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Mobility edges and critical regions in a periodically kicked incommensurate optical Raman lattice
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Conventionally the mobility edge (ME) separating extended states from localized ones is a central concept
in understanding Anderson localization transition. The critical state, being delocalized and nonergodic, is a
third type of fundamental state that is different from both the extended and localized states. Here we study the
localization phenomena in a one-dimensional periodically kicked quasiperiodic optical Raman lattice by using
fractal dimensions. We show a rich phase diagram including the pure extended, critical, and localized phases
in the high-frequency regime, the MEs separating the critical regions from the extended (localized) regions,
and the coexisting phase of extended, critical, and localized regions with increasing the kicked period. We also
find the fragility of phase boundaries, which are more susceptible to the dynamical kick, and the phenomenon
of the reentrant localization transition. Finally, we demonstrate how the studied model can be realized based on
current cold atom experiments and how to detect rich physics by expansion dynamics. Our results provide insight
into studying and detecting critical phases, MEs, coexisting quantum phases, and some other physics phenomena
in the periodically kicked systems.
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I. INTRODUCTION

Anderson localization (AL) [1–3], namely, that eigenfunc-
tions are exponentially localized in space because of the
quantum interference in disordered systems, is a fundamental
quantum phenomenon in nature. The transition between metal
(extended) phase and insulator (localized) phase can occur
for sufficiently strong disorder in three-dimensional systems,
and near the transition point, there exist mobility edges (MEs)
which mark the critical energy separating the extended and
localized states [2,4]. MEs lie at the heart of studying various
fundamental localization phenomena such as the disorder-
induced metal-insulator transition. The effect of suppressing
diffusion via quantum interference is particularly pronounced
in one and two dimensions, in which the eigenstates are al-
ways localized for arbitrarily small disorder strengths [5], and
thus no MEs exist. Besides random disorder, quasiperiodic
potentials can also induce extended-AL transition and bring
about different physics, e.g., the existence of Anderson transi-
tion and MEs even in one-dimensional (1D) systems [6–21]
and multifractal critical states [22–30]. Critical phase is a
third type of phase, and is fundamentally different from the
localized and extended phases in spectral statistics [31,32],
wave function distributions [33,34], and dynamical behav-
iors [35,36].

Quasiperiodic systems have been realized in ultracold
atomic gases by superimposing two 1D optical lattices with
incommensurate wavelengths, and the extended-localized
transition and MEs have been observed [37–41]. However,
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the critical phase has not been strictly realized in experiments
until now. In recent works, we have proposed to realize the
critical phase in the optical Raman lattice [29], which pos-
sesses the spin-orbit coupling term and an incommensurate
Zeeman potential. Further, we have predicted a coexisting
phase consisting of three different energy-dependent regions,
i.e., the extended, localized, and critical regions [42], which
shows abundant transport features. Recently, Shimasaki et al.
reported the experimental observation of critical states and
anomalous localization in a kicked quasiperiodic Aubry-
André (AA) lattice [43]. In the kicked AA model, there is not
the critical phase but the phase with coexisting critical and
localized (or extended) regions [44]. An important question is
whether the critical phase consisting of solely critical eigen-
states and the most nontrivial coexisting phase composed of
three different regions can be realized in kicked systems.

Motivated by the recent experimental realizations of the
optical Raman lattices [45–53] and kicked systems with AL in
ultracold atomic gas [43,54], we propose a scheme to realize
the critical phase and the coexisting phase based on the 1D
optical Raman lattice with periodically kicked quasiperiodic
Zeeman potential. This system displays extremely rich local-
ization phenomena as the change of the driven period.

II. MODEL AND PHASE DIAGRAM

We propose the periodically kicked quasiperiodic optical
Raman lattice model described by

H = H0 + HSOC + HK , (1)
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FIG. 1. (a) The mean fractal dimension �̄ with L = F14 = 610 as a function of the kicked quasiperiodic potential strength Mz and the
period T . The dashed lines correspond to Mc

z /T = 2|J0 − Jso| and Mc
z /T = 2(J0 + Jso), respectively. � for the wave function of each mode

at (b) Mz = 0.09, 0.29 and (c) 0.11, 0.31 with different sizes and fixed T = 0.1. The index of energy mode nE runs from 1 to N = 2L. �

as a function of nE/N for the sizes L = F13 = 377 and L = F15 = 987 with (d) Mz = 0.8, T = 0.8, (e) Mz = 3, T = 0.8, and (f) Mz = 2.3,
T = 1.7. Here we set J0 = 1 and Jso = 0.5.

with

H0 = −J0

∑
〈i〉

(c†
i,↑ci+1,↑ − c†

i,↓ci+1,↓) + H.c., (2a)

HSOC = Jso

∑
i

(c†
i,↑ci+1,↓ − c†

i,↑ci−1,↓) + H.c., (2b)

HK =
∑

n

δ(t − nT )
∑

i

μi(ni,↑ − ni,↓), (2c)

where ci,σ , c†
i,σ , and ni,σ = c†

i,σ ci,σ are the annihilation,
creation, and particle number operators at lattice site i, re-
spectively, and σ =↑,↓ denotes the spin. The term H0 (HSOC)
presents the nearest-neighbor spin-conserved (spin-flip) hop-
ping with strength J0 (Jso), and for convenience, we set J0 = 1
as the energy unit. HK denotes the kicking part with

μi = Mz cos(2παi + φ), (3)

where α and φ are the irrational number and phase shift,
respectively. Without loss of generality, we set Jso = 0.5, φ =
0 [55,56] unless otherwise stated, and α = (

√
5 − 1)/2, which

is approached by α = limm→∞
Fm−1

Fm
. Here Fm is the Fibonacci

number defined by Fm+1 = Fm−1 + Fm with the starting val-
ues F0 = F1 = 1 [57]. For a finite system with size L = Fm,
we take α = Fm−1

Fm
when using periodic boundary conditions.

When the Zeeman potential is constantly turned on, i.e., HK =∑
i μi(ni,↑ − ni,↓), there are three distinct phases: extended,

critical, and localized [29]. The phase boundary between the
extended and critical phases satisfies Mc

z = 2|J0 − Jso| and
the phase boundary between the critical and localized phases
satisfies Mc

z = 2(J0 + Jso).

The dynamical evolution of this kicked system is described
by the Floquet unitary propagator over one period, i.e.,

U (T ) = e−i(H0+HSOC )T e−i
∑L

j=1 μ j (n j,↑−n j,↓ ). (4)

Here we have set h̄ = 1. In the basis of | j, σ 〉, 〈i, σ |U | j, σ ′〉
is a 2L × 2L matrix. For an initial state |ψ (0)〉, the evolu-
tion state after NK kicked periods is given by |ψ (NK T )〉 =
[U (T )]NK |ψ (0)〉. Thus, the distribution of the eigenstate
|ψβ〉 of the propagator U (T ) with Floquet energy Eβ , i.e.,
U (T )|ψβ〉 = e−iEβ T |ψβ〉, can reflect the dynamical property
of this kicked system. To describe the distribution, we intro-
duce the fractal dimension, which for an arbitrary eigenstate
|ψβ〉 = ∑L

j=1[uβ, jc
†
j,↑ + vβ, jc

†
j,↓]|0〉 is defined as

� = − lim
L→∞

ln (IPR)

ln L
, (5)

where IPR = ∑L
j=1(u4

β, j + v4
β, j ) is the inverse participation

ratio (IPR) [2]. It is known that � → 0(1) for the localized
(extended) states, while 0 < � < 1 for the critical state. To
sketch out the phase diagram, we define the mean fractal
dimension over all eigenstates: �̄ = (2L)−1 ∑2L

β=1 �(β ). Fig-
ure 1(a) shows �̄ as a function of Mz and T with fixed
Jso = 0.5. In the high-frequency regime T 
 1, it is shown
that the phase boundaries between the critical and extended or
localized phases of this system can be well described by the
dashed lines, which correspond to

Mc
z /T =

{
2|J0−Jso|, between extended and critical phases,
2(J0+Jso), between critical and localized phases.

(6)
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To see it clearly, in Figs. 1(b) and 1(c), we fix T = 0.1 and
show � of different eigenstates as a function of nE/N for dif-
ferent sizes, where N = 2L is the number of total eigenstates.
One can observe that � tends to 1 for all states at Mz = 0.09
(satisfying Mz/T < 2|J0 − Jso|) with increasing the system
size, meaning that they are extended, while � tends to 0 for
all states at Mz = 0.31 [satisfying Mz/T > 2(J0 + Jso)] when
increasing the size, implying that all states are extended. In
contrast, when Mz = 0.11 and 0.29 [satisfying 2|J0 − Jso| <

Mz/T < 2(J0 + Jso)], � is clearly different from 0 and 1, and
almost independent of the system size, showing that all states
are critical. To understand this result, we derive the effective
Hamiltonian Heff in the high-frequency regime, namely,

U (T ) = exp(−iHeffT ). (7)

By using the Baker-Campbell-Hausdorff formula [58] and
combining Eqs. (4) and (7), one can obtain

Heff = H0 + HSOC + Mz

T
V − i

Mz

2
[H0 + HSOC,V ]

+ T Mz

12
[H0 + HSOC, [H0 + HSOC,V ]] + · · · , (8)

where V = ∑L
j=1 cos(2πα j)(n j,↑ − n j,↓). When 1/T � 1

and Mz 
 1, the effective Hamiltonian is simplified as Heff =
H0 + HSOC + Mz

T V , which is equivalent to that obtained by
transforming the HK in Eq. (1) into HK = ∑

i μi/T (ni,↑ −
ni,↓) and leaving H0 and HSOC unchanged. Compared with
the nonkicked case [29], this effective model includes three
distinct phases, and the phase boundaries satisfy Eq. (6).

With increasing T , the high-order terms in Eq. (8) can’t
be neglected, and thus, the effective Hamiltonian includes the
nonneighbor hopping term, which will induce the occurrence
of MEs [8,9,13]. Figures 1(d) and 1(e) show � for different
sizes and Mz with fixed T = 0.8. We see that � tends to 1
(0) for the states in the center of the energy spectra of the
system with Mz = 0.8 (Mz = 3) when increasing the system
size, suggesting that they are extended (localized). In contrast,
in the tails of the energy spectra in both Figs. 1(d) and 1(e),
the fractal dimension � is clearly different from 1 and 0, and
is almost independent of system sizes, implying that all states
are critical. Thus, there exist energy-dependent extended and
critical regions when Mz = 0.8, and energy-dependent local-
ized and critical regions when Mz = 3, meaning that there are
MEs separating the extended and localized states from the
critical states, which are different from the conventional MEs
separating the extended states from the localized ones. With
the further increasing of T , there will be a quantum phase
with three coexisting fundamentally different regions, i.e., the
localized, extended, and critical regions, as shown in Fig. 1(f).

Now we consider the finite size effect of the fractal di-
mension �. When changing the system size, the number and
magnitudes of the eigenvalues will change accordingly. Thus,
it is difficult to carry out the finite size scaling analysis for a
fixed eigenstate. We take a coarse graining on the spectrum
and investigate the average � over the eigenstates in a single
region, and accordingly we define

�̄ = 1

Nr

∑
same region

�, (9)

FIG. 2. �̄ as a function of 1/m for different regions with (a) Mz =
0.8, T = 0.8 [corresponding to Fig. 1(d)] and (b) Mz = 2.3, T = 1.7
[corresponding to Fig. 1(f)]. Here m are the Fibonacci indices.

where Nr is the number of eigenstates in the region and can be
obtained by comparing the fractal dimension with different
sizes, as shown in Figs. 1(b)–1(f). Since all eigenstates in
the same region have the same properties, the average fractal
dimension in an arbitrary small subregion of a region can
also be similarly defined, and will display the same scaling
behavior with the region. Figures 2(a) and 2(b) show �̄, which
are obtained by computing the average � of all states in
the same region of the systems corresponding to Figs. 1(d)
and 1(f), respectively. �̄ extrapolates to 1 and 0.75 in the
extended and critical regions of Fig. 1(d), which confirms
that the corresponding states in these regions are extended
and critical, respectively. �̄ respectively extrapolates to 0, 1,
and the value far from 0 and 1 in the three different regions
of Fig. 1(f), which confirms the corresponding system with
three coexisting energy-dependent regions, i.e., the extended,
localized, and critical regions.

To clearly and completely characterize the phase diagram
of this system, we introduce the extended-state fraction Ne/N ,
localized-state fraction Nl/N , critical-state fraction Nc/N , and
their product [42],

κ = Ne

N
× Nl

N
× Nc

N
, (10)

where Ne, Nl , and Nc are the numbers of the extended, local-
ized, and critical eigenstates, respectively. These diagnostic
quantities can characterize all different phases. Ne/N = 1,
Nc/N = 1, and Nl/N = 1 correspond to the extended, criti-
cal, and localized phases, respectively. In the large L limit,
Ne/N × Nl/N > 0 and κ = 0 characterize the conventional
ME separating localized states from extended ones. Ne/N ×
Nc/N > 0 (Nc/N × Nl/N > 0) and κ = 0 describe the ME
separating critical states from extended (localized) states. The
phase with coexisting localized, extended, and critical regions
corresponds to κ > 0.

Figures 3(a)–3(c) show the Ne/N , Nc/N , and Nl/N , re-
spectively. We see that when T 
 1, this system possesses
three phases with solely extended, critical, and localized
eigenstates, which correspond to Ne/N = 1, Nc/N = 1, and
Nl/N = 1, respectively, and the phase boundaries satisfy
Eq. (6). With increasing T , eigenstates with different prop-
erties overlap each other. Figures 3(d)–3(g) display the be-
havior of Ne/N × Nl/N , Ne/N × Nc/N , Nc/N × Nl/N , and κ ,
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FIG. 3. (a) Ne/N , (b) Nc/N , (c) Nl/N , (d) Ne/N × Nl/N , (e) Ne/N × Nc/N , (f) Nc/N × Nl/N , and (g) κ as a function of Mz and T . (h)
Schematic figure of the density of states ρ(E ) as a function of energy E for a system with coexisting extended, critical, and localized regions.
We note that (h) is a sketch map, and the positions of the three different regions depend on specific systems. Here we fix J0 = 1 and Jso = 0.5.
From (a)–(c) we see that Ne/N = 1, Nc/N = 1, and Nl/N = 1 in three phases with the boundaries satisfying Eq. (6) when T < 0.4. With
increasing T to T ∈ (0.4, 0.9), from (f), Nc/N × Nl/N > 0 corresponds to the phase with coexisting critical and localized states, which suggests
the existence of MEs separating critical states from localized ones. In this region, from (a), (b), and (e), we see Ne = 1 and Nc = 1 when the
parameters are slightly away from the boundary described as Eq. (6), but Ne × Nc > 0 at the boundary. The change occurs only at the region that
is very close to the boundary, meaning that the states in this region are more susceptible. When T ∈ (0.9, 1.5), there are regions corresponding
to Ne/N × Nc/N > 0 (e) or Nc/N × Nl/N > 0 (f), but no regions are κ > 0, meaning that there exists a phase with coexisting extended (or
localized) and critical regions, but no phase with three different coexisting regions exists. When T ∈ (1.5, 2.5), κ > 0 means the existence of
a phase with coexisting extended, critical, and localized regions. We summarize these results in (i).

respectively. We see that when T > 0.4, there is a broad
phase region corresponding to Nc/N × Nl/N > 0 and κ = 0
[Figs. 3(f) and 3(g)], meaning that there is a phase with
coexisting critical and localized regions, and thus there are
MEs separating the critical states from localized ones. Further
increasing T , there will appear a phase with coexisting ex-
tended and critical regions [Fig. 3(e)] and a phase with three
coexisting regions [Fig. 3(g)]. Figure 3(h) is a sketch of the
phase with three coexisting fundamentally different regions,
and one can see two types of MEs separating the localized and
extended regions from critical regions, respectively. Although
there exists a broad region corresponding to Ne/N × Nl/N >

0 [Fig. 3(d)], κ is nonzero in this region [Fig. 3(g)], meaning
that there is not a phase with coexisting extended and localized
regions but no critical region here. The different behaviors
as the driven period changes are summarized in Fig. 3(i).
Further, in the range of T ∈ (0.4, 0.9), from Figs. 3(a)–3(e),
we see that the phases on both sides of the phase boundary

between the extended and critical phases remain extended and
critical, respectively, but the phases on either side of the phase
boundary between the critical and localized phases are more
easily influenced by the period T and they no longer remain
solely critical or localized. This phenomenon can be under-
stood from Eq. (8), since Mz near the phase boundary between
the critical and localized phases is larger, which implies that
the high-order terms are larger and impact the original phases
more easily in the process of increasing T .

III. TWO INTERESTING PHENOMENA: FRAGILITY OF
PHASE BOUNDARIES AND REENTRANT

LOCALIZATION TRANSITION

Besides the rich physical properties about the MEs and
the critical phase or regions in the phase diagram, there are
also two interesting phenomena. From the above section, the
phases on both sides of the extended-critical phases boundary
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FIG. 4. Fractal dimension � as a function of nE/N for L = 377
and L = 987 with (a) Mz = 0.7, T = 0.8, (b) Mz = 0.9, T = 0.8,
(c) Mz = 2.6, T = 1, and (d) Mz = 2.9, T = 1. (e and f) �̄ as a
function of 1/m. (e) The average � over all eigenstates of (a) and
different regions of (c). (f) The average � over all eigenstates of
(b) and (b). Here we set J0 = 1 and Jso = 0.5.

are unaffected by the periodical kick when T ∈ (0.4, 0.9), i.e.,
they remain extended or critical behaviors. However, the states
on the phase boundary are easily affected. All eigenstates
are originally critical on the phase boundary between the
extended and critical phases when the quasiperiodic potential
is nonkicked, i.e., Nc/N = 1 and Ne/N = 0 on the boundary.
When T 
 1, the effective Hamiltonian can be described by
the Hamiltonian without the kicked case. Thus, the boundary
is unaffected and has Nc/N = 1. With increasing T , Ne/N ×
Nc/N becomes nonzero, as shown in Fig. 3(e) [59], which
suggests that the boundary comes from the situation with all
eigenstates being critical to the situation with extended and
critical states being coexisting. For the parameters slightly
away from the boundary, the extended and critical phases
remain unaffected. To illustrate this, we fix T = 0.8 and show
the fractal dimensions of all eigenstates with Mz = 0.7 and
Mz = 0.9 in Figs. 4(a) and 4(b), respectively. It can be seen
that Ne/N = 1 for Mz = 0.7 [Fig. 4(a)] and Nc/N = 1 for
Mz = 0.9 [Fig. 4(b)], which are slightly away from the bound-
ary Mc

z /T = 2|J0 − Jso| = 1 (we have fixed J0 = 1 and Jso =
0.5) and show similar properties with the nonkicked case. In
comparison, on the boundary with Mz = 0.8, Ne/N × Nc/N is

larger than 0, as shown in Fig. 1(d), suggesting that the states
are no longer solely critical. Thus, the phase boundary is more
susceptible to the periodical kick, which shows the fragility of
the phase boundary.

Another interesting phenomenon is the reentrant local-
ization transition, namely, that with increasing quasiperiodic
potential strength, after the AL transition, some of the lo-
calized states become extended for a range of intermediate
potential strengths, and eventually these states undergo the
second localization transition at a higher quasiperiodic po-
tential strength [19]. Figures 4(c) and 4(d) show the fractal
dimension of this system with Mz = 2.6 and Mz = 2.9 for the
fixed T = 1. We see that when Mz = 2.6, there exist critical
and localized regions, but when Mz = 2.9, all eigenstates be-
come critical, meaning that with increasing the quasiperiodic
potential strength, some localized states become delocalized.
Naturally, further increasing the potential strength, these states
once again become localized. The phenomenon of the reen-
trant localization transition can only occur when T > 0.8,
namely, in the low-frequency region. We note that there is not
the reentrant localization transition when the quasiperiodic
potential is nonkicked [29]; the occurrence of this phe-
nomenon is because the potential is added in the kicked way.

To further confirm the extended, critical, or localized prop-
erties in different regions, we carry out finite size analysis
by calculating �̄, as shown in Figs. 4(e) and 4(f). The mean
fractal dimension �̄ averaged over all eigenstates in Fig. 4(a)
tends to 1 [blue spheres in Fig. 4(e)], suggesting that all eigen-
states are extended. Similarly, we can confirm that the system
in Fig. 4(c) includes the localized and critical regions [red
squares and green triangles in Fig. 4(e)], and all eigenstates
in Figs. 4(b) and 4(d) are critical [see Fig. 4(f)].

IV. EXPERIMENTAL REALIZATION AND DETECTION

A. Experimental realization

We propose to realize the Hamiltonian (1) based on
apodized Floquet engineering techniques [43,54] and opti-
cal Raman lattices [45–53]. Figure 5(a) shows the schematic
diagram, where E1 with z polarization is a standing-wave
beam and E3 with x polarization is a plane wave. They
are applied to generate the spin-independent main lattice
V1(x) = Vm cos2(k1x) with the depth Vm, which induces spin-
conserved hopping (H0), and a Raman coupling potential to
generate spin-flip hopping (HSOC). The periodically kicked
quasiperiodic potential (HK ) is realized by periodically ap-
plying another standing wave E2, which is used to generate
a spin-dependent lattice V2(x)σx = Vs cos2(k2x)σx with the
depth Vs. In this setting, the lattice wave numbers k1,2 are
easily tunable in the experiment to make them incommensu-
rate with the product of the irrational number α = k2/k1. In
the tight-binding approximation, the realized Hamiltonian is
given by

H = H0 + HSOC + F (t )�
∑

i

cos(2παi)(ni,↑ − ni,↓), (11)

with

F (t ) =
∑

n

gτ (t − nT ) (12)
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FIG. 5. (a) Schematic of the experimental setup. E1 is a stand-
ing wave with z polarization, which generates the spin-independent
main lattice. E2 is the kicked standing wave giving the kicked
quasiperiodic potential. E3 is a plane wave, which is used to form
the Raman coupling potential. (b) Experimental sequence composed
of the finite-width, unit-height pulse with the effective pulse width τ

and the pulse interval T .

being the waveform of the periodic pulse train. Here gτ de-
scribes the shape of the pulse, T is the pulse interval, and τ

is the effective width of the single pulse, τ = ∫ ∞
−∞ gτ (t )dt ,

as shown in Fig. 5(b), where we take the square pulses as an
example. In the limit of small τ [43], �F (t ) = ∑

n Mzδ(t −
nT ), where Mz = � · τ , and then the Hamiltonian (11) be-
comes the Hamiltonian (1).

B. Experimental detection

Next we study the detection of different phases based on
the expansion dynamics. We consider a wave packet with
spin up initially at the center of the lattice, i.e., |ψ (0)〉 =
c†

(L+1)/2,↑|0〉 (let the size L be odd), and the final state is set as

|ψ (t )〉 = ∑L
j=1[u j (t )c†

j,↑ + v j (t )c†
j,↓]|0〉. We firstly focus on

the survival probability P(r), defined as

P(r) =
∑

| j− L+1
2 |�r/2

|(u j (t )|2 + |v j (t )|2), (13)

which describes the probability of finding the particle after a
given time t in the sites within the region [−r/2, r/2] [13].
After a long-time evolution (t → ∞), P(r) is proportional to
(r/L)D2 , with D2 being the generalized dimension of spectral
measures [13,60,61]. For the extended phase, the distribution
of the final state will be uniform, and thus P(r) linearly in-
creases as r increases. For the localized phase, the particle
will localize at the position near the initial point, and thus
P(r) quickly reaches 1 within a small r. For the critical phase,
the distribution is delocalized and nonergodic, and thus P(r)
reaches 1 when r → L but the increasing rate is not linear.
Figure 6(a) shows the typical distributions of P(r) with long
times in the extended phase (green line), critical phase (red
line), and localized phase (blue line). For sufficiently large
r/L, we have P(r) ≈ (r/L)D2 with D2 = 0, 1 and 0 < D2 < 1

FIG. 6. Long-time survival probability (t = 5 × 107T ) with
(a) Mz = 0.05 (extended phase), Mz = 0.2 (critical phase), Mz = 0.4
(localized phase), and the fixed T = 0.1; (b) T = 1 and Mz = 2.6
corresponding to the phase with coexisting critical and localized
regions [see Fig. 4(c)], and T = 1.7 and Mz = 2.3 corresponding to
the phase with coexisting extended, critical, and localized regions
[see Fig. 1(f)]. For (a) and (b), we take 20 samples, with a sample
being specified by choosing an initial phase φ. The dashed line is
plotted by fixing D2 = 0.75 and changing c0 to fit the data points as
in Eq. (14). Log-log plot of W versus the time t for (c) T = 1 and
Mz = 2.6 and (d) T = 1.7 and Mz = 2.3. We choose L = 987 for all
figures.

for the localized, extended, and critical phases, respectively,
and 0 < D2 < 1 reflects the nonergodic character of the criti-
cal phase. For a system with MEs, the distribution of P(r) will
become complex. Figure 6(b) shows the P(r) of the phase with
coexisting localized and critical regions (blue line) and the
phase with three different coexisting regions (red line). P(r)
dramatically increases for a small r, suggesting the existence
of localized regions, but reaches 1 when r → L, meaning that
delocalized regions also exist. For the phase with coexisting
localized and critical regions, the increasing rate of P(r) is
determined by the states in the critical region, and the average
fractal dimension can be extracted by

P(r) = (r/L)D2 (1 − c0) + c0, (14)

where c0 is the constant that depends on the proportion of
the localized states in all eigenstates. Figure 4(e) tells us
�̄ ≈ 0.75, and thus we plug D2 = 0.75 into Eq. (14) to well
fit the P(r). From Fig. 6(b), Eq. (14) with D2 = 0.75 can
also be well fit to the coexisting phase with three different
regions. Thus, it is difficult to further distinguish whether the
delocalized regions are critical or coexisting with critical and
extend regions from P(r) with t → ∞.

To see the differences between the two cases in Fig. 6(b)
in dynamics, we should not consider the distributions after a
long-time evolution. Instead, we should consider the process
of the expansion of the wave packet. To characterize the ex-
pansion of the above initial state, we consider the mean square
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displacement [29,35–37],

W (t ) =
√∑

j

[ j − (L + 1)/2]2[u j (t )|2 + |v j (t )|2], (15)

which measures the width of the wave packet after the evo-
lution time t . W (t ) can be expressed as W (t ) ≈ tγ , with γ

being the dynamical index. For the AA model, γ = 0, γ = 1,
and γ ≈ 1

2 in the localized phase, extended phase, and critical
point, respectively, meaning that the corresponding expansion
is localized, ballistic, and normal diffusive, respectively. For
the coexisting phase, W (t ) is not straightforward to tγ , as
shown in Figs. 6(c) and 6(d). It is obvious that the coexisting
phase including the extended region expands more quickly
and reaches the boundary faster. Further, from the viewpoint
of the transport [62,63], the conductivity is independent of
the system size in the extended region, while it decreases
in the power-law and exponential fashion with the system
size in the critical and localized region, respectively. Thus,
by shifting the position of the Fermi energy across different
regions, one can detect the corresponding transport properties
and further obtain more precise information of the coexisting
phases.

V. SUMMARY

We have investigated the critical and localized properties in
the 1D periodically kicked quasiperiodic optical Raman lattice
by comparing the fractal dimensions with different sizes. This
system shows a rich phase diagram. In the high-frequency
regime (T 
 1), the transition between the extended and
critical phases occurs at Mz/T = 2|J0 − Jso|, and the tran-
sition between the critical and localized phases occurs at
Mz/T = 2(J0 + Jso), which can be interpreted from the effec-
tive Hamiltonian of this system. With increasing T , there is
a phase with coexisting critical and localized regions and a
phase with coexisting extended and critical regions. The two
phases exhibit two types of MEs which separate the localized
states from critical ones, and the extended states from critical
ones, respectively. Further increasing T , leads to a coexisting
phase of extended, critical, and localized regions. We have
also found the fragility of the phase boundary, namely, that the
phase boundary is more susceptible to dynamical kick, and the
phenomenon of the reentrant localization transition. Finally,
we have studied in detail the experimental realization, which
can be immediately achieved in the current experiments, and
the experimental detection based on the expansion dynamics
of the wave packet. Our results show that the periodically
kicked incommensurate optical lattice is an effective way to
study and detect the critical phase, MEs, coexisting quantum
phases, and some other interesting phenomena.
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APPENDIX: DETAILS FOR THE FINITE SIZE
SCALING ANALYSIS

In the main text, we carried out the finite size scaling anal-
ysis by plotting �̄ as a function of 1/m. Since we focused on
the value of �̄ when the system size tends to infinity and used
it to distinguish different regions, we omitted some details,
such as error bars or uncertainty analysis of the fit. Before
discussing these details, we firstly explain why we used the
fractal dimension instead of the inverse participation ratio
(IPR), even though IPR is the frequently used quantity to dis-
tinguish localized from extended states. For extended states,
one has (IPR ≈ 1/L → 0 for L → ∞, and for localized states
the IPR approaches a finite nonzero value for L → ∞. There-
fore, the IPR criterion can distinguish only between localized
and extended states; there is no room for a third kind of state.
Therefore, we use the fractal dimension �, which tends to 0, 1,
and a finite value between 0 and 1 when L → ∞ for localized,
extended, and critical states, respectively.

There are a variety of ways to perform the finite size
scaling analysis. For example, the horizontal axis can be
1/log(L) or 1/m, where m is the Fibonacci index, and the
ordinate axis can be the fractal dimension or index αmin,
where αmin = − log(nmax )

log(L) with nmax being the distribution

peak [15,20,28,29]. Figure 7 shows �̄ as a function of
1/log(L) for different regions with the same parameters
as in Fig. 2. We use the linear function y = Ax + B to
fit the data points, where A and B are the undetermined
coefficients. One can determine A = −1.0102 ± 0.1208, B =
0.9952 ± 0.0482 and A = −0.13825 ± 0.22405, B =
0.7751 ± 0.0394 for the blue and red data points in
Fig. 7(a); A = −1.71635 ± 0.17335, B = 0.992 ± 0.0267
and A = −0.45305 ± 0.55795, B = 0.7288 ± 0.0951 for the
blue and red data points in Fig. 7(b); and A =
2.1180 ± 0.2155, B = 0.0011 ± 0.0178 and A = 2.09175 ±
0.20375, B = −0.00655 ± 0.03385 for the green data points
in Fig. 7(b). One can see that there exist obvious deviations
for the second red data point from the right in both Figs. 7(a)
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and 7(b), which lead to larger errors of the fitting results.
After removing the second red data point in the process
of fitting, we can determine A = −0.05498 ± 0.0298, B =
0.7539 ± 0.0050 for the red data points in Fig. 7(a) and
A = −0.243 ± 0.3865, B = 0.6996 ± 0.064 for the red data
points in Fig. 7(b). We see that when L → ∞, the �̄ of the

extended and localized regions respectively tend to 1 and
0 within error permissibility, while for the critical region,
�̄ is far from 0 and 1, manifesting that the critical states
are fundamentally different from the extended and localized
states. The same kind of analysis applies to the case where
the horizontal axis is 1/m.
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