W7, WT) (W7, w7
i,j,k,l

. D

here represented in terms of species orbitals | W/ ) of the ML-X
expansion from Egs. (6) and (7). The logarithmic negativity
L nr depends on the partial transpose ,ofj; in the following way:

L (pos) =log, (o35 ,) =logo(1+2N),  (12)

Py = D b |97 W) (9. 97| = (035)". (13)
iJ

with |ply = Tr{\/pTp} the trace norm and N' =), || the
negativity, which is the sum of negative eigenvalues p; < 0 of
,05%. When there is no entanglement between components o
and &, pl7 is positive semidefinite and £ = 0 vanishes. Oth-
erwise, it is positive with larger values indicating a stronger
entanglement.

The logarithmic negativity is depicted in Fig. 5(b). For the
first transfer-and-storage sequence (t < 200), the high values
of entropy for the components B and C can be now indeed
attributed to them being pairwise entangled with each other.

The entanglement between A and C (green solid line) becomes
also more apparent, though it is still an order of magnitude
less than between B and C (red dotted line). There is no
entanglement between A and B (blue dashed line) as expected.

For the second transfer-and-storage sequence (¢ > 200)
the distribution of entanglement is less obvious. Remarkably,
during the ramp up we observe a gradual buildup of entangle-
ment between A and B. As they are noninteracting and barely
overlap, it must be mediated by the tunneling impurity. At the
same time, the entanglement between B and C decreases by
a similar amount, which is in accordance with a (roughly)
constant entropy of B mentioned before. The logarithmic neg-
ativity between A and C behaves similarly to the evolution of
individual entropies of A or C in Fig. 5(a) at# > 291. Thus, the
logarithmic negativity provides complementary insights into
the buildup of entanglement in a tripartite system. To some
extent, the entropy of a component o is proportional to a sum
of logarithmic negativities involving that component.

Given that the interspecies entanglement is quite sizable
during the dynamics, one might ask what impact it has on the
ongoing dynamics, in particular the impurity motion. To this
end, in Fig. 6 we show the previously analyzed observables for
the back-and-forth transfer assuming now a SMF expansion
(S = 1) for the many-body wave function, as introduced in
Sec. III. We remind that this ansatz assumes a single prod-
uct state in Eq. (6), thus ignoring entirely any interspecies
correlations. Apparently, the majority components are not vis-
ibly affected when compared to Fig. 4, whereas the impurity
seems to be destabilized by the absence of interspecies corre-
lations, featuring larger fluctuations on the density width, see
Fig. 6(b3). Thus, the buildup of entanglement contributes in a
nontrivial way to a robust transfer and storage of the impurity
particle.

Furthermore, a mean-field ansatz (s, = 1) displays a sim-
ilar dynamics to Fig. 6 (see Appendix). Initially, the majority
components are almost condensed. In the course of the dy-
namics, they experience only a slight fragmentation (~3%),
which explains the strong similarity between uncorrelated
and correlated results. In this spirit, we have done mean-
field simulations for Ny = Np = 20 with g4 = gg = 0.1 and
N4y = Np = 50 with g4 = gp = 0.04 (see Appendix). Again,
we observed a very similar dynamics to Fig. 6. Among the
differences, we noticed that during storage the width of the
impurity density and its fluctuations increase with an increas-
ing number of particles, which has a negative impact on the
storage performance. However, it might be that correlations
will stabilize the impurity, though we cannot verify it here
numerically given the increased computational complexity.

D. Effective potential analysis

While applying a variational approach, such as ML-X, to
solve the time-dependent Schrodinger equation turns out to
be efficient in terms of sparsity of the wave function represen-
tation, it often comes at the cost of reduced interpretability.
Thus, the variationally optimal single-particle orbitals can be
rarely assigned as eigenstates of a single particle in some ex-
ternal potential. However, having such a picture can be often
helpful to understand some dynamical processes. One such
example is a mean-field picture where interacting particles
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FIG. 6. Time evolution of several observables after quenching the tilt of the external potential to zero and, subsequently, following the

majority-impurity interaction scheme as depicted in Fig. 2(b). The physical and numerical parameters are the same as Fig. 4 except here we
neglect the entanglement in the ML-X ansatz (S, = 1) for the many-body wave function, see Sec. III. (al)—(a3) The one-particle density
distribution p{ (x, t) of species o: A(B) denotes a self-trapped majority component while C stands for the impurity. The gray solid line at x = 0
indicates the position of the double-well barrier and the gray dashed lines at x/x; &~ 41.27 the position of the double-well minima. (b1)—(b3)
The integrated probability pf (¢) or 1-p§(¢) (gray solid line) to find a particle of component o on the left or right side of the double-well
potential, respectively, and the standard deviation of the density distribution I'? (¢) (green dotted line).

experience the averaged spatial distribution of all other parti-
cles as an effective external potential and behave accordingly.
Here, we want to provide a similar viewpoint on the
dynamics of the impurity. To this end, we are going to decom-
pose the corresponding (one-body) density operator pc = p¢,
see Eq. (10), into projections p; > 0 on single-particle basis
states {|¢;)}, which gives us a distribution of occupation prob-
abilities over these states. As our projection basis we choose
eigenstates of a time-dependent effective Hamiltonian:

(M7 + Vi) |67 1)) = €] (1)] ¢ (), (14)

Viga@. 1) = Norgoor (t)pf (x.1), (15)
o'#0

P @) = (87 0)|pf )]6] @), (16)

where pf = Try, _i[p5] is obtained from p,, see Eq. (10),
by tracing out all o particles except one, €7 the eigenenergy
of |¢;’) and g, (t) evolving according to the back-and-forth
interaction protocol from Fig. 2(b). We note that o (¢) is ob-
tained from a correlated many-body state p(¢) = |W(z)) (¥(¢)|
as defined in Sec. Il with Sy = S =S- — 1 =3 and s, = 4.
The induced potential Vi7; in Eq. (15) is a sum over
(time-dependent) one-body densities of the two majority com-
ponents, each amplified by the number of particles and further
modulated by the time-dependent majority-impurity interac-
tion parameter. We already know from Sec. IV B that in the
course of the dynamics the majority components remain self-
trapped in the initially prepared well. Moreover, they take a
Gaussian-like shape localized at the minimum of the corre-
sponding well with only small-amplitude fluctuations around
that minimum. Thus, during storage times the repulsive com-

ponent represents a potential barrier for the impurity, thereby
decreasing the depth of the corresponding external well,
whereas the attractive component acts as a potential well,
i.e., it increases the depth of the corresponding external well
even further. As a result, we get an asymmetric double-well
potential, see Fig. 7. Even though this effective potential
picture for the impurity is formally related to a species-mean-
field (nonentangled) ansatz for a triple mixture, we emphasize

10

FIG. 7. Effective potential V.G(7) = Vuy + Vi (¢) for the im-
purity C during the back-and-forth interaction protocol from
Fig. 2(b) averaged over selected time intervals: transfer period f,
(gray solid line), first storage period #,, (blue dashed line), and second
storage period #,, (red dotted line). The potential is a superposition
of an external (static) double-well trap Vg, from Fig. 1(b) with a
(time-dependent) material barrier and well Vincd(t) from Eq. (15),
which is created by the interchangeably repulsive and attractive
majority components. The solid red and blue curves indicate the two
lowest-energy eigenstates of the corresponding potentials at desig-
nated eigenenergies.
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FIG. 8. Projectors on instantaneous single-particle eigenstates p‘;
(a) and instantaneous eigenenergies ejc (b) of the time-dependent
effective Hamiltonian from Eq. (14) for the impurity C, which in-
cludes time-dependent induced potentials [see Eq. (15)] created by
the majority components A and B. In (b), each eigenenergy el.c is
color coded with its occupation probability pJC. extracted from (a).

that our many-body state p and the corresponding derived
quantities pf include interspecies correlations.
In Fig. 8 we show the evolution of probabilities pf () from

Eq. (16) for the impurity to occupy the eigenstates {|¢1C (1))} of
the Hamiltonian Eq. (14) and the corresponding instantaneous
eigenenergies €7 (¢). Initially, the state of the impurity is an
almost equal superposition of the two lowest (quasidegener-
ate) eigenstates of the symmetric double-well potential, see
also Fig. 1(b). Thus, it tunnels. After the first ramp up of
interactions at ¢ = 90, the right well becomes energetically
more favorable, and we get an asymmetric double well, see
Fig. 7 (blue dashed curve). The impurity still occupies the
two lowest eigenstates though the weights of occupations are
now largely shifted in favor of the ground state, which is now
a Gaussian localized at the right well. A slight contribution
of the first excited state explains the high-frequency low-
amplitude dipole motion, i.e., the left-to-right sloshing, of the
impurity density inside the right well during the storage time.
The low-amplitude fluctuations of occupation probabilities
are due to interaction with the majority component B, which
undergoes a dipole motion inside the right well excited at ¢ =
0 by the instantaneous removal of the external tilt potential.
Once interactions have been ramped down at t = 201, we
recover the symmetric double-well potential and (to a good
approximation) the same state composition (in terms of ampli-
tudes) as before the storage sequence. The impurity resumes
the tunneling motion with the same oscillation frequency. The
aforementioned sloshing motion of the impurity impacts the
phases of contributing double-well states and thus also the
time it takes to tunnel back. However, given that the amplitude
of sloshing is rather small, we do not encounter major differ-

ences on the transfer time #; upon changing the storage time
t;. In other words, we can release the impurity at any point
in time during the storage sequence. This has been verified
numerically for a random sample of storage times taken in the
interval ¢, € [150, 300].

Regarding the second transfer-and-storage sequence, we
observe the same patterns except for fluctuations during the
storage time becoming larger. This might be caused by the
minor decay of self-trapping in the majority components and
related density losses to the opposite well, see Fig. 4.

V. CONCLUSIONS AND OUTLOOK

We have investigated the possibilities for a controlled
impurity tunneling dynamics in a double-well containing a
mixture of three distinct species. Building upon insights from
the literature, we prepared two bosonic species of ten atoms
each in a self-trapped configuration on opposite sides of the
double-well barrier to act as a background for the embedded
impurity. By a suitable manipulation of majority-impurity in-
teractions we realized a smooth transport and demonstrated
a robust storage of the impurity. The study was conducted
employing the multilayer multiconfiguration time-dependent
Hartree method for bosonic mixtures.

The protocol consists of a sequence of quick ramps of
interaction parameters and does not require any fine tuning.
To initiate trapping, one majority component is made weakly
repulsive and the other strongly attractive, depending on the
storage well. To initiate transport, interactions are switched
off. The transfer time is determined by the double-well ge-
ometry and the ramp time needs to be much smaller than
the (lowest-band) tunneling time and the storage time is very
flexible (within simulated times). The protocol is similar in
spirit to the pinning procedure in quantum gas microscopy
where one freezes the position of particles by an instantaneous
ramp of the lattice depth.

The impurity undergoes a low-frequency large-amplitude
dipole oscillation between wells during transfer times and
high-frequency small-amplitude dipole motion inside a single
well during storage times. The majority components re-
main self-trapped and perform high-frequency low-amplitude
sloshing motion around the double-well minima. We have an-
alyzed the role of entanglement in terms of the von Neumann
entropy and the logarithmic negativity. Our initial state is not
entangled. We find that during ramps the impurity becomes
strongly correlated with the attractive majority component.
Subsequently, the accumulated entanglement undergoes low-
amplitude modulations during storage times. After a ramp
down, the entanglement becomes greatly reduced but re-
mains finite. Interestingly, during the back-and-forth transfer,
we evidenced a buildup of entanglement between the two
majority components, even though they do not interact and
barely overlap. Apparently, the impurity mediates correlations
between spatially separated majority components. Further-
more, we compared the correlated many-body dynamics to
a species-mean-field dynamics, which ignores all entangle-
ment effects. Even though we find a good overall agreement
between observables, there were also sizable discrepancies.
The entanglement has a stabilizing impact on the dynamics by
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TABLE 1. Probability p§ to find the impurity on the right side
of the symmetric double-well potential during the storage time #,
following the interaction scheme from Fig. 2(a) for multiple choices
of protocol parameters g, and g_.

TABLE II. Probability ¢ to find the impurity on the left side
of the symmetric double-well potential during the storage time #,,
following the interaction scheme from Fig. 2(b) for multiple choices
of protocol parameters g, and g_.

~C 8+ ~C 8+
Pr PL
0.1 0.2 0.5 0.7 0.1 0.2 0.5 0.7
—-1.5 0.995 0.997 0.998 0.998 —-1.5 0.993 0.994 0.993 0.992
g_ —-2.0 0.998 0.998 0.998 0.998 g_ —-2.0 0.990 0.992 0.990 0.992
-5.0 0.997 0.997 0.996 0.996 -5.0 0.987 0.986 0.982 0.983

reducing the amplitude of density fluctuations during transfer
and storage times.

Finally, we applied an effective potential picture to de-
scribe the impurity motion as an independent particle evolving
in a time-dependent potential, which alternates between sym-
metric and asymmetric double wells. This potential includes
a static double well and time-dependent mean fields produced
by the majority particles. The dynamics is well captured by
the two lowest eigenstates of this effective potential. Dur-
ing transfer times the two eigenstates contribute equally, and
during storage times the ground state dominates with minor
fluctuations caused by oscillations of the mean fields.

Even though the current protocol demonstrates already
some very good results, the underlying minor imperfections
might be amplified as the number of transfer-and-storage cy-
cles is increased. The partial decay of self-trapping in the
majority species might be compensated by introducing repul-
sive interactions among majority components or by changing
the strength of intraspecies interactions. In addition, the
entanglement between components was observed to gradu-
ally increase with every transfer-and-storage sequence, which
might become a limiting factor requiring a disentangling pro-
cedure. The latter can be realized by optimizing the ramp

times and/or the strength of majority-impurity interactions
individually for each transfer-and-storage cycle.

Considering that the impurity can be switched between two
configurations, left |L) and right |R), the setup might serve
as a basic building block of a quantum circuit. However, the
protocol needs to be modified to also include arbitrary super-
position states, i.e., ¢z |L) + cg [R). To this end, as opposed
to the current protocol, we would adapt the transfer times
accordingly and introduce purely attractive majority-impurity
couplings to confine each density fraction independently dur-
ing storage times. Finally, to build a quantum circuit, one
needs to arrange such qubits in a lattice geometry, e.g., by
using arrays of optical tweezers. Another interesting topic
deserving a thorough investigation is the gradual buildup of
entanglement between noninteracting majority components,
mediated through the impurity.
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APPENDIX A: IMPACT OF MAJORITY-
IMPURITY INTERACTION VALUES

Regarding the choice of protocol parameters gi for
the forward transfer, we have studied several combinations
of parameter values (g4, g-) and judged on their perfor-
mance by evaluating the time-averaged probability ﬁg =
% Ors dt pS(t —ty — At) for the impurity to be successfully
stored in the right well during the storage time. The results can

be seen in Table 1. All pairs of considered interaction values
perform quite well with only minor differences among them.
As we were not able to recognize any conclusive trends, we
have chosen g_ = —2 and g, = 0.2 among best performing
pairs.

In a similar way, to select parameters g, for the forward
and backward transfers, we evaluated the transfer perfor-
mance by calculating the time-averaged probability pf =
L Ot” dt p¢(t — 2ty — 3At — ty,) for the impurity to be suc-
cessfully pinned at the left well during the second storage
sequence. The results can be seen in Table II. As compared
to Table I the storage performance has slightly decreased over
all parameter pairs, especially at strong attractions g_ = —35.
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FIG. 11. Same as Fig. 6 except here we employ a mean-field ansatz. Ny = Ny = 50 and g4 = g = 0.04.
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Our former choice g = —2 and g, = 0.2 performs compar-
atively well.

APPENDIX B: IMPACT OF PARTICLE-NUMBER
IMBALANCE USING A MEAN-FIELD ANSATZ

Initially, the majority components are almost condensed.
In the course of the dynamics the degree of fragmentation
gradually increases, though the condensed fraction does never
drop below 97%. In this spirit, a mean-field ansatz might
provide a very good qualitative description of the ongoing
dynamics. Indeed, Fig. 9 bears a strong similarity to ML-X
simulations from Fig. 4. There are only slight differences as
compared to a species-mean-field ansatz from Fig. 6.

These observations motivate us to employ a mean-field
ansatz to explore the dependence of our protocol on the num-
ber of particles in majority components. In order to maintain
the self-trapping regime, we keep N, g, constant. In Fig. 10
we show the forth-and-back transfer for Ny = Ng = 20 and
g4 =g =0.1 and in Fig. 11 for Ny = Ny =50 and g4 =
gp = 0.04. Qualitatively, the dynamics is similar to Fig. 9.
Among differences, the width of the impurity density and
its fluctuations increase with increasing number of particles.
This decreases the storage performance. Nevertheless, the
interspecies correlations might stabilize the impurity, though
we cannot verify it with ML-X owing to the exponential
scaling of the Hilbert space dimension with the number of
particles.
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