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We discuss the quantum Hall response of SU(3) fermions in two-dimensional lattices, when artificial magnetic
flux and color-orbit coupling are present. We analyze the Hall conductance tensor in the charge-charge, color-
charge, charge-color, and color-color sectors. When charge and color are conserved, we directly relate the Hall
conductances to corresponding Chern numbers describing topological color insulators. We establish the bulk-
edge correspondence for Hall conductances in toroidal (without edges) and cylindrical (with edges) geometries.
When color is not conserved or when edge states are not robust to disorder or SU(3)-symmetric interactions, we
show that the color Hall conductances are not quantized, but the corresponding Chern numbers, which are a bulk
property, can still be used to label the topological insulating phases. Depending on the robustness of edge states
to disorder and interactions, we identify the topological phases to be strong, intermediate, or weak. We envision
applications to SU(N ) ultracold fermions such as 173Yb and 87Sr.
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I. INTRODUCTION

It is now well established that SU(N ) fermions with three
internal states (N = 3) or more can be loaded into optical lat-
tices. Examples of such experimental systems are 173Yb [1–9],
with N � 6, and 87Sr [10–13], with N � 10, which have
SU(N ) symmetric interactions. Some experiments with SU(2)
spin-1/2 neutral fermions in two-dimensional optical lattices
simulated Harper-Hofstadter Hamiltonians for fictitious mag-
netic fields [14,15], and others explored topological properties
such as Chern numbers [16,17] based on theoretical sugges-
tions [18–20]. These experiments were largely inspired by the
desire to simulate known effects found in condensed-matter
physics such as the quantization of the Hall conductance in
large magnetic fields [21–24], quantum Hall effect in the
absence of Landau levels [25], or the quantum spin-Hall effect
with spin-orbit coupling [26–28]. However, corresponding
experimental generalizations to study SU(3) fermions in the
presence of fictitious magnetic fields and color-orbit coupling
have not yet been implemented. Thus, very little is experi-
mentally known about the topological properties of neutral
SU(N � 3) fermions and their insulating phases.

In this paper, we discuss the quantum Hall response of
SU(3) fermions in two-dimensional optical lattices, when ar-
tificial magnetic, color-orbit, and color-flip fields are present.
This paper is the extension of our previous work [29,30],
where the concept of topological color insulators was in-
troduced, and contains several additional results discussed
below. The first additional result is a concrete experimental
proposal to measure the quantum Hall responses of SU(3)
fermions, including the color-color Hall conductance. The
second additional result is the establishment of the connection
between the quantum Hall conductances and the Chern matrix
when color projection is not conserved. We emphasize that
in [29,30], only the connection to the conserved case was
made. The third additional result is the derivation of Kubo

formulas for the quantum Hall conductances including the
case of nonconserved color projection, where additional con-
tributions containing color torques emerge. We point out that
in [29,30], there is no discussion about color torques. The
fourth additional result is that quantum Hall conductances
may no longer be quantized when color torques exist and,
thus, may not be directly related to Chern numbers, which can
still be used to classify topological phases. We note that in
[29,30], this situation was not discussed. The fifth additional
result is the derivation of the color continuity equation includ-
ing color-torque terms, and the establishment of the bulk-edge
correspondence in the presence of color torques. We mention
that this is not derived in [29,30]. The sixth additional result
is an analysis of the magnetization of edge states, a topic that
was not mentioned in [29,30]. The seventh additional result is
a detailed discussion of the robustness of edge states to weak,
local, static, and color-dependent or color-independent disor-
der which was not analyzed in [29] and was briefly mentioned
(one sentence) in [30]. The eighth additional result is a thor-
ough investigation of the effects of local SU(3) interactions
on edge states. For clarity, specific examples of topological
phases with a few edge states are presented. This was not
discussed in [29] and only briefly mentioned in [30]. The ninth
additional result is the discovery of intermediate topological
phases in addition to the typical weak and strong ones, found
in standard SU(2) spin-1/2 topological insulators. This find-
ing provides a refined classification of topological insulators
in SU(3) systems. Such result was not described in [29,30].

Although we focus on ultracold fermions with three in-
ternal states with assigned colors {R, G, B} or pseudospins
{↑, 0,↓}, the generalization to SU(N ) fermions is straight-
forward and can be applied to the full SU(6) symmetry of
173Yb or the full SU(10) symmetry of 87Sr. We concentrate
on the SU(3) case because it already shows highly nontrivial
generalizations with respect to the standard SU(2) spin-1/2
case of condensed-matter physics.
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The remainder of this paper is organized as follows.
In Sec. II, we discuss the experimental setup for a two-
dimensional optical lattice and the engineering of a Hamilto-
nian with artificial magnetic, color-orbit, and color-flip fields,
where the quantum Hall response of SU(3) fermions can be
investigated. In Sec. III, we give expressions for the Hall
conductances in terms of response functions associated with
charge and color currents and highlight the emergence of
color-torque terms, when color is not conserved. In Sec. IV,
we describe the Chern matrix and define three topological
invariants that characterize the insulating states of SU(3)
fermions: the charge-charge Chern number Cchch, the color-
charge Chern number Ccoch or charge-color Chern number
Cchco, and the color-color Chern number Ccoco. In Sec. V,
we relate the Hall conductances to their appropriate Chern
numbers when charge and color are conserved. We also show
that when color is not conserved, the color Hall conduc-
tances are not directly proportional to Chern numbers, and
thus not quantized. Nevertheless, the Chern numbers can still
be used to classify the topological phases, since they are
bulk properties of the ground state. In Sec. VI, we discuss
the bulk-edge correspondence for SU(3) fermions for the
Hall conductances using toroidal boundary conditions with
no edges versus cylindrical boundary conditions with two
edges. In Sec. VII, we investigate a few examples of edge
states, their wave functions, and magnetizations, which set the
stage for understanding the robustness of edge states against
disorder and SU(3)-symmetric interactions, which is analyzed
in Sec. VIII. In Sec. IX, we highlight the classification of
topological color insulators based on three Chern numbers,
and refine this classification into strong, intermediate, or weak
topological color insulators depending on the robustness of
edge states with respect to disorder or interactions. In Sec. X,
we present our conclusions and share one important outlook
regarding the bulk measurements of color Chern numbers,
when color Hall conductances are not quantized.

II. ENVISIONED EXPERIMENTAL SETUP

We envision an experimental setup for a two-dimensional
lattice in the xy plane with lattice spacing ax (ay), and finite
extent Lx (Ly) along the x (y) direction, as illustrated schemat-
ically in Fig. 1. We imagine an artificial magnetic field Hz

applied perpendicularly to the plane, that is, along the z di-
rection, producing an artificial vector potential Ay = eHzx/h̄c
represented by the gauge field θy = AyηyI , where I is the
3 × 3 identity matrix and ηy = ±ay are displacements along
the y direction. Such artificial lattice gauge field θy can be
realized experimentally via laser assisted tunneling [14,15]
and produces an artificial magnetic flux � = Hzaxay in the
lattice plaquette. For these types of systems, the Hall response
is directly associated to the charge-charge conductance, and
Chern numbers were extracted from measurements in SU(2)
spin-1/2 ultracold fermions [16,17]. However, we would like
to explore further a situation where color-orbit coupling is
introduced, in analogy with spin-orbit coupling when only
two internal states are involved, where either Raman processes
[31] or radio-frequency chips [32] are responsible for the ef-
fect. We illustrate the simplest case of color-orbit coupling kT

and color-flip fields hx, where the color-dependent momentum

FIG. 1. Schematic drawings of the experimental setup showing
the fictitious magnetic field Hz, charge and color electric fields, as
well as charge and color Hall currents. (a) The charge electric field
E ch

x along x, and the charge Hall current density J ch
y along y. (b) The

charge electric field E ch
x along x, and color Hall current density J co

y

along y. (c) The color electric field E co
x along x, and charge Hall

current density J ch
y along y. (d) The color electric field E co

x along
x, and color Hall current density J co

y along y.

transfer occurs only along the x direction and hx only flip
states R → G and G → B and vice versa. The artificial color-
orbit coupling kT is described by a color-dependent gauge
field θx = kT ηxJz, where Jz is the spin-1 matrix along z, and
ηx = ±ax is a displacement along x, while hx plays the role of
a Zeeman field along x.

For deep optical lattice potentials, this experimental setup
results in two-dimensional lattices with tight-binding Hamil-
tonian

Ĥ = −
∑
r,η�

t��
†(r)e−iθ��(r + η�) − hx

∑
r

�†(r)Jx�(r),

(1)

where t� are hopping energies along the � = {x, y} direc-
tion, while θ� are the gauge fields and hx is the color-flip
field defined above. The fermion creation operators are three-
component vectors �†(r) = [φ†

R(r), φ†
G(r), φ†

B(r)] with color
c = {R, G, B}, where r = (x, y) is the position in the lattice.
The nearest-neighbor position r + η� with respect to r is iden-
tified with the help of the vectors η� = η��̂, with ηx = ±ax and
ηy = ±ay defined earlier.

The central idea is to apply either an artificial charge
electric field E ch

x or an artificial color electric field E co
x

along x and detect charge currents densities J ch
y or color

current densities J co
y along y, in analogy with the more fa-

miliar SU(2) case when charge and spin 1/2 are involved
[33,34]. The artificial charge electric field E ch

x is obtained
from potential-energy operator Û ch

x = −E ch
x exI , and can be

viewed as an electrochemical tilt to the lattice along the x
direction, that is a spatially dependent chemical potential
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μ(x). The artificial color electric field E co
x along x is obtained

from the potential-energy operator Û co
x = −E co

x h̄xJ�, where
� represents a chosen quantization axis. In a more familiar
language Û co

x = −h�(x)J�, where h�(x) = E co
x h̄x is a spatially

dependent Zeeman field, leading to the Zeeman force F co
x =

−∂h�(x)/∂x = h̄E co
x . These are magnetic (color) forces that

act on the spin (color) states in a Stern-Gerlach configuration
for a spin-1 (color) system. Notice that the color and charge
fields defined do not have the same units; this is also reflected
in the Hall conductances and the charge- and color-current
responses. We will return to this point when discussing the
connection between Hall conductances and Chern numbers in
Sec. V and the comparison to SU(2) spin-1/2 systems.

For the experimental setup of Fig. 1, the current densities
are (

J ch
y

J co
y

)
=

(
σ chch

yx σ chco
yx

σ coch
yx σ coco

yx

)(
E ch

x

E co
x

)
(2)

where σλτ
yx are the generalized Hall conductances, with λ

and τ referring to {ch, co}. The directions of the charge and
color electric fields as well as of the charge and color current
responses are illustrated in Fig. 1. We note that there are
four types of responses, that is, the production of charge or
color currents in response to a charge electric field, and the
production of charge or color currents in response to a color
electric field. This is reflected in the four types of conduc-
tances; however, we only need to identify three of them due to
a generalized Onsager relation σ coch

yx = −σ chco
xy . In condensed-

matter systems, typical Hall setups attempt to measure charge
(ch) and spin (sp) currents in response to electric fields, such
that only σ chch

yx and σ
spch
yx are of interest [33,34]. However, in

the context of cold atoms not only the response to fictitious
charge electric fields but also the response to fictitious color
electric fields may be accessible, thus allowing us to probe all
four types of responses. In particular, it was noted recently that
the color-color response is connected to a new type of topolog-
ical invariant called the color-color Chern number [29,30]. To
put this connection on solid ground, we discuss next the quan-
tum Hall response for the Hamiltonian in Eq. (1) describing
SU(3) fermions in two-dimensional optical lattices.

III. HALL CONDUCTANCES

In this section, we discuss the Hall response for SU(3)
fermions using the Kubo formalism [35] and generalize a
method developed to define proper spin currents when spin
is not conserved in the context of SU(2) spin-1/2 systems
[33,34] found in condensed matter.

Within the Kubo formalism, the generic Hall conductance
is

σλτ
yx = lim

δ→0

h̄

LxLy

∑
{n}�={m}

χ ({n}, {m})Fλτ
yx ({n}, {m}), (3)

where ({n}, {m}) represent the sets of quantum numbers char-
acterizing the eigenstates |{n}〉 of a given Hamiltonian with
eigenvalues E{n}. The first term, containing the Fermi func-

tions f{n} = f (E{n}), is

χ ({n}, {m}) = f{n} − f{m}
(E{n} − E{m})2 + δ2

(4)

and the current-current vertex function is

Fλτ
yx ({n}, {m}) = Im〈{n}|Ĵλ

y |{m}〉〈{m}|Ĵτ
x |{n}〉. (5)

The operators in Eq. (5) are

Ĵch
x = ev̂xI (6)

for the charge current along x, where v̂x = dx̂/dt , and I is the
3 × 3 identity matrix, while

Ĵco
x = h̄v̂xJ� + h̄x̂

dJ�

dt
(7)

for the color current along x, where J� is the spin-1 matrix
along the � direction. Similar expressions apply along y. We
note that the right-hand side in Eq. (7) contains the color-
torque term dJ�/dt , which arises when color is not conserved.
For SU(2) spin-1/2 fermions, this is analogous to the spin-
torque term which must be present when spin is not conserved
[33,34].

To study the Hall conductances associated with the Hamil-
tonian in Eq. (1), we need its eigenspectrum for rational flux
ratios α = �/�0 = p/q, where p and q are relative prime
integers, and �0 is the quantum of flux. This eigenspectrum
was recently investigated [36] for α = 1/3. The filling factor
ν is defined to be the average number of particles per site,
therefore the maximum filling factor per site is 3, as there are
at most three color states per site. Upon compactification of
the xy plane into a torus, by imposing periodic boundary con-
ditions along the x and y directions, one obtains 3q color bands
within the magnetic Brillouin zone with momenta bounded by
−π/ax � kx � π/ax and −π/qay � ky � π/qay. The mag-
netic bands are then labeled by the band index n and momenta
k = (kx, ky), and are obtained from Ĥ in its first quantization
form [36]

Ĥ (k̂) = εG(k̂)I − hxJx − hz(k̂)Jz + bz(k̂)J2
z , (8)

where J� are spin-1 matrices, with � = {x, y, z}. The kinetic-
energy operator for color c is

εc(k̂) = −2tx cos
[(

k̂x − kTc

)
ax

] − 2ty cos[(k̂y − Ay)ay] (9)

where c = {R, G, B}, and kTR = +kT , kTG = 0, and kTB =
−kT . The color-flip field is hx, the momentum-dependent
Zeeman (color) field along the z axis is hz(k̂) = [εB(k̂) −
εR(k̂)]/2, and the momentum-dependent quadratic Zee-
man (color) field along the z axis is bz(k̂) = [εB(k̂) +
εR(k̂)]/2 − εG(k̂). The term bz(k̂)J2

z describes the coupling
of momentum and the color quadrupole tensor [37,38].
The presence of color fields hx, hz(k̂), and bz(k̂) breaks
SU(3) symmetry which is restored only when hx = 0
for any value of kT [30]. The terms representing color-
orbit coupling hz(k̂) = 2tx sin(kT ax ) sin(k̂xax ) and bz(k̂) =
4tx sin2(kT ax/2) cos(k̂xax ) vanish when the color-orbit cou-
pling parameter kT ax = 0. We remark that the bz(k̂)J2

z is
absent for SU(2) spin-1/2 fermions in the presence of spin-
orbit coupling. For SU(3) fermions, this term is responsible
for the appearance of additional topological phases with non-
trivial Chern numbers.
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We note that a similar analysis can be done for higher
irreducible representations (irreps) of SU(2), including the
three-dimensional (spin-1) representation, as discussed in
[30]. While the structure of the kinetic-energy operator
for SU(2) spin-1 fermions is similar to that of SU(3)
fermions, the corresponding interactions are very different.
Furthermore, currently, SU(2) spin-1 fermions have not been
experimentally realized and their interactions may exhibit
density-density and spin-spin dependent terms. Thus, we fo-
cus our presentation on the SU(3) case and, in Sec. VIII B, we
analyze the effects of SU(3)-symmetric interactions, which
are realized in 173Yb and 87Sr, as discussed in the introduction.
We emphasize that SU(3)-symmetric interactions are very im-
portant in considering the robustness of topological insulating
phases with respect to this perturbation (see Sec. VIII B).

We highlight that the Hamiltonian in Eq. (8) is SU(3)
symmetric only in the absence of external color-orbit and
color-flip fields, that is, the kinetic-energy operator commutes
with the Gell-Mann matrices [30]. This is also true for SU(3)-
symmetric interactions, which are discussed in Sec. VIII B.
However, we are interested in the quantum Hall response of
SU(3) fermions when external color-orbit and color-flip fields
are applied. Their presence introduces additional terms in the
kinetic-energy operator, which no longer commutes with the
Gell-Mann matrices, thus breaking SU(3) symmetry explicitly
[30]. To understand the effects of external color fields on the
quantum Hall response of SU(3) fermions, it is clear that
one needs to break the SU(3) symmetry explicitly. This is no
different from simpler cases such as the linear and nonlinear
magnetic response of an initially SO(3) invariant ferromag-
netic insulator, where the magnetic response can only be
extracted in the presence of an external magnetic field, which
breaks explicitly the original SO(3) symmetry.

For periodic boundary conditions (torus geometry) the Hall
conductances associated with the Hamiltonian in Eq. (1) or
Eq. (8) are given by the Kubo formula

σλτ
yx = lim

δ→0
q→0

h̄

LxLy

∑
n �=n′,k

χ (nk, n′k + q)Fλτ
yx (nk, n′k + q),

(10)

where the first term containing the Fermi functions fn(k) =
f [En(k)] is

χ (nk, n′k + q) = fn(k) − fn′ (k + q)

[En(k) − En′ (k + q)]2 + δ2
(11)

and the current-current vertex function is

Fλτ
yx (nk, n′k + q) = Im〈nk|Ĵλ

y |n′k + q〉〈n′k + q|Ĵτ
x |nk〉.

(12)

The integrations in k are over the magnetic Brillouin zone, the
energies En(k) are the eigenvalues of Ĥ with α = p/q, and
fn(k) are the Fermi functions at En(k). Notice that the states
|nk〉 are color spinor states with three components {R, G, B}
and that Ĵλ

i are operators representing both charge and color
currents. The charge current operator is

Ĵch
x (k, k + q) = ev̂x(k, k + q)I (13)

along x, where v̂x(k, k + q) = [v̂x(k) + v̂x(k + q)]/2 is the
symmetrized velocity operator v̂x(k) = (1/h̄)∂Ĥ (k)/∂kx ob-

tained from the Hamiltonian matrix Ĥ (k) in Eq. (8) describing
the first quantization representation of the second-quantized
Hamiltonian Ĥ in Eq. (1).

The color current operator is

Ĵco
x (k, k + q) = h̄v̂x(k, k + q)J� + ih̄

∂

∂qx
T̂ (k, k + q) (14)

along x, where T̂ (k, k + q) = [T̂ (k) + T̂ (k + q)]/2, with
T̂ (k) = dJ�/dt = (1/ih̄)[J�, Ĥ (k)] being the color torque
that arises when color is not conserved. Similar expressions
apply along the y direction.

The charge current contains only one term, and so does
the corresponding charge-charge conductance. However, the
color current contains two terms, one color conserving and the
other with a color torque due to color nonconservation. This
leads to color-charge and charge-color conductances with two
contributions, and color-color conductance with four.

A general consequence of color nonconservation is that the
color-charge, charge-color, and color-color Hall conductances
are nonquantized. These Hall conductances are transport
properties and thus involve the response of the system to
external charge and color electric fields as shown in Eq. (2).
Hall conductances are not ground-state properties as seen in
Eq. (3), but they can be connected to a topological ground-
state property when they are quantized. For spin-1/2 systems
without spin-orbit coupling the quantization of the charge-
charge Hall conductance was established first [21] and, not
long after, it was realized that this quantization was associated
with a topological invariant [39,40] characterized by the first
Chern number of a U(1) principal fiber bundle on a torus
[22]. This was a remarkable connection showing the direct
proportionality of the charge-charge Hall conductance, which
depends of the entire energy spectrum and eigenstates, to a
Chern number that represents a topological quantity reflecting
the ground-state wave function. To make deeper connections
of this kind, we discuss next the Chern matrix for color SU(3)
systems from which three different Chern numbers can be
extracted: the charge-charge, the color-charge, and the color-
color Chern numbers. To gain further insight into the nature
of topological color insulators, it is imperative to establish the
connection between the Hall conductances which are trans-
port properties and the Chern numbers which are properties
of the topological ground states.

IV. CHERN MATRIX AND CHERN NUMBERS

We apply general color-dependent phase twists φxc and
φyc′ to the ground-state wave function |�〉 of the Hamilto-
nian in Eq. (1) or Eq. (8) with periodic boundary conditions
(no edges), via the phase twist operator U (φxc, φyc′ ) leading
to |�̃〉 = U (φxc, φyc′ )|�〉. This leads to a generalization of
the SU(2) spin-1/2 Chern matrix [41,42] applicable to color
SU(3) fermions in the fundamental representation [30]

Ccc′ = i

4π

∫∫
dφxcdφyc′Kxy(φxc, φyc′ ), (15)
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where the purely imaginary curvature function

Kxy(φxc, φyc′ ) =
〈

∂�̃

∂φxc

∣∣∣∣∣ ∂�̃

∂φyc′

〉
−

〈
∂�̃

∂φyc′

∣∣∣∣∣ ∂�̃

∂φxc

〉
, (16)

where the integrations are over 0 � φxc < 2π and 0 � φyc′ <

2π . Here, we analyze only the fundamental representation of
SU(3), in which case the Chern number matrix is 3 × 3, with
c = {R, G, B}.

The matrix elements Ccc′ of the Chern matrix C are integers
provided that the chemical potential lies in a bulk band gap
of the Hamiltonian in Eq. (1), a property that is a natural
extension of SU(2) spin-1/2 systems [42]. From C, we can
define four scalar topological invariants by projecting into
the charge |ch〉 = (111)T and color |co〉 = (101̄)T vectors,
where T means transposition and 1̄ = −1. The first two scalar
topological invariants are the charge-charge Chern number

Cchch = 〈ch|C|ch〉 =
∑
cc′

Ccc′ (17)

and the color-charge Chern number

Ccoch = 〈co|C|ch〉 =
∑
cc′

mcCcc′ . (18)

The other two topological invariants are the charge-color
Chern number

Cchco = 〈ch|C|co〉 =
∑
cc′

Ccc′mc′ (19)

and the color-color Chern number

Ccoco = 〈co|C|co〉 =
∑
cc′

mcCcc′mc′ (20)

where mc is the color quantum number with mR = +1, mG =
0, and mB = −1. Since the Chern matrix is real and symmet-
ric, the relation Ccoch = Cchco holds and there are only three
independent scalar topological invariants: Cchch, Ccoch, and
Ccoco. In general these invariants can have different values
when the chemical potential lies within the same bulk gap.
When color is conserved, C is diagonal and the Chern numbers
simplify to Cchch = ∑

c Ccc, Ccoch = ∑
c mcCcc, and Ccoco =∑

c m2
cCcc. It was recently pointed out [30] that Ccoco provides

additional information about the ground state of topological
color insulators since quite generally Ccoco �= Cchch or Ccoch.
This should be contrasted to the SU(2) spin-1/2 case, where
Cspsp = Cchch, and thus the spin-spin Chern number Cspsp plays
no additional role in the topological classification of topologi-
cal insulators, which require only the charge-charge Cchch and
the spin-charge Cspch Chern numbers [26,27].

V. CONNECTION BETWEEN CHERN NUMBERS
AND HALL CONDUCTANCES

As we emphasized earlier the Hall conductances of SU(3)
fermions are transport properties describing the charge and
color current responses to external charge and color electric
fields, thus they do not describe a property of the unperturbed
ground state and are not necessarily quantized. In contrast
the Chern numbers identified above are intrinsically a prop-
erty of the ground-state wave function of the system, and
provided that the chemical potential lies in a bulk gap, all

the Chern numbers defined are integers. When charge and
color are conserved, we can directly relate all Chern numbers
to quantized Hall conductances. However, when color is not
conserved the Hall conductances with a color component are
not quantized and are not directly related to Chern numbers.
Therefore, σ coch

yx , σ chch
yx , and σ coco

yx are no longer useful for
a direct extraction of the topological numbers Ccoch, Cchco,
and Ccoco that characterize the insulating ground states of the
system.

Charge and color are strictly conserved when color-orbit
coupling kT = 0 and the color-flip field hx = 0. However,
when kT = 0 and hx �= 0 the color projection state |cx〉 ≡
|mcx 〉, which is an eigenstate of Jx, is also an eigenstate of
the Hamiltonian matrix Ĥ (k̂), therefore the color projection
quantum number mcx along the x axis can be used to label the
eigenstates of Ĥ (k̂). At zero temperature, the charge-charge
Hall conductance σ chch

yx from Eq. (3) becomes

σ chch
yx = h̄

LxLy

∑
m �=n,k

Im〈unk|Ĵ ch
y |umk〉〈umk|Ĵ ch

x |unk〉
(Enk − Emk )2 + δ2

, (21)

where the limit δ → 0 is taken at the end of the calculation.
Here, n labels the ground state of the system with three-
component wave function |un(k)〉 indexed by the color label
cx, while m labels the excited states with three-component
wave function |um(k)〉 also indexed by the color label cx.
The charge current matrix operator is diagonal in color
space Ĵ ch

� = ev̂�I for each color component cx, where v̂� =
(1/h̄)∂Ĥ (k)/∂k� is the velocity operator along direction � =
{x, y} and I is the identity matrix for colors.

Using the phase twist transformation U (φxcx , φyc′
x
) for the

ground-state wave function, and following the standard pro-
cedure to obtain Chern numbers from the Hall response
[21,39,40], we arrive at the expected result

σ chch
yx = e2

h

∑
cxc′

x

Ccxc′
x
= e2

h
Cchch, (22)

where Ccxc′
x

is the Chern matrix defined in Eq. (15), when the
chemical potential lies within a bulk energy gap.

When the color operator Jx is conserved, the correspond-
ing color-torque term T̂ = dJx/dt = 0, and we write the
color-current operator as Ĵ co

� = h̄v̂�Jx, which is written in
symmetrized form via the anticommutator Ĵ co

� = h̄
2 {v̂�, Jx}.

At zero temperature, the color-charge Hall conductance σ coch
yx

reduces to

σ coch
yx = h̄

LxLy

∑
m �=n,k

Im〈unk|Ĵ co
y |umk〉〈umk|Ĵ ch

x |unk〉
(Enk − Emk )2 + δ2

. (23)

Using the same phase twist transformations for the wave func-
tions discussed previously, we arrive at the result

σ coch
yx = e

2π

∑
cxc′

x

mcxCcxc′
x
= e

2π
Ccoch, (24)

where Ccxc′
x

is the Chern matrix and the result is valid as
long as the chemical potential lies inside of a bulk gap. An
analogous expression is obtained for the charge-color Hall
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conductance σ chco
yx leading to

σ chco
yx = e

2π

∑
cxc′

x

Ccxc′
x
mc′

x
= e

2π
Cchco. (25)

At zero temperature, the color-color Hall conductance
σ coco

yx has only one contribution when color is conserved, since

the color torque vanishes, T̂ = 0, leading to

σ coco
yx = h̄

LxLy

∑
m �=n,k

Im〈unk|Ĵ co
y |umk〉〈umk|Ĵ co

x |unk〉
(Enk − Emk )2 + δ2

. (26)

From this expression, we obtain

σ coco
yx = h̄

2π

∑
cxc′

x

mcxCcxc′
x
mc′

x
= h̄

2π
Ccoco, (27)

which is valid as long as the chemical potential lies inside of
a bulk gap.

Notice that σ chch
yx is expressed in units of e2/h, σ coch

yx and
σ chco

yx are expressed in units of e/2π , and σ coco
yx is expressed in

units of h̄/2π , while the corresponding SU(2) spin-1/2 units
are e2/h for σ chch

yx , e/4π for σ
spch
yx and σ

chsp
yx , and h̄/4π for

σ
spsp
yx .

When Jx is not conserved, that is, when the color-orbit cou-
pling kT �= 0, the Hall conductances σ coch

yx , σ chco
yx , and σ coco

yx are
no longer proportional to Chern numbers, and thus these color
Hall conductances are no longer quantized. Nevertheless,
when the chemical potential lies inside of the bulk gap, the
Chern numbers obtained from the Chern matrix define a set of
topological invariants that characterize the insulating ground
state. In other words, the color-related Chern numbers do not
depend explicitly on the conservation of Jx as they are traced
over all color labels, while the Hall conductances explicitly
depend on the color torque T̂ when Jx is not conserved. When
kT �= 0, the calculation of color-Hall conductances requires
the inclusion of color-torque terms involving dJx/dt in the
color-current operator Ĵ co

� = d (r̂�h̄Jx )/dt .
We show in Fig. 2 plots of Chern numbers and correspond-

ing Hall conductances versus chemical potential μ/ty, which
are compatible to parameters α = 1/3, tx/ty = 1, kT ax = π/8,
and hx/ty = 2. Although color nonconserving contributions
affect transport properties like the color-Hall conductances
and generally cause deviations from their exact quantization,
the Chern matrix and its associated Chern numbers, which
are ground-state properties obtained through phase twists,
remain integers and can be used to distinguish topological
color insulators from conventional color insulators, even in
cases where the color-Hall conductances are not quantized.
In other words, the Chern numbers are a more fundamental
property of topological insulators, and the nonquantization of
Hall conductances with a color component is not sufficient
to rule out if a phase is topological or not. This has a di-
rect parallel to quantum spin-Hall phases, where even when
the spin-Hall conductance is not quantized, a Z2 topological
invariant can be used to distinguish a topological spin-Hall
phase with quantized or nonquantized spin-Hall conductance
from a conventional insulator [26]. Our findings are also con-
sistent with the usage of the charge-charge and spin-charge
Chern numbers as topological invariants characterizing weak

FIG. 2. Hall conductances σλτ
yx and Chern numbers Cλτ , with

λ, τ = {ch, co}, vs chemical potential μ/ty. The parameters used
are α = 1/3, tx/ty = 1, hx/ty = 2, and kT ax = π/8, corresponding
to a color nonconserving case. The Chern numbers in the bulk gaps
are shown as the solid black plateaus, and the corresponding Hall
conductances are shown as solid red lines. The dashed black lines
are guides to the eye. In (a) σ chch

yx = (e2/h)Cchch inside bulk gaps,
because charge is conserved; however, in (b), (c), and (d) the other
Hall conductances σ coch

yx , σ chco
yx , and σ coco

yx are not quantized within
the bulk gaps, and thus are not proportional to the Chern numbers
Ccoch, Cchco, and Ccoco, due to the presence of color torques. The
contributions of color torques are small for these parameters, but
already show the absence of quantization of the Hall conductances
with a color component.

topological spin-Hall phases in honeycomb (graphenelike)
lattices for spin-1/2 fermions [27,28], where time-reversal
symmetry is broken, and the spin-Hall conductance is not
quantized.

Before concluding this section, we would like to mention
that the generalization for SU(N ) fermions in the fundamen-
tal representation, with N > 3 flavors, is trivial, in which
case the Chern matrix becomes N × N . The Chern num-
bers are defined similarly, that is, we have a charge-charge
Chern number Cchch, a charge-flavor Chern number Cchfl, a
flavor-charge Chern number Cflch, and a flavor-flavor Chern
number Cflfl. Just like in the SU(3) case, the flavor-flavor
Chern number provides additional topological information
about the SU(N ) insulating states. For higher irreducible rep-
resentations of SU(3) or SU(N ), additional Chern numbers
emerge, and the topological classification of flavor insulators
becomes more complex as mentioned in our earlier work [30],
however we postpone this rather elaborate analysis for a future
investigation.

VI. BULK-EDGE CORRESPONDENCE
FOR SU(3) FERMIONS

For the conventional quantum Hall effect, the bulk Hall
conductance on a torus (obtained by imposing periodic bound-
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FIG. 3. Schematics showing the toroidal and cylindrical ge-
ometries. (a) The torus geometry with periodic boundary conditions
along x and y. (b) The Hall currents along y over a section of the
torus. (c) The cylinder geometry with finite size along x and periodic
boundary conditions along y. (d) The Hall current along y over a
section of the cylinder.

ary conditions in the xy plane) and the Hall conductance
associated with edge states are identical [23,24]. This is the
bulk-edge correspondence for the Hall conductances. Because
the number of particles is conserved, Hall conductances in
bulk gaps are quantized and directly proportional to Chern
numbers, which reflect the number of chiral edge states
within the bulk gap. The bulk-edge correspondence allows
experimentalists to access Chern numbers characterizing the
ground-state wave function (on a torus) of a system with
chemical potential within a bulk gap, that is, one can make
an edge measurement to extract a bulk topological property.

For SU(3) fermions, we also show that a bulk-edge cor-
respondence exists between the bulk Hall conductances and
those associated with edge states, which physically implies
that a measurement of the Hall responses in a sample without
edges (toroidal geometry) and one in a sample with edges
(realistic geometry) ideally yield the same results (see Fig. 3).
This means, that we can rely on measurements of samples
with edges to extract the Hall conductances on a torus. When
color is conserved, the bulk-edge correspondence implies that
edge measurements should reveal the quantization of bulk
color-related Hall conductances and allow for the extraction
of Chern numbers Ccoch, Cchco, and Ccoco. However, when color
is not conserved, the color-related Hall conductances are no
longer quantized for chemical potentials lying inside a bulk
gap, so their measurement on samples with edges no longer
provides direct access to the desired Chern numbers.

Consider the local three-component color field operator
�(r) = [φR(r), φG(r), φB(r)]T . The charge density eρ̂(r) =
e�†(r)�(r) satisfies its continuity equation

e∂ρ̂(r)/∂t + ∇ · Ĵch(r) = 0, (28)

where Ĵch(r) = Re�†(r)ev̂�(r), with v̂ = d r̂/dt being the
velocity operator. The color magnetization density h̄Ĵ�(r) =
h̄�†(r)J��(r) satisfies its continuity equation

h̄∂ Ĵ�(r)/∂t + ∇ · Ĵco(r) = 0, (29)

where Ĵco(r) = Re�†(r)d (r̂h̄J�)/dt�(r), These expressions
are generalizations of the SU(2) spin-1/2 case [34], and are
manifestations of the conserved Noether currents. Because
of these conservation laws, a change in boundary conditions
along x can only affect the local current distributions (like
currents flowing in the bulk or at the edges), but cannot affect
the flux of the current densities flowing along the y direction.
As a result, the total currents flowing along y in the torus
or edge geometries must be the same, that is, (J λ

y )torus =
(J λ

y )edges with λ = {ch, co}. Therefore, from Eq. (2), the Hall
conductances (σλτ

yx )torus = (σλτ
yx )edges. This general result is the

bulk-edge correspondence for the Hall conductances.
For a finite system along the x direction and periodic

boundary conditions along y, a direct calculation of the
Hall conductivities can be performed using the generic
Kubo formula from Eq. (3). In this case, it is convenient
to work in a mixed representation, that is, in real space
along x and in momentum space along y. The mapping of
the states is |{n}〉 → |n, ky〉, |{m}〉 → |n′, ky + qy〉, while for
the Hamiltonian it is Ĥ → Ĥ (x, ky). Along x, we use the
current operators in their real space representation Jch

x =
edx̂/dtI and Jco

x = h̄(dx̂/dt )J� + h̄x̂dJ�/dt , with dx̂/dt =
(1/ih̄)[x̂, Ĥ (x, ky)]. Along y, we use the current operator in
the momentum space representation Jch

y = ev̂yI and Jco
y =

h̄v̂yJ� + ih̄∂/∂qydJ�/dt , with dJ�/dt = (1/ih̄)[J�, Ĥ (x, ky)].
Direct computations of the Hall conductances lead again to
the bulk-edge correspondence stated above.

Having established the bulk-edge correspondence for the
Hall conductances, and the conditions under which the Hall
conductances relate to the Chern numbers obtained from the
Chern matrix, we turn our attention to some properties of the
edge states.

VII. EDGE STATES AND COLOR MAGNETIZATION

We analyze a few examples of edge states and their mag-
netizations. To be specific, we discuss regions of the energy
spectrum near particular values of the chemical potential
μ corresponding to flux ratio α = 1/3, hoppings tx/ty = 1,
color-flip field hx/ty = 2, and color-orbit couplings kT ax = 0
or π/8, and analyze the wave function and magnetization of
the corresponding edge states.

The local color magnetization density can be written in
terms of the eigenfunctions of the Hamiltonian Ĥ in Eq. (1)
or Eq. (8) as

M�(x, y) = h̄�†(x, y)J��(x, y), (30)

where �(x, y) is a color spinor with three components
and J� are the spin-1 matrices with � = {x, y, z}. Since
the coordinates x and y are uncoupled, the eigenfunctions
can be written as the product φ(x)ϕ(y), where φ(x) is a
color spinor with three components [φR(x), φG(x), φB(x)]T or
[φ↑(x), φ0(x), φ↓(x)]T , where the symbol T indicates transpo-
sition, and ϕ(y) is a scalar wave function along y. To explore
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FIG. 4. Eigenvalues Enβ
(ky ) vs kyay for magnetic flux ratio α =

1/3, tx/ty = 1, kT ax = 0, and hx/ty = 2. The bulk bands have period-
icity 2π/3ay, and the edge bands have periodicity 2π/ay along the ky

direction. The dashed horizontal line indicates the chemical potential
μ/ty = −1.07 and the labels R (right) and L (left) characterize the
location of the edge states. The Chern numbers in this phase are
Cchch = 0, Ccoch = −1, and Ccoco = −1, while the filling factor is
ν = 1.

edge states, we consider a system with Ns = 50 sites along the
x direction with open boundary conditions, but periodic along
y, where momentum ky is conserved.

To keep the presentation simple, we discuss only the color
magnetization

M�(x) =
∑

y

M(x, y) = h̄φ†(x)J�φ(x) (31)

for all three spatial directions � = {x, y, z}.
In Fig. 4, we plot the energy dispersion Enβ

(ky) for flux
ratio α = 1/3, tx/ty = 1, hx/ty = 2, kT ax = 0, and chemical
potential μ/ty = −1.07. The Chern numbers in this phase
are Cchch = 0, Ccoch = −1, and Ccoco = −1, while the filling
factor is ν = 1. Notice that the identification of edge states
alternates between right (R) and left (L) edges with increasing
ky. Since there are two pairs of edge states inside the bulk
gap with opposite chirality, the total chirality is zero and
charge-charge Chern number vanishes. Since the color-orbit
parameter is kT ax = 0, the color projection along the x axis
is conserved, that is, the commutator [Jx, Ĥ (k)] = 0, where
Ĥ (k) is the Hamiltonian matrix in momentum space from
Eq. (8). This means that the eigenstates |cx〉 of Jx are also
eigenstates of Ĥ (k) with color quantum numbers mcx .

In Fig. 5, we plot the color magnetization components
M�(x) in Fig. 5(a), as well as the modulus of |φc(x)| of
each wave-function component φc(x), where c = {R, G, B} or
{↑, 0,↓}. The left (L) edge state represented in Fig. 5(a) is
a mixed color state, but is the eigenstate |↑x〉 of Jx, as can
be seen also from the color magnetization components M�(x).
In this case the integrated magnetization M̃x = ∑

x Mx(x) is

FIG. 5. In each panel (a)–(d), the color magnetizations M�(x)
(in units of h̄) for � = {x, y, z} are shown in the left panels and the
moduli of the color spinor components |φc(x)|, where c = {R, G, B}
or {↑, 0, ↓}, are shown in the right panels. The parameters used are
the same as in Fig. 4, that is, α = 1/3, tx/ty = 1, hx/ty = 2, kT ax = 0,
and μ/ty = −1.07. The order in which the edge states appear is
identical to that seen in Fig. 4, as indicated in each panel by the value
of the momentum ky.

exactly equal to +1 (in units of h̄), while the integrated mag-
netizations M̃y = ∑

x My(x) and M̃z = ∑
x Mz(x) are exactly

equal to zero. The right (R) edge state represented in Fig. 5(b)
is a mixed color state, but is the eigenstate |0x〉 of Jx, as can
also be inferred from the color magnetization components
M�(x), as it corresponds to a zero color magnetization state.
Therefore, all integrated magnetizations vanish, that is, M̃x =
M̃y = M̃z = 0.

Similarly, the left (L) edge state represented in Fig. 5(c) is
a mixed color state, but is the eigenstate |0x〉 of Jx, leading
to a zero magnetization state with M̃x = M̃y = M̃z = 0, as
in Fig. 5(b). Lastly, the right (R) edge state represented in
Fig. 5(d) is a mixed color state, but is the eigenstate |↑x〉 of Jx,
leading to integrated magnetizations M̃x = +1 (in units of h̄),
M̃y = M̃z = 0, as in Fig. 5(a). The states shown in Figs. 5(b)
and 5(c) are chiral pairs with chirality +1 and color projection
mcx = 0, while the states shown in Figs. 5(a) and 5(d) are
chiral pairs with chirality −1 and color projection mcx = +1.
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FIG. 6. Eigenvalues Enβ
(ky ) vs kyay for magnetic flux ratio α =

1/3, tx/ty = 1, kT ax = π/8, and hx/ty = 2. The bulk bands have
periodicity 2π/3ay, and the edge bands have periodicity 2π/ay along
the ky direction. The dashed horizontal line indicates the chemical
potential μ/ty = −1.11 and the labels R (right) and L (left) charac-
terize the location of the edge states. The Chern numbers in this phase
are Cchch = 0, Ccoch = −1, and Ccoco = −1, while the filling factor is
ν = 1.

In Fig. 6, we plot the energy dispersion Enβ
(ky) for α =

1/3, tx/ty = 1, hx/ty = 2, kT ax = π/8, and chemical poten-
tial μ/ty = −1.11. The Chern numbers in this phase are
Cchch = 0, Ccoch = −1, and Ccoco = −1. In the bulk gap, there
are two pairs of edge states with opposite chirality leading
to the vanishing of charge-charge Chern number, that is,
Cchch = 0. In Fig. 6, we highlight that the location of the edge
states alternates between right (R) and left (L) edges with
increasing ky.

For kT ax �= 0, the color operator Jx is no longer conserved
since the color-orbit coupling causes a rotation eikT xJz (color-
gauge transformation) that mixes locally the color states
|↑x〉, |0x〉, |↓x〉. Given that the local color rotation is about the
z axis, then a local color magnetization appears also along
the y axis, but does not appear along z. For kT ax = π/8 the
effect is small, but it can still be seen in the panels of Fig. 7.
It is important to emphasize that the local color rotation is
nonchiral, in the sense that it does not affect the chirality
of the edge states. Furthermore, for states on the same edge
the mixed color states are orthogonal. Lastly, for pairs of
chiral edge states, the local magnetization Mx(x) is exactly
the same on both edges, while the local magnetization My(x)
has opposite signs for right (R) and left (L) edges.

The effects of kT ax �= 0 on topological insulator states,
which already exist when kT ax = 0, are not too dramatic from
the magnetization perspective. Except for mixing the color
states described above, the chirality of pairs of edge states is
preserved, since the color-orbit coupling is nonchiral. The ef-
fects of kT ax �= 0 are stronger in the regions where the energy
bands overlap when kT ax = 0, in which case the color-orbit

FIG. 7. In each panel (a)–(d), the color magnetizations M�(x)
for � = {x, y, z} are shown in the left panels and the moduli of the
color spinor components |φc(x)|, where c = {R, G, B} or {↑, 0, ↓},
are shown in the right panels. The parameters used are the same
as in Fig. 6, that is, α = 1/3, tx/ty = 1, hx/ty = 2, kT ax = π/8, and
μ/ty = −1.11. The order in which the edge states appear is identical
to that seen in Fig. 6, as indicated in each panel by the value of the
momentum ky.

coupling lifts degeneracies of the bands and introduces new
bulk gaps.

In Fig. 8, we plot the energy dispersion Enβ
(ky) for α =

1/3, tx/ty = 1, hx/ty = 2, kT ax = π/8, and μ/ty = −0.37.
The Chern numbers in this phase are Cchch = +1, Ccoch = −2,
and Ccoco = 0, while the filling factor is ν = 4/3. At the
chemical potential indicated by the dashed line, there are three
pairs of chiral edge states; two of them have chirality +1 and
the third has chirality −1 leading to a charge-charge Chern
number Cchch = +1. We highlight the location of the edge
states for chemical potential μ/ty = −0.37, and notice that
the identification of edge states alternates between left (L) and
right (R) edges with increasing ky.

In Fig. 9, we plot the color magnetizations M�(x) for
� = {x, y, z} and the modulus of each color spinor component
|φc(x)|, where c = {R, G, B} or {↑, 0,↓}. The parameters used
are the same as in Fig. 8, that is, α = 1/3, tx/ty = 1, hx/ty = 2,
kT ax = π/8, and μ/ty = −0.37. Three pairs of edge states
are shown. The states in panels (a) and (f) are chiral edge
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FIG. 8. Eigenvalues Enβ
(ky ) vs kyay for magnetic flux ratio α =

1/3, tx/ty = 1, kT ax = π/8, and hx/ty = 2. The bulk bands have
periodicity 2π/3ay, and the edge bands have periodicity 2π/ay along
the ky direction. The dashed horizontal line indicates the chemical
potential μ/ty = −0.37 and the labels R (right) and L (left) charac-
terize the location of the edge states. The Chern numbers in this phase
are Cchch = +1, Ccoch = −2, and Ccoco = 0, while the filling factor is
ν = 4/3.

pairs with chirality +1, integrated color magnetization M̃x =∑
x Mx(x) close to −1 (in units of h̄) on both edges, a small

positive integrated color magnetization M̃y = ∑
x My(x) for

the state on the right edge (a), and a small negative M̃y for the
state on the left edge (f). The states in panels (b) and (e) are
chiral edge pairs with chirality −1, M̃x close to −1 (in units
of h̄) on both edges, a small positive M̃y for the state on the
left edge (b), and a small negative M̃y for the state on the right
edge (e). The states in panels (c) and (d) are chiral edge pairs
with chirality +1, M̃x close to zero on both edges, a small
positive M̃y for the state on the right edge (c), and a small
negative M̃y for the state on the left edge (d). Notice that for
pairs of chiral edge states, the local magnetization Mx(x) is
exactly the same on both edges, while the local magnetization
My(x) has opposite signs for right (R) and left (L) edges.

Having discussed edge states and their magnetizations
for a few examples of topological insulating phases, we
explore next the robustness of edge states to disorder and
SU(3)-symmetric interactions. We link the existence of this
robustness or its absence to Hall conductances and Chern
numbers.

VIII. ROBUSTNESS OF EDGE STATES AGAINST
DISORDER AND INTERACTIONS

In this section, we analyze the robustness of edge states
with respect to disorder and SU(3)-symmetric interactions,
which were preliminarily discussed in an earlier publica-
tion [30]. Our discussion not only addresses the idea of
strong versus weak topological color insulators in analogy to

FIG. 9. In each panel (a)–(f), the magnetizations M�(x) for � =
{x, y, z} are shown in the left panels and the moduli of the color spinor
components |φc(x)|, where c = {R, G, B} or {↑, 0, ↓}, are shown in
the right panels. The parameters used are the same as in Fig. 6, that is,
α = 1/3, tx/ty = 1, hx/ty = 2, kT ax = π/8, and μ/ty = −0.37. The
order in which the edge states appear is identical to that seen in Fig. 8,
as indicated in each panel by the value of the momentum ky.

SU(2) spin-1/2 systems for graphenelike honeycomb lattices
[27,28], but also introduces the concept of intermediate topo-
logical color insulators. We define strong topological color
insulators as systems where either weak disorder or weak
SU(3)-symmetric interactions do not affect the ability of all
edge states to conduct. We define intermediate topological
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color insulators as systems where either weak disorder or
weak SU(3)-symmetric interactions affect the ability of some,
but not all, edge states to conduct. We define weak topological
color insulators as systems where either weak disorder or
weak SU(3)-symmetric interactions affect the ability of all
edge states to conduct.

To illustrate examples of this classification refinement, we
discuss the robustness of edge states in three cases. The first
two examples correspond to edge states shown in Figs. 4 and
6, where the bulk Chern numbers are Cchch = 0, Ccoch = −1,
and Ccoco = −1, while the filling factor is ν = 1. The last
example corresponds to edge states shown in Fig. 8, where
the bulk Chern numbers are Cchch = +1, Ccoch = −2, and
Ccoco = 0, while the filling factor is ν = 4/3.

A. Robustness of edge states against disorder

We emphasize that in cold atom systems, disorder is gen-
erally nonexistent unless created externally, that is, disorder
is not an intrinsic property of optical lattices, but rather an
extrinsic property that can be introduced by external speckle
patterns [43,44], bichromatic disorder [45], or designed impu-
rity potentials [46].

To understand the effects of weak local disorder, we re-
view briefly a few symmetry properties of our Hamiltonian in
Eq. (1) or in Eq. (8). The Hamiltonian breaks time-reversal
symmetry via the presence of the artificial gauge field θy =
AyηyI , where Ay plays the role of the y component of a vector
potential. In addition, the Hamiltonian breaks particle-hole
and chiral symmetries and its insulating phases can be labeled
as an integer Z topological invariant, under the Cartan A
classification of topological insulators [47–49]. This integer Z
corresponds to the charge-charge Chern number Cchch, which
reflects the total chirality of edge states. For rational magnetic
fluxes α = p/q, a new periodicity of 2π/(qay) arises in the
bulk along the ky direction, but all edge states that emerge in
bulk gaps are chiral pairs with periodicity 2π/ay along ky.

When a color-flip field hx is present, with color-orbit cou-
pling kT = 0, the color operator Jx remains conserved and
the chirality of the edge states is preserved. Furthermore,
even when kT �= 0, the edges states remain chiral, because the
color-orbit mixing operator θx = kT ηxJz is nonchiral. There-
fore, either in the absence or presence of color-orbit coupling
kT ax, edge states are always chiral. It is this chirality that
provides protection against perfect backscattering that leads
to Anderson localization.

To highlight this protection, we consider the local disorder
Hamiltonian

Ĥdis =
∑
rcc′

φ†
c (r)Dcc′ (r)φc′ (r) =

∑
r

�†(r)D(r)�(r), (32)

where �(r) is a three-color vector (spinor) with components
φc(r), and ξcc′ (r) are the elements of the random local matrix
D(r) that allows color flips, that is, Dcc′ (r) is not necessar-
ily a diagonal matrix in the color indices {c, c′}. Since the
disorder Hamiltonian Ĥdis is local, then scattering can only
occur between edge states located at the same boundary. How-
ever, since edge states always emerge in chiral pairs, there is
no perfect backscattering caused by Ĥdis leading to reversal
of momentum ky → −ky and reversal of the band velocities

∂E (ky)/∂ky → −∂E (−ky)/∂ky of edge states located at the
same boundary. This is the case even when color flips are
allowed in the local disorder potential. Therefore, in the ab-
sence of perfect backscattering, Anderson localization does
not occur and edge states are protected by their chirality.

To visualize this general protection, let us analyze the
three specific examples presented in Figs. 4 and 6, as well
as in Fig. 8. In the case of Fig. 4, the color-orbit coupling is
kT ax = 0 and Jx is conserved. This means that the eigenstates
of Jx are also eigenstates of the Hamiltonian Ĥ defined in
Eq. (1) of the main text. Therefore, it is convenient to rotate
the states φc(r) or the vector �(r) from the color basis labeled
by c = {R, G, B} along the z axis to the color basis along the x
axis labeled by cx. This can be achieved by the unitary rotation
Uy = e−i(π/2)Jy about the y axis. In this case, the disorder
Hamiltonian becomes

Ĥdis =
∑

r

�̄
†(r)D̄(r)�̄(r), (33)

where the color spinor �̄(r) = Uy�(r) with elements φ̄cx (r)
is now labeled by cx and the disorder matrix

D̄(r) = UyD(r)U †
y (34)

with elements D̄cxc′
x
(r) is labeled by {cx, c′

x}.
A close look at Fig. 4 shows that there is no backscattering

between edge states in the same boundary, when the disorder
potential does not involve color flips. However, there is no
perfect backscattering between the edge states on the right (R)
boundary or between the edge states on the left (L) boundary,
even when color flips are allowed. The sequence of edge states
appearing in Fig. 4, with energy determined by the dashed line
at μ/ty = −1.07 and increasing momentum ky, can be labeled
as (L,−k1,↑x ) and (R,−k2, 0x ) for the edge states with nega-
tive momentum and (L,+k2, 0x ) and (R,+k1,↑x ) for the edge
states with positive momentum. When color flips are allowed
by a weak local disorder potential there is some backscattering
between the states (L,−k1,↑x ) and (L,+k2, 0x ), as well as
between the states (R,−k2, 0x ) and (R,+k1,↑x ). However,
the backscattering is far from perfect as the momenta and band
velocities are not matched to produce Anderson localization.
The protection of these edge states to weak local disorder is
provided by their chirality.

When the color-orbit coupling kT �= 0 and hx �= 0, Jx is not
conserved, but a similar situation also occurs. In this case, it is
more convenient to write the disorder potential in the basis of
eigenstates of the first-quantization Hamiltonian matrix Ĥ (k̂)
in Eq. (8). Starting with the disorder Hamiltonian

Ĥdis =
∑

i

|i〉Di〈i| (35)

where |i〉 represents the color field operator at position r, that
is, |i〉 = �†(r) and Di = D(r), we can rewrite

Ĥdis =
∑
χ,χ ′

|χ〉Dχχ ′ 〈χ ′|, (36)

in the basis of edge eigenstates |χ〉 of Ĥ (k̂), where |χ〉 =
|λ, ky, nα〉 represents edge states at the λ = {R, L} bound-
ary, with momentum ky and band index nα , while Dχχ ′ =∑

i〈χ |i〉Di〈i|χ ′〉. The eigenstate projection in the original
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basis can be written as φχ (i) = 〈i|χ〉. Since the disorder po-
tential is local, scattering between edge states within the bulk
gap occurs only in the same boundary, which means that Dχχ ′

is diagonal in λ.
From the energy spectrum in Fig. 6, the sequence of

edge states, with energy determined by the dashed line at
μ/ty = −1.11 and increasing momentum ky, can be labeled
as (L,−k1, n1) and (R,−k2, n2) for the edge states with
negative momentum and (L,+k2, n2) and (R,+k1, n1) for
the edge states with positive momentum. For weak local
disorder there is some backscattering between the states
(L,−k1, n1) and (L,+k2, n2), as well as between the states
(R,−k2, n2) and (R,+k1, n1). However, the backscattering is
far from perfect as the momenta and band velocities are not
matched to produce Anderson localization. The protection of
these edge states to weak local disorder is provided by their
chirality.

The same type of analysis can be made for the energy
spectrum in Fig. 8 and the corresponding edge states within
the bulk gap, say for μ/ty = −0.37. For weak disorder there is
some backscattering between edge states on the same bound-
ary. However, again, backscattering is far from perfect as
the momenta and band velocities are not matched to pro-
duce Anderson localization. Once more, the protection of
these edge states to weak local disorder is provided by their
chirality.

The conduction channels for all edge states are pro-
tected against color-dependent and color-independent disor-
der, meaning that the topological insulating phases are strong
with respect to disorder. This robustness is a direct conse-
quence of the chirality of the edge states. Having considered
the case of disorder, which is an extrinsic property in optical
lattices, we turn our attention to the robustness of color edge
states with respect to SU(3)-symmetric interactions, which
can potentially gap edge states and suppress their ability to
conduct, as discussed next.

B. Robustness of edge states against interactions

Closed-shell fermionic systems 173Yb and 87Sr have
SU(N )-symmetric interactions, with N � 6 or 10, respec-
tively. By experimentally selecting only three internal states,
SU(3) systems can be explored. We focus on SU(3), because
N = 3 gives the simplest system that shows nontrivial values
of the topological invariant Ccoco. The local SU(3)-symmetric
interactions

Ĥint = g
∑

r

∑
c �=c′

n̂c(r)n̂c′ (r) (37)

involve only repulsive (g > 0) density-density channels. The
density operators are n̂c(r) = φ†

c (r)φc(r).
It is very important to emphasize that by using orbital-

Feshbach techniques it is possible to control the strength of
the SU(N )-symmetric interactions in order to increase them
and to study strongly interacting systems or to decrease them
to zero to study noninteracting systems [50,51]. So next, we
analyze the effects of weak interactions on edge states.

To study the robustness of edge states to SU(3)-symmetric
interactions existent in 173Yb and 87Sr, it is more convenient
to express Eq. (37) in terms of the creation and annihilation

operators of the eigenstates of the matrix Hamiltonian Ĥ (k̂)
in Eq. (8), and write the interaction between edge states as
[36]

Ĥint = g
∑
λ,{ns}

ky1 ,ky3 ,qy

γ (λ, {ns})�12(ky1 , qy)�34(ky3 , qy), (38)

where γ (λ, {ns}) = γ (λ, n1, n2, n3, n4) are the interac-
tions between edge states on the same edge, while
�12(ky1 , qy) = f †

λ,n1
(ky1 ) fλ,n2 (ky1 + qy) and �34(ky3 , qy) =

f †
λ,n3

(ky3 ) fλ,n4 (ky3 − qy) reflect the action of fermionic

operators. Here, f †
λ,ns

(kys ) represents the creation operator of
a fermion at the λ edge, with band index ns and momentum
kys . These interactions together with kinetic energies

ĤK =
∑
λ,n

ελ,n(ky) f †
λ,n(ky) fλ,n(ky) (39)

describe interacting edge states within bulk band gaps.
By making the transformation, qy → −q, ky1 → ky + q and
ky3 → k′

y − q, the interaction Hamiltonian above can be writ-
ten in terms of generalized density operators ρ̂λ,ni,n j (q) =∑

ky
f †
λ,ni

(ky + q) fλ,n j (ky) as follows:

Ĥint =
∑
λ,{ns}

γ (λ, ni, n j, nk, n�)ρ̂λ,ni,n j (q)ρ̂λ,nk ,n�
(−q), (40)

where the generalized density operators satisfy

ρ̂
†
λ,ni,n j

(q) = ρ̂λ,n j ,ni (−q). (41)

To understand the role of local SU(3)-symmetric interac-
tions on edge states, we analyze first the simplest situation
of a single pair of chiral edge states, which occurs at high
color-flip fields hx/ty � 1, irrespective of whether kT ax = 0
or kT ax �= 0 for α = 1/3 and tx/ty = 1. Some examples of
single chiral edge states also occur for α = 1/3, tx/ty = 1,
kT ax = π/8, and hx/ty = 2, where the Chern numbers are
either Cchch = +1, Ccoch = +1, and Ccoco = +1, for filling
factor ν = 1/3, or Cchch = +1, Ccoch = −1, and Ccoco = −1,
for filling factor ν = 8/3. In phases with only one edge state
on each boundary, there is also only one interaction parameter
g̃ = gγ (1, 1, 1, 1) corresponding to forward scattering. Such a
situation is simple, as the single edge state is protected by its
chirality. So weak interactions can at most shift the energy of
edge states and renormalize the Fermi velocity, but they will
not open up a gap. The phases with a single pair of chiral edge
states are robust against weak SU(3)-symmetric interactions,
that is, they are strong topological phases where no minigaps
emerge in the edge state spectrum to change their ability to
conduct.

The situation is more complex in phases where there are
two or more pairs of chiral edge states as shown in Figs. 4,
6, 8, given that many coupling constants are nonzero. Since
interactions are local, right (R) and left (L) edge states do not
interact, and we can treat each boundary separately. Thus, we
look at the two right (R) edge states of Figs. 4 and 6, and a
similar analysis can be done for the two left (L) edge states.

To illustrate the complexity of local SU(3)-symmetric in-
teractions, we look first at the case of Fig. 4, where kT ax = 0
and Jx is conserved at the independent particle level. We
can focus again on an edge, say the right one, and label the
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edge states on the right boundary as n = 1 for negative mo-
mentum and n = 2 for positive momentum, noting that they
have different cx color projections. For two edge states on the
same boundary, the interaction parameters γ (n1, n2, n3, n4) ≡
γ (n1n2n3n4) can have in general 16 different values, since
each n j can take two values {1, 2}. Due to color projection
(cx ) conservation, interaction terms with three identical band
indices vanish, that is, γ (1112) = γ (1121) = γ (1211) =
γ (1222) = 0 for the series starting with n = 1 and γ (2221) =

γ (2212) = γ (2122) = γ (2111) = 0 for the series restarting
with n = 2. However, the other terms are nonzero: γ (1111) =
0.40, γ (1122) = 0.49, γ (1212) = −0.16, and γ (1221) =
−0.16 for the series starting with n = 1, and γ (2222) = 0.33,
γ (2211) = 0.49, γ (2121) = −0.16, and γ (2112) = −0.16
for the series starting with n = 2. The first two terms in each
series correspond to forward scattering, while the second two
terms correspond to backward scattering. In this case the
interaction Hamiltonian reduces to

Ĥint = γ (1111)
∑

q

ρ11(q)ρ11(−q) + γ (1122)
∑

q

ρ11(q)ρ22(−q) + γ (1212)
∑

q

ρ12(q)ρ12(−q)

+ γ (1221)
∑

q

ρ12(q)ρ21(−q) + γ (2222)
∑

q

ρ22(q)ρ22(−q) + γ (2211)
∑

q

ρ22(q)ρ11(−q)

+ γ (2121)
∑

q

ρ21(q)ρ21(−q) + γ (2112)
∑

q

ρ21(q)ρ12(−q),

which involves the processes illustrated in Fig. 10, where we
linearized the band dispersions of the edge states around their
respective Fermi momenta kF1 and kF2 . The small momen-
tum transfer processes controlled by γ (1111) and γ (2222)

FIG. 10. Scattering processes originating from SU(3)-symmetric
interactions between two edge states in a given boundary are shown.
This situation corresponds to the example given in Fig. 4. Small
momentum transfer (forward scattering) processes controlled by
γ (1111) and γ (2222) are shown in the left and right panels of
Fig. 10(a), respectively. Small momentum transfer (forward scatter-
ing) processes controlled by γ (1122) and γ (2211) are illustrated in
the left panel of Fig. 10(b), while large momentum transfer (back-
ward scattering) processes γ (1221) and γ (2112) are illustrated in
the right panel of Fig. 10(b). Large momentum transfer processes
(Umklapp-like) controlled by γ (2121) and γ (1212) are shown in the
left and right panels of Fig. 10(c), respectively.

are shown in the left and right panels of Fig. 10(a), respec-
tively. These processes are not so important, as they can
at most shift a little the energies of the edge states. The
small momentum transfer processes controlled by γ (1122)
and γ (2211) are illustrated in the left panel of Fig. 10(b),
while the large momentum transfer processes γ (1221) and
γ (2112) are illustrated in the right panel of Fig. 10(b). These
forward and backward scattering processes are very impor-
tant, and are mostly responsible for creating small energy gaps
in the edge state spectrum. Large momentum transfer pro-
cesses (Umklapp-like) controlled by γ (2121) and γ (1212) are
shown in the left and right panels of Fig. 10(c), respectively.
These last processes are important only when the momentum
2(k1 + k2) matches the lattice wave vector 2π/ay, and thus
require a special matching condition.

In the linear approximation, the kinetic energy of the edge
states in the same boundary becomes

ĤK =
∑

ky

[
ε
(
kF1

) + vF1

(
ky − kF1

)]
f †
1 (ky) f1(ky),

+
∑

ky

[
ε
(
kF2

) + vF2

(
ky − kF2

)]
f †
2 (ky) f2(ky),

where the velocities are vFi = ∂εi/∂ky|ky=kFi
. Using either

mean-field theory, which is not reliable in one dimension,
but can provide some insight, or bosonization techniques, we
can show that these interactions may lead to the formation
of a color density wave (CoDW), because backscattering is
present. A small gap arises in the elementary excitation spec-
trum and the bosonic collective mode (CoDW) has linear
dispersion. The analysis here follows closely the g-ology de-
scription [52] of one-dimensional nonchiral spinless fermions,
where a charge-density wave emerges, using mean-field,
renormalization-group, or bosonization methods. Similarly
for nonchiral spin-1/2 fermions, mean-field, renormalization-
group, and/or bosonization methods all show that one-
dimensional Fermi gases are unstable towards charge-density
wave, spin-density-wave, singlet-superconductivity, or triplet-
superconductivity states, when interactions include backward
(g1) and forward (g2) scattering processes [52].
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Thus, the edge states in Fig. 4 are not robust with respect
to SU(3)-symmetric interactions, and their chirality does not
protect them from gapping out, since these edge states them-
selves are not eigenstates of an SU(3)-invariant independent
particle Hamiltonian. This case then corresponds to a weak
topological phase, where weak SU(3) interaction can lead
to minigaps in the excitation spectrum of edge states and
affect their ability to conduct. However, the effect of weak
SU(3)-symmetric interactions is very small in the bulk. When
g � Eg, where Eg is a bulk gap, the Chern numbers of the
phase are unaffected, because the bulk gap cannot close and
reopen. On the other hand, with the emergence of minigaps
for edge states, the Hall conductances associated with a color
component are no longer quantized.

For the edge states in Fig. 6, where the color-orbit cou-
pling kT ax �= 0, and Jx is not conserved, the SU(3)-symmetric
interactions lead to 16 nonvanishing γ (n1n2n3n4) terms due to
color mixing of different cx projections. Now, a mixed-color
density wave emerges at the edges, and the edge states develop
a small gap. This is also a weak topological phase, that is,
all edge states are gapped, and the corresponding color Hall
conductances are affected, but the Chern numbers remain
the same, provided that the SU(3)-symmetric interactions are
weak in comparison to the bulk gap.

The analysis for topological phases with more than two
edge states is quite elaborate. For the chemical potential
shown in Fig. 8, there are three edge states in each boundary,
and Jx is not conserved, since kT ax �= 0. The SU(3)-symmetric
interactions again induce a mixed-color density wave for two
edge states at each boundary, but one of the edge states car-
rying chirality +1 remains ungapped, since the total chirality
is conserved, that is, it cannot change without the closing and
reappearance of a bulk gap. Weak SU(3)-symmetric interac-
tions have a small effect on the bulk of the system, and all
the Chern numbers remain robust. In this case, we have an
intermediate topological phase, where two edge states develop
a minigap, while the third one does not.

The main conclusion of this section is that edge states
are robust to color-independent and color-dependent disorder
in all topological phases. However, the robustness of edge
states can be strong, intermediate, or weak with respect to
SU(3)-symmetric interactions, depending on the emergence
of minigaps that affect edge state conduction and associ-
ated color Hall conductances. The discussion above confirms,
generalizes, and refines the conjecture that some edge states
were potentially sensitive to SU(3)-symmetric interactions
[36], and reveals that, even in such cases, the charge-charge,
color-charge, and color-color Chern numbers remain robust
to weak local perturbations, and do not change. This occurs,
provided that weak local perturbations do not close bulk gaps
with posterior reopenings that may change the topology of the
ground-state wave function. Our results are SU(3) extensions
of the conclusions of SU(2) spin-1/2 systems in honeycomb
lattices [27,28], where minigaps in the spectrum of edge states
may destroy the quantization of the spin-Hall conductance,
but the spin Chern number, characteristic of the bulk bands,
remains unchanged. Furthermore, our SU(3) examples pro-
vide extensions of general studies of the robustness of the
spin-Chern number for SU(2) spin-1/2 systems with respect
to disorder and time-reversal symmetry breaking [53], and its

characterization as a property of the bulk, rather than as a
property of the edge states.

IX. CLASSIFICATION OF TOPOLOGICAL
COLOR INSULATORS

In Secs. III, IV, and V, we discussed the relation between
the Hall conductances σ chch

yx , σ coch
yx or σ chco

yx , and σ coco
yx , and

the Chern numbers Cchch, Ccoch or Cchco, and Ccoco. When
color is conserved (kT ax = 0, hx �= 0, with conserved Jx),
the corresponding Hall conductances for all insulating states
are quantized and directly proportional to the Chern numbers
Cchch, Ccoch or Cchco, and Ccoco. In this case, all the insulat-
ing phases are characterized by quantized Hall conductances
and by their associated Chern numbers, meaning that the
Chern numbers can be obtained via the measurement of the
quantized Hall conductances. When color is not conserved
(kT ax �= 0, hx �= 0, with nonconserved Jx), the charge-charge
Hall conductance for the insulating states remains quantized,
σ chch

yx = (e2/h)Cchch, but the color-charge, charge-color, and
color-color conductances are no longer proportional to cor-
responding Chern numbers, and thus no longer quantized.
Nevertheless, the Chern numbers, which are a property of
the ground-state wave function, can still be used to classify
the insulating phases. However, measurements of color Hall
conductances can no longer yield color Chern numbers that
characterize the insulating phases. We concluded that to clas-
sify topological color insulators for SU(3) fermions, whether
color is conserved or not, three topological invariants are
necessary, Cchch, Ccoch or Cchco, and Ccoco, unlike in the SU(2)
spin-1/2 case, where only two are needed: Cchch, Cspch, or
Cchsp.

In Sec. VIII, we provided a refinement of the classifica-
tion of topological color insulators through an analysis of the
robustness of edge state states with respect to disorder and
interactions. We defined strong topological color insulators
as systems where weak disorder and weak SU(3)-symmetric
interactions do not affect the ability of all edge states to
conduct. We defined intermediate topological color insulators
as systems where weak disorder and weak SU(3)-symmetric
interactions affect the ability of some, but not all, edge states
to conduct. We defined weak topological color insulators as
systems where weak disorder and weak SU(3)-symmetric in-
teractions affect the ability of all edge states to conduct.

When charge and color are conserved, all Hall conduc-
tances are quantized and the corresponding Chern numbers
can be extracted from Hall-conductance measurements. How-
ever, when color is not conserved or when edge states are
not robust to disorder and/or interactions, the color Hall con-
ductances are not quantized and their measurement cannot
provide the color Chern numbers that characterize topologi-
cal color insulators. This poses an experimental difficulty in
measuring the relevant color Chern numbers. For such cases,
it is necessary to identify bulk properties that relate to relevant
color Chern numbers. For the quantum Hall effect, the Streda
formula [54] connects the total density of states and filling
factors to the magnetic flux and the charge-charge Chern
number. This relation allows for the extraction of charge-
charge Chern numbers from bulk measurements of filling
factors or compressibility without the need to measure the
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charge-charge Hall conductance. Thus, we conjecture that a
color generalization of the Streda formula may allow for the
extraction of color Chern numbers via bulk measurements of
color-dependent filling factors or color-dependent compress-
ibilities. The derivation of such relations is an important out-
look for the measurement of color Chern numbers and, thus,
for the experimental characterization of topological color in-
sulators, whenever color Hall conductances are not quantized.

X. CONCLUSIONS

We investigated the quantum Hall response of SU(3)
fermions and analyzed the charge-charge, color-charge,
charge-color, and color-color Hall conductances. When color
projection was conserved, we related color-Hall conductances
to corresponding Chern numbers obtained from the Chern
matrix. In this case, we found that measurements of color-Hall
conductances can be used to extract color Chern numbers
and reveal the topological nature of color-insulating phases.
Even when color-Hall conductances are not quantized, we

showed that color Chern numbers, which are properties of
the ground-state wave function, can always be used to clas-
sify the topological insulating states. However, measurements
of color-Hall conductances can no longer reveal the color
Chern numbers, when color is not conserved. We showed
that three topological invariants are necessary to classify
topological color insulators: charge-charge, color-charge or
charge-color, and color-color Chern numbers. Lastly, we re-
fined this classification by analyzing the effects of disorder
and SU(3)-symmetric interactions on the ability of edge states
to conduct, and identified weak, intermediate, and strong
topological color insulators. An important outlook is the
identification of bulk measurements that may allow for the
extraction of color Chern numbers, even in cases where
the color-Hall conductances are not quantized. Such mea-
surements are possible if conjectured relations between the
color-dependent density of states or color-dependent filling
factors as a function of the magnetic flux and color Chern
numbers are derived.
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