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Topology and its detection in a dissipative Aharonov-Bohm chain
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In a recent experiment, a dissipative Aharonov-Bohm (AB) chain was implemented in the momentum space of
a Bose-Einstein condensate. Formed by a series of dissipative AB rings threaded by synthetic magnetic flux, the
chain exhibits the non-Hermitian skin effect, necessitating the non-Bloch band theory to account for its topology.
In this work, we systematically characterize topological features of the dissipative AB chain, particularly beyond
the experimentally realized parameter regime. Further, we show that atom-injection spectroscopy is capable of
revealing not only topological edge states, as has been demonstrated in the experiment, but also the general band
structure of the system. We then discuss alternative dynamic detection schemes for the topological edge states.
Given the generality of the model and the detection schemes, our work is helpful for future studies of topological
models with non-Hermitian skin effects across a variety of quantum simulators.
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I. INTRODUCTION

State-of-the-art quantum control in systems such as pho-
tonics [1-3], cold atoms [4-7], and trapped ions [8—10] offers
unprecedented access to the rich dynamics and exotic phe-
nomena in open quantum systems that undergo particle or
energy exchange with their environment. A non-Hermitian
description applies therein, for instance, by imposing posts-
election [11-15] or by mapping the density-matrix dynamics
to an enlarged Hilbert space [16-19]. The resulting non-
Hermitian physics provides an unconventional perspective of
open systems and has attracted extensive interest in recent
years. Dictated by a non-Hermitian effective Hamiltonian,
exotic spectral or dynamic properties, such as the parity-time
symmetry [20,21], enhanced sensing [22-24] and topologi-
cal transfer [3,7], non-Hermitian topology [25-30], and so
on, have been systematically studied and experimentally con-
firmed for a wide range of physical systems.

The recent discovery of the non-Hermitian skin effect
has stimulated further research activities [31-42]. Under the
non-Hermitian skin effect, eigenstates of a system become
exponentially localized at boundaries, leading to dramatic
changes in the system’s band and spectral topology [36,37],
dynamics [16,18,19,40-42], and spectral symmetry [43-45].
Experimentally, the non-Hermitian skin effect and its con-
sequences have been observed in classical and photonic
systems [46—49], as well as in a Bose-Einstein condensate of
ultracold atoms [50]. In the last case, a dissipative Aharonov-
Bohm (AB) chain was implemented in the momentum and
hyperfine-spin space of the condensate atoms. As illustrated
in Fig. 1, the AB chain consists of a series of triangular AB
rings [6], each threaded by a synthetic magnetic flux, realized
by engineering the phases of the nearest-neighbor hopping
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rates. Dissipation is introduced through on-site particle loss
for each ring, such that the dynamics of atoms that remain
in the chain is driven by a non-Hermitian Hamiltonian that
features nontrivial band topology. Importantly, the interplay
of synthetic flux and dissipation gives rise to a nonreciprocal
flow in the bulk that lies at the origin of the non-Hermitian
skin effect. In the experiment, the non-Hermitian skin ef-
fect was observed through a directional propagation of atoms
along the chain, while the topological edge states were probed
through inverse spectroscopy, where atoms are injected into an
empty dissipative AB chain from a bystander state. Despite its
experimental implementation, a systematic study of the topo-
logical properties of the dissipative AB chain is missing in the
literature. Further, given the intrinsic difficulty of detecting
topological edge states in the presence of non-Hermitian skin
effects (as both are localized at the boundary), a greater variety
of detection schemes is desirable.

In this work, we carry out a systematic study of the dis-
sipative AB chain, focusing on its topology and detection.
We identify an additional topological phase transition be-
yond the experimentally demonstrated parameter regime and
derive analytical expressions for the topological transition
points using the non-Bloch band theory. Invoking the theo-
retical framework of Feshbach projection [11,51], we derive
the transfer rates of the experimentally implemented atom-
injection spectroscopy, which are in good agreement with
numerical simulations. In the experiment, atoms were injected
into an open edge of the AB chain to detect the topological
edge states. Here we show that by injecting atoms into a bulk
site far away from the boundary, spectral information under
the periodic boundary condition can be obtained from the
transfer rate. We then propose a dynamic detection scheme
for the topological edge states.

The paper is organized as follows. In Sec. II, we review
the model Hamiltonian for the dissipative AB chain and show
that it has the non-Hermitian skin effect. In Sec. III, we
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FIG. 1. Schematic illustration of a dissipative Aharonov-Bohm
chain. Each unit cell consists of three sublattice sites, a, b, and c,
forming a triangular loop threaded by a flux ¢. The green, blue, and
red bounds denote hopping between adjacent sites. See the text for
the definition of variables.

characterize its topological properties using the non-Bloch
band theory. We then provide a theoretical characterization of
the injection spectroscopy in Sec. IV. In Sec. V, we discuss the
dynamic detection of topological edge states. We summarize
in Sec. VL.

II. MODEL

The non-Hermitian Hamiltonian of the dissipative AB
chain illustrated in Fig. 1 is given by [6,50]

N
H = Z[prla,, + JSCan + Jvei"’alcn + H.c.]

n=1

(1)
N-1 N
+ D Uiay, b+ Hel + ) (A = iy)cie.

n=1 n=1

Here a, (a}), b, (b)), and ¢, (c}) are, respectively, the annihi-
lation (creation) operators for the a, b, and c sublattice sites of
the nth unit cell. J,, J;, and J; are the nearest-neighbor hopping
rates. A and y are, respectively, the on-site potential and the
loss rate on site c¢. The phase ¢ € [0, 27) corresponds to a
synthetic magnetic flux.

Hamiltonian (1) hosts topological edge states under the
open boundary condition. For finite y and ¢ ¢ {0, 7}, all
eigenstates accumulate on the boundaries under the non-
Hermitian skin effect. As demonstrated in Ref. [6], this can
be understood in the limit A, y > J;, J,, J;, when Hamilto-
nian (1) can be perturbatively reduced to a non-Hermitian
Su-Schrieffer-Heeger model with asymmetric hopping. Phys-
ically, this is because the interplay of the synthetic flux and
on-site loss gives rise to a nonreciprocal flow along the chain.
Beyond such a limit, the dissipative AB chain is qualitatively
different from a non-Hermitian Su-Schrieffer-Heeger model,
particularly for the lack of chiral symmetry. Nevertheless,
both the non-Hermitian skin effect and band topology persist
as salient features of the dissipative AB chain.

In Fig. 2, we show typical eigenspectra of the model under
the open boundary condition. Two gap-closing points can be
identified and are particularly visible in Re(E'), where topo-
logical edge states emerge. The topological transitions are
robust under variations of ¢ and y; their locations, however,
sensitively depend on these parameters. In the following, we
denote the location of the topological phase transitions as
Ji.c1 and J; .o, which are associated with the edge states in
red and blue, respectively, in Fig. 2. We further denote the
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FIG. 2. Eigenspectra of a dissipative AB chain under the open
boundary condition. We take N = 100 unit cells, J;/J, =2, ¢ =
m/2, AJJ, =—2,and y/J, = 1 for numerical calculations. (a) The
real [Re(E)] and (b) imaginary [Im(E )] components of eigenenergies
as a function of J;. The red and blue lines in (a) and (b) denote topo-
logical edge states, each twofold degenerate. The two topological
transition points are J; . /J, = 1.56 (associated with edge states in
red) and J; o /J, = 3.41 (associated with those in blue).

corresponding eigenenergies of the topological edge states as
E.| and E.,, respectively. Note that the transition at J, . was
experimentally probed in Ref. [50], but not the one at J; .

In Fig. 3, we show the spatial probability distribution of
eigenwave functions under different boundary conditions. We
choose the parameter J;/J, = 5, such that two pairs of topo-
logical edge states (indicated in red and blue) exist under
the open boundary condition. For finite y and ¢ ¢ {0, 7},
all eigenstates are localized toward the boundaries, indicating
the presence of the non-Hermitian skin effect. It follows that
topological edge states in Fig. 2 can be accounted for only by
non-Bloch topological invariants under the non-Bloch band
theory.

III. TOPOLOGY UNDER THE NON-BLOCH BAND
THEORY

Topological edge states of the dissipative AB chain are
characterized by the non-Bloch band theory [31,33]. The idea
is to take into account the deformation of the bulk eigen-
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FIG. 3. Spatial distribution of the eigenstates for an AB chain
with N = 100. We take J;/J, = 5, while other parameters are the
same as those in Fig. 2. Gray: periodic boundary condition. Black:
bulk eigenstates under the open boundary condition. Red and blue:
degenerate topological edge states with eigenenergies E.; and E,,
respectively.
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FIG. 4. (a)—(c) Eigenspectra of Hamiltonian equation (1) with N = 100 unit cells on the complex plane. Black: eigenspectra under the
periodic boundary condition. Orange, green, and purple show eigenspectra for three different bands under the open boundary condition. Red
and blue triangles denote the topological edge states with eigenenergies E.; and E,,, respectively. (d)—(f) GBZs on the complex plane. Orange,
green, and purple show GBZs for the three different bands in (a)—(c). The black dashed line is the unit circle, which corresponds to the
conventional Brillouin zone. For (a) and (d), J; /J, = 0.5; for (b) and (e), J;/J, = 2.5, and for (c) and (f), J;/J, = 5. Other parameters are the

same as those in Fig. 2.

states under the non-Hermitian skin effect, replacing the phase
factor ¢/ of the Bloch waves (under the periodic boundary
condition) with a spatial mode factor B(k) = |B(k)|e’. Here
the quasimomentum k € [0, 277), and the trajectory of B(k)
on the complex plane is known as the generalized Brillouin
zone (GBZ), which can be calculated from Schrodinger’s
equation as shown below.

In the spirit of the non-Bloch band theory, we write the
non-Bloch Hamiltonian as

0 Jy+ T T

I+ 4,8 0 VAR NG
Je™i® Js A —iy

H(p) =

Schrodinger’s equation in the GBZ is then [H(B) —
E]|<p§(ﬂ)) = 0, where E is the eigenenergy, |<pf(/3)) is the
right eigenstate, and j is the band index. Sending the deter-
minant of the eigenequation to zero, we have

3 gy — N preg

Pt e T RS-
2 2

E—(A—iy) )

The spatial mode functions (k) can be solved by requiring
the two roots of Eq. (3) to have the same magnitude, with
|B1] = |B2|. We then have [50]

1B = “4)

It is then straightforward to solve for E and |B(k)| from
Egs. (3) and (4) for each k. The resulting eigenenergy E gives
the eigenspectrum under an open boundary condition.

In Figs. 4(a)-4(c), we show the eigenspectra for different
parameters under both the periodic (dots) and open (solid
curves) boundary conditions. Under the periodic boundary
condition, the eigenenergies of each band form a closed spec-
tra loop, consistent with the well-known spectral topology of
the non-Hermitian skin effect. By contrast, under the open
boundary condition, the eigenenergies collapse to open arcs
within the closed loops. In Figs. 4(b) and 4(c), the discrete
red and blue dots outside the spectra loops correspond to the
topological edge states in Fig. 2.

In Figs. 4(d)-4(f), we plot the GBZs of the three bands
using the parameters for Figs. 4(a)—4(c), respectively. For all
cases, the calculated |8(k)| < 1, and the GBZs are within
the unit circle. This indicates that under the open boundary
condition, all eigenstates accumulate on the left boundary
(toward small unit-cell index n).

We are now in a position to calculate the non-Bloch wind-
ing number, which can restore the bulk-boundary correspon-
dence and predict the existence and number of topological
edge states. Unlike the non-Hermitian Su-Schrieffer-Heeger
model, the dissipative AB chain features three bands. The
non-Bloch winding number v is defined through the global
Berry phase, which is the sum of the Berry phases of all three
bands, with

1
v:EZ@)j. 5)
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FIG. 5. Bloch (gray) and non-Bloch (black) winding numbers.

The vertical dashed lines in red and blue denote J, ., and J, .,
respectively. All parameters are the same as those in Fig. 2.

Here the Berry phase of the jth band is given by

O =i aplel®sIele), ©
where the right and left eigenstates of H(f) are defined as
H(B)lgF(B) = Ejlef(B)) and HT(B)l@}(B)) = EFlpf(B)),
respectively. The integration in Eq. (6) is over the GBZ of the
jth band. When B is replaced by e’* in Eq. (6), the non-Bloch
winding number is reduced to the Bloch winding number
which characterizes the band topology of the system under
the periodic boundary condition.

In Fig. 5, we show the Bloch (gray) and non-Bloch
(black) winding numbers. The non-Bloch winding number is
quantized to integers and changes its value at topological tran-
sitions that are consistent with the gap-closing points in Fig. 2.
By contrast, the Bloch winding number can take half-integer
values, and it does not indicate the topological transitions
of the system under the open boundary condition. Note that
half-integer winding numbers were previously reported in
the non-Hermitian, asymmetric Su-Schrieffer-Heeger model
[38,52], for which explicit geometric interpretations can be
found based on its chiral symmetry. While chiral symmetry is
absent in our model, the origin of these half-integer winding
numbers and their general relation to the non-Hermitian skin
effect are interesting open questions.

The topological transition points can be analytically deter-
mined from the gap-closing condition. At the gap-closing pint,
GBZs of two different bands intersect on the complex plane
at the same eigenenergies. It follows that Eq. (3) features a
double root at the topological transition. This is satisfied for

; U £id J2 " it J2 )
cj — + 2 . + 2 . s
" P E —(A—iy)"" E— (A —iy)
(N
with j = 1, 2. And the roots are given by
(A—iy)+ /(A —iy)2+4J?
Eq = —, (8)
2
A—iy)—J(A—iy)?+4)2
ECZ — ( IJ/) ( lV) + S (9)

2 9
which correspond to the energies of the topological edge states
emerging at the two transition points in Fig. 1. Both J; .; and

E.; calculated from Egs. (7), (8), and (9) are in excellent
agreement with the numerically calculated eigenspectra in
Fig. 2. Note that we take the positive branch for the square
roots in Egs. (8) and (9).

To close this section, we discuss the symmetry of
Hamiltonian (2). While it does not have chiral symmetry,
Hamiltonian (2) is symmetric under the following transfor-
mation: THT (8)I'~! = H(B), where

0 1 0
0 0
0 e

r=11
0
In the Hermitian limit with y = 0, the symmetry is reduced to
THT (k)I~! = H(k), where k is then the quasimomentum in
the conventional Brillouin zone. We have checked that such a
symmetry protects the twofold degeneracy of the topological
edge states emerging from either phase transition. Note that,
while the Berry phases ®; are quantized to multiples of 7 in
the presence of such a symmetry, they are no longer quantized
when the symmetry is broken. By contrast, the non-Bloch
winding number is always quantized since the global Berry
phase, when integrated over the GBZ, is always integer mul-
tiples of 2.

In the real lattice space, the symmetry operation can
be further decomposed into I' = PC,, where P:a, —
an—_n, by = by_p, ¢y > cy—y and Cy : @, — by_,, b, —
aN—n, Cp, —> e‘i¢’cN_n.

We identify P and C, as the inversion and the non-
Hermitian variant of the time-reversal operators, respectively.
In particular, C can be identified with the TRS' symmetry
in Ref. [26]. Here TRS' stands for a non-Hermitian ramifica-
tion of the time-reversal symmetry. Physically, the combined
inversion and time-reversal symmetry is understood from the
observation that the dissipative AB chain remains invariant by
simultaneously reversing the flux and the lattice, but not either
alone.

IV. DETECTING TOPOLOGICAL EDGE STATES AND
BAND STRUCTURE

In the experiment [50], a momentum-resolved Bragg spec-
troscopy was applied to detect the topological edge states,
where atoms are injected into an edge site of the AB chain.
In this section, we provide a theoretical description for the
atom-injection spectroscopy and show that a similar detection
scheme can be applied to probe the band structure. We then
propose an alternative dynamic detection scheme for the topo-
logical edge states.

A. Injection spectroscopy

We consider coupling atoms in a bystander state |d) to a
local site | f) of the dissipative AB chain. Site |f) can be any
one of the sublattice sites |a), |b), and |c). It can be on the
edge, as is the case in the experiment, or in the bulk, far away
from any boundaries. The chain is originally empty, such that
the scheme is similar in spirit to the inverse radio-frequency
spectroscopy. The probe Hamiltonian reads

Hyy = Jopd" f + Ty f'd + 8 ppdd. (10)
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FIG. 6. Transfer rate for the inverse spectroscopy for | /) located at an open boundary. (a)—(c) The probe Hamiltonian couples the bystander
state to the b sublattice site of the Nth unit cell (the rightmost unit cell on the edge), with (a) J,/J, = 0.5, (b) J,/J, = 2.5, and (c) 8,,/J, =
Re(E,,). Here E,, is the energy of the topological edge state. The dashed vertical lines in (a) and (b) correspond to Re(E,, ), and the dashed line
in (c) corresponds to J; ;. (d)—(f) The probe Hamiltonian couples the bystander state to the ¢ sublattice site of the Nth unit cell (the rightmost
unit cell on the edge), with (d) J,/J, = 2.5, (e) J,/J, =5, and (f) 8,,/J, = Re(E.»). The dashed vertical lines in (d) and (e) correspond to
Re(E,,), and the dashed line in (f) corresponds to J; .,. For all plots, the black solid lines and the magenta dashed lines are, respectively, the
theoretically predicted transfer rate using Eq. (14) and the numerically simulated transfer rates from Eq. (16). For all plots, J,;/J, = 0.01, and

©J, = 40m. Other parameters are the same as those in Fig. 2.

Here d (d") and f (f7) respectively denote the annihilation
(creation) operators for states |d) and |f). Jy, is the coupling
rate between |d) and |f); 8, is the detuning of the coupling
frequency with respect to the transition |d) — |f). Here the
overall dynamics is governed by the Hamiltonian H' = H +
H,,.
pFollowing the practice of Feshbach projection [51,53,54],
we define the projection operators P = |d)(d| and Q =1 — P.
The effective Hamiltonian in the subspace of the bystander

state |d) is then

! 1 !
Hei (E) =H;>p +HpQrHéQHQp, (11)
where
Hjp=08pd'd, Hpy=Jud'f, 1)

Hjp =Jwf'd, Hp,=H.

It can be shown straightforwardly that

Heff(E):(Pb"'Z pb Jf Jf)de (13)

where Y% = (flyF) and ¥ = (¥7|f) and the right and
left eigenstates of H are defined as H|y ) = E;|¢f) and
H|y}) = EF|y}). The effective Hamiltonian (13) is dissipa-
tive, and the dissipation is due to the atom transfer from state
|d) to the AB chain. We define the transfer rate

T(t)=1—exp[—2R(S,)7], (14)

which describes the probability for an atom to be transferred
from |d) to the chain within the evolution time t. Here

L*
—Im
Z pb—E +10+

(15)
The term 0" in the denominator ensures that Eq. (15) recov-
ers the familiar form of Fermi’s golden rule in the Hermitian
case. Note that Eq. (15) can also be derived in the same form
using the linear-response theory (see the Appendix).

The transfer rate can also be evaluated through numerical
simulation of the system dynamics. Initialized in the state |d)
at the initial time ¢t = 0, the time-evolved state at time 7 is
then |y (1)) = e~#'7|d). Note that the non-normalized nature
of | (7)) corresponds to a loss of atoms from the dissipative
AB chain. The transfer rate can be expressed as

R(pp) = —Im[(d|Heit (E)|d)] =

Too(T) = 1 — [(d]e 7 |d) 2.

Due to the perturbative nature of Eq. (14), we expect that the
transfer rates calculated from Egs. (14) and (16) are very close
to each other, provided that J,,;,/J, < 1 and Jﬁhr Ll K JprT.
This is indeed the case, as we show below.

For the detection of the topological edge states, we follow
the practice of Ref. [50] and consider |f) to be on the edge
of the AB chain. The calculated transfer rates are plotted in
Fig. 6. While results from Eqgs. (14) and (16) agree well with
one another, signals of the edge states are visible near the
appropriate detuning 8. Specifically, in Figs. 6(a) and 6(b),
we aim to detect the edge state with energy E.|. The state has
a large support on sublattice site b; we therefore set |f) on
site b of the rightmost unit cell on the edge. When J; < J; .1,
T (7) exhibits a valley at §,, = Re(E,1) [Fig. 6(a)], indicating

(16)
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FIG. 7. Transfer rate for the inverse spectroscopy as the probe
Hamiltonian is coupled to the b sublattice site of the 51st unit
cell, which is deep in the bulk. (a) and (b) Hermitian case with
y = 0. (c) and (d) Non-Hermitian case with y/J, = 1. We also take
Ji/J, = 0.5in (a) and (c) and J; /J, = 2.5 in (b) and (d), while other
parameters are the same as those in Fig. 6. For all plots, 7./, = 407,
and the black solid lines and the magenta dashed lines are, respec-
tively, the theoretically predicted transfer rate using Eq. (14) and
the numerically simulated transfer rates from Eq. (16). The shaded
regions in gray indicate the real components of the spectra under the
periodic boundary condition.

the presence of a band gap. When J; > J; .1, a peak emerges
at §,, = Re(E,1) [Fig. 6(b)], suggesting the presence of an
in-gap edge state. In Fig. 6(c), we show the transfer rate at
dpp = Re(E,;) as a function of J;, which clearly indicates a
phase transition near J; ..

Similarly, in Figs. 6(d) and 6(e), we aim to probe the
edge state with energy E,,. Since the edge states now have
a large support on sublattice site ¢, we set | f) on site ¢ of the
rightmost unit cell. We find that a peak appears near §,;, =
Re(E,,) in the transfer rate when J; > J; .» [Figs. 6(d) and
6(e)], consistent with the emergence of the topological edge
states. Likewise, the topological phase transition is clearly
visible near J; = J; ., in Fig. 6(f).

Compared to the Bragg spectroscopy implemented in
Ref. [50], for the numerical simulations here, we consider
a weaker probe (Jp, ~ h x 12 Hz, with i being the Planck
constant) and a longer probe time (t ~ 16 ms). Such op-
timization leads to a more faithful detection with a better
resolution.

Alternatively, we can couple the bystander state to a sub-
lattice site in the bulk to reveal the global spectral features
under the periodic boundary condition. The results are plotted
in Fig. 7. In the Hermitian case with y = 0 [Figs. 7(a) and
7(b)], the transfer rate shows sharp edges at the band edge,
revealing both the band continuum and the band gaps. For
the dissipative AB chain with finite y [Figs. 7(c) and 7(d)],
the transfer-rate profiles are broadened due to the imaginary
components of the eigenspectra. Nevertheless, the band gaps
are still visible as valleys in the profile. In relation to the
experiment in Ref. [50], injecting atoms into the bulk offers

FIG. 8. Boundary dynamics for the detection of topological edge
states. (a) and (b) Color contour for the normalized occupation distri-
bution as a function of time. (b) and (d) The normalized occupation
distribution at the time 7J, = 6. We take J, /J, = 1 in (a) and (c) and
Ji/J, =5 in (b) and (d). Other parameters are the same as those in
Fig. 2.

a complementary detection scheme for the topological phase
transition by showing the closing of the band gaps.

B. Dynamic detection of edge states

Topological edge states can also be detected through dy-
namics close to the boundary. Under the non-Hermitian skin
effect, eigenstates of the AB chain accumulate at one of the
edges. The idea is to initialize the state near the opposite edge
and observe the time-dependent population along the chain.
While the non-Hermitian skin effect would drive the popu-
lation toward the other edge, topological edge states should
remain near the initial site. To quantitatively characterize the
phenomena, we define the normalized occupation

W@ nP= Y

j=a,b,c

|(n, jly ()

, a7)
(v (@ly (D)

which indicates the spatial distribution of the state at time 7.

In Fig. 8, we show the time evolution of the probability
in the topologically trivial [Figs. 8(a) and 8(c)] and nontriv-
ial [Figs. 8(b) and 8(d)] regions. In the topologically trivial
region, the time-evolved state diffuses into the bulk without
much occupation at the boundary. By contrast, in the topolog-
ically nontrivial region, the time-evolved state still exhibits
a peak at the boundary, together with the diffusive dynamics
into the bulk. Note that the normalized occupation at the
boundary decreases with time because there are bulk eigen-
states that decay slower than the edge states. The detection
scheme therefore should work only at intermediate times.
Nevertheless, such a dynamic detection is readily accessible in
experiments and provides a direct signal of the non-Hermitian
skin effect.
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V. CONCLUSION

In conclusion, we have characterized the topological fea-
tures of a dissipative AB chain in detail and provided a
theoretical description of the recently implemented atom-
injection spectroscopy. We showed that injection spectroscopy
can be applied to bulk sites and can resolve the band structure
of the system under a periodic boundary condition. We further
proposed an alternative detection scheme for the topological
edge states. Our studies are helpful for future experimental
studies of the dissipative AB chain in relevant quantum simu-
lation systems.
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APPENDIX

In this Appendix, we show that the expression in
Eq. (15) can also be derived from the linear-response theory
[55,56]. Given the probe Hamiltonian (10), we consider the

correlation function
D(t,t)=—io@t —t)[fT@®)d@).d ¢ f)]).  (AD

In the frequency space, the correlation function becomes

1
Disyw) = 5 2D Gatio = i6)Gy (Ejs i), (A2)
J n

where G;(iw,) = 1/iw, is the Green’s function for state |d)
and Gy is the Green’s functions for state |f), with

N | £ R L*
G, i) = QWSO _ VIV
iw, — E; iw, — Ej

Here w, are the bosonic Matsubara frequencies; E; and |v;)
are, respectively, the eigenenergy and eigenstate of the bulk
Hamiltonian (1). The initial state |0) corresponds to an empty
lattice, particularly with no occupation on site f. After ana-
lytic continuation, we derive the response function R(3,;) as

R(8p) = J » IM D (i — 8pp + i0")

WR w
_ 2 : pb f
=—Im - Spp—E; + zo+ (A4)

We thus reproduce Eq. (15) by applying the linear-response
theory to our non-Hermitian system.
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