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Quench dynamics of mass-imbalanced three-body fermionic systems in a spherical trap
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We consider a system of two identical fermions of general mass interacting with a third distinguishable particle
via a contact interaction within an isotropic three-dimensional harmonic trap. We calculate time-dependent
observables of the system after it is quenched in s-wave scattering length. To do this we use exact closed-form
mass-imbalanced hyperspherical solutions to the static three-body problem. These exact solutions enable us to
calculate two time-dependent observables, the Ramsey signal and particle separation, after the system undergoes
a quench from noninteracting to the unitary regime or vice versa.
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I. INTRODUCTION

Investigating the dynamics of nonequilibrium quantum
systems is relevant to many areas in condensed matter
physics. Areas of interest include the study of superfluid
turbulence, topological states, mesoscopic circuits, and can
even be extended to neutron star dynamics. In these systems
there are many interacting entities, making exact calculations
problematic. However, it is possible to theoretically and exper-
imentally examine quantum dynamics when there are only a
few quantum bodies in the system of interest. An idealized ex-
ample of such a system, where few-body quantum dynamics
can be studied, is harmonically trapped quantum gases, which
can be constructed at the single- to few-atom limit [1–5].
In this paper we focus on the interaction quench dynamics
of three fermionic atoms trapped in a spherically symmetric
harmonic trap.

We consider a system of two identical fermions which
interact via a contact interaction with a third distinguishable
particle, which can have a different mass. We consider the sce-
nario where the contact interaction, between the third particle
and the two identical fermions, is quenched either from the
noninteracting regime to the unitary regime or vice versa. To
do this we utilize the exact solutions for the system [6–11].
These exact solutions have previously been used to elucidate
the thermodynamic properties of quantum gases [5,6,12–24].
In the context of quench dynamics the results presented in this
paper complement previous studies in two-dimensional [25]
and one-dimensional systems [26–29].

The paper is structured as follows. In Sec. II we briefly
review the stationary three-body problem of two identical
fermions interacting with a third distinguishable particle in a
spherically symmetric harmonic trap. In Sec. III we use the
eigenstates of the system to investigate the quench dynamics.
In particular, we focus on quenches from the noninteracting
regime to the strongly interacting (unitary) regime, a forward
quench, and vice versa, a backward or reverse quench. For
these two quenches we evaluate the Ramsey signal, i.e., the
overlap of the time evolving state with the initial state, and

postquench evolution of the particle separation, as defined by
the hyperradius. For the Ramsey signal we find that it can
be calculated semianalytically for any initial state for both
quenches while for the particle separation we find that it can
also be calculated semianalytically for any initial state for the
forward quench but the reverse quench leads to nonphysical
divergences, as is the case for two-body quench dynamics
[30].

II. OVERVIEW OF THE THREE-BODY PROBLEM

Our starting point is the Hamiltonian of three noninteract-
ing bodies in a three-dimensional spherical harmonic trap,

Ĥ =
3∑

k=1

[−h̄2

2mk
∇2

k + mkω
2r2

k

2

]
, (1)

where �rk is the position of the kth particle, mk is its mass, and
ω is the trapping frequency.

In this paper we consider the case of two identical fermions
interacting with a distinct third particle. We define parti-
cle one to be the impurity (m1 = mi) and particles two and
three to be identical (m = m2 = m3). For convenience we
define the reduced mass μ = mim/(mi + m), the length scale,
aμ = √

h̄/μω, and the mass imbalance κ = m/mi.
For such a system the hyperspherical formulation [31]

gives a closed-form solution for the wave function. However,
because the interactions are enforced with the Bethe-Peierls
boundary condition, the wave function can only be fully spec-
ified in the noninteracting and strongly interacting (unitary)
regimes.

We define the hyperradius R and hyperangle α,

R2 =
√

r2 + ρ2, α = arctan (r/ρ), (2)

where

�r = �r2 − �r1, (3)

�ρ = 1

γ

(
�r3 − mi�r1 + m�r2

mi + m

)
, (4)
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γ =
√

mi(mi + 2m)

m + mi
, (5)

and the center-of-mass (COM) coordinate is

�C = mi�r1 + m�r2 + m�r3

mi + 2m
. (6)

The center-of-mass Hamiltonian is a simple harmonic oscil-
lator (SHO) Hamiltonian of a single particle of mass M =
2m + mi and position �C. As such, the center-of-mass wave
function is a SHO wave function. The relative Hamiltonian is
given by

Ĥrel = −h̄2

2μ

(
∂2

∂R
+ 1

R2 sin(α) cos(α)

∂2

∂α2
[cos(α) sin(α)•]

+ 5

R

∂

∂R
− 4

R2
− �̂2

r

R2 sin(α)
− �̂2

ρ

R2 cos(α)

)
+ μω2R2

2
,

(7)

where �̂2
r and �̂2

ρ are the angular momentum operators in the
r̂ and ρ̂ coordinate systems.

We define the trial wave function [32]

ψ rel
3b = Nqls

Fqs(R)

R2
(1 − P̂23)

ϕls(α)

sin(2α)
Ylm(ρ̂), (8)

where Nqls is the normalization constant, Fqs(R) is the hyperra-
dial wave function, φls(α) = (1 − P̂23)ϕls(α)Ylm(ρ̂)/ sin(2α)
is the hyperangular wave function, and P̂23 is the particle
exchange operator which swaps the positions of particles two
and three.

Three conditions determine the functional forms of Fqs(R)
and ϕls(α),

ϕls

(
π

2

)
= 0, (9)

s2ϕls(α) = −ϕ′′
ls(α) + l (l + 1)

cos2(α)
ϕls(α), (10)

Erel = −h̄2

4μ

(
F ′′(R) + F ′(R)

R

)

+
(

h̄2s2

4μR2
+ μω2R2

)
F (R). (11)

The first is enforced because a divergence at α = π/2 is non-
physical, and the second and third come from the Schrödinger
equation. l ∈ Z�0 is the angular momentum quantum number,
q ∈ Z�0 and s ∈ R>0 are the energy eigenvalues, and the en-
ergy is given by Erel = (2q + l + s + 1)h̄ω. Fqs(R) and ϕls(α)
are given by [13,31,33]

Fqs(R) = R̃se−R̃2/2Ls
q(R̃2), (12)

ϕls(α) = cosl+1(α)

× 2F1

(
l + 1 − s

2
,

l + 1 + s

2
; l + 3

2
; cos2(α)

)
,

(13)

where R̃ = R/aμ, Ls
q is a Laguerre polynomial, and 2F1 is the

Gaussian hypergeometric function.

TABLE I. Some three-body s eigenvalues at unitarity with l = 0
and κ = 0.1, 1, and 10 (heavy impurity, equal mass, and light impu-
rity) to three decimal places.

l = 0 κ = 0.1 κ = 1 κ = 10
n snl

0 2.004... 2.166... 3.316...
1 5.817... 5.127... 4.707...
2 6.195... 7.114... 6.747...
3 9.685... 8.832... 8.876...

The contact interactions are enforced by the Bethe-Peierls
condition [34]

lim
ri j→0

[
d (ri j)

dri j

1

ri j

]
= −1

as
, (14)

where  is the total three-body wave function, ri j = |�ri − �r j |,
and as is the s-wave scattering length.

In the noninteracting limit (as → 0) Eq. (14) implies, for
all values of κ = m/mi,

s =
{

2n + 4, l = 0,

2n + l + 2, l > 0,
(15)

where n ∈ Z�0. In the unitary limit (as → ∞) the Bethe-
Peierls boundary condition gives the transcendental equation

0 = dϕls

dα

∣∣∣∣
α=0

− (−1)l (1 + κ )2

κ
√

1 + 2κ
ϕls

[
arctan

(√
1 + 2κ

κ

)]
.

(16)

The values of s at unitarity for l = 0 and a variety of κ are
given in Table I .

From this it is possible, in the noninteracting and unitary
regimes, to evaluate the eigenenergies and eigenstates of the
three-particle system. From this foundation, in the following
section we utilize these states to evaluate the quench dynamics
of this system.

III. QUENCH DYNAMICS

Below we investigate the behavior of the system after a
quench in the s-wave scattering length as. We are interested
in the forward quench (noninteracting to unitary) and the
backward quench (unitary to noninteracting). Specifically, we
calculate the Ramsey signal S(t ) and the particle separation
〈R̃(t )〉. In order to do this we need to calculate various inte-
grals involving the wave function. First, we have the Jacobian

dV = d�r1d�r2d�r3 = R5

4
sin2(2α)γ 3dRdαd ��rd ��ρd �C. (17)

We make the definitions

〈Fqs(R)|Fqs(R)〉 =
∫ ∞

0
RFqs(R)∗Fqs(R)dR, (18)

〈φls(α)|φls(α)〉

=
∫∫∫ π/2

0
φls(α)∗φls(α)2 sin2(2α)dαd ��rd ��ρ. (19)
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In this work we wish to calculate time-varying ob-
servables of a postquench system. To do this we need
the time-dependent postquench wave function. The COM
wave function is independent of as and so is unaffected
by the quench. As such, we only need the time-dependent
postquench relative wave function, which is given by∣∣ψ rel

3b (t )
〉 = e−iĤrelt/h̄

∣∣Fqisiφlisi

〉
=

∑
q,s

〈
Fqsφlis

∣∣Fqisiφlisi

〉
e−iEqlist/h̄

∣∣Fqsφlis
〉
, (20)

where quantum numbers with an i subscript are the initial
quantum numbers and the summation is over all eigenstates
of the postquench system.

A. Ramsey signal

The Ramsey signal is defined as the wave-function overlap
of the pre- and postquench wave functions, which is given by

S(t ) = 〈i(t )| ′(t )〉,
S(t ) =

∑
j

|〈i(0)| ′
j〉|2e−i(Ej−Ei )t/h̄, (21)

where i is the prequench wave function with energy Ei and
 ′ is the postquench wave function. To obtain Eq. (21) we
have inserted a complete set of postquench eigenstates  ′

j ,
with energies Ej , where the sum over j is a sum over all
postquench eigenstates [30].

Since the COM wave function is unaffected by the quench,
the Ramsey signal is given by

S(t ) =
∑
q,s

∣∣〈Fqisiφlisi

∣∣Fqsφlis
〉∣∣2

e−i(Eqlis−Eqi lisi )t/h̄, (22)

where indices with subscript i are the eigenvalues of the initial
state and the unlabeled indices correspond to the postquench
eigenvalues. Note that 〈φls|φl ′ �=ls′ 〉 = 0, i.e., hyperangular
states of different angular momenta are orthogonal.

To evaluate the Ramsey signal we need to evaluate the
hyperradial integral 〈Fqs|Fq′s′ 〉 and the hyperangular integral
〈φls|φls′ 〉.

The hyperradial integral is given by [35]

〈Fqs(R)|Fq′s′ (R)〉

= a2
μ

2

(
q + s∗

q

)(
q′ + s′−s∗

2 − 1

q′

)
�

(
s∗ + s′ + 2

2

)
3F2

(
− q,

s∗ + s′ + 2

2
,

s∗ − s′ + 2

2
; s∗ + 1,

s∗ − s′ + 2

2
− q′; 1

)
.

(23)

For s = s′ and q �= q′ the hyperradial integral vanishes. Evaluating the hyperangular integral is not as straightforward as for
the hyperradial integral due to the permutation operator. The hyperangle α is defined in terms of the Jacobi vectors �r and �ρ,
which are defined in terms of �r1, �r2, and �r3. We have defined �r as being between particles one and two but it is possible to define
�r between any pair of particles. There are then three possible ways to define the Jacobi vectors for the three-body system; these
Jacobi sets are related to one another by a “kinematic rotation” [36], a coordinate transform in other words. We perform the
hyperangular integral by taking advantage of these relations and “rotating” the terms acted upon by P̂23 into the same Jacobi
set as the term not acted upon by P̂23 [37–40]. However, this restricts us to the l = 0 case due to the presence of the spherical
harmonic term making the coordinate transform intractable for l > 0, as the hyperangular part of the wave function becomes a
function of ρ̂ in addition to α. For the general mass case the overlap of φ0s and φ0s′ is given by

〈φ0s(α)|φ0s′ (α)〉 = 8π

∫ π/2

0

(
(1 − P̂23)

ϕ0s(α)

sin(2α)

)∗(
(1 − P̂23)

ϕ0s′ (α)

sin(2α)

)
sin2(2α)dα, (24)

= 16π

[∫ π/2

0
ϕ∗

0s(α)ϕ0s′ (α)dα − (1 + κ )2

2κ
√

1 + 2κ

∫ π/2

0
ϕ∗

0s(α)

[∫ π/2−|π/2−arctan
[√

1
κ (2+ 1

κ )
]−α|

|arctan
[√

1
κ (2+ 1

κ )
]−α|

ϕ0s′ (α′)dα′
]

dα

]
.

(25)

For l = 0, Eq. (13) reduces to [32,38]

ϕ0s(α) ∝ sin
[
s
(π

2
− α

)]
. (26)

Note that combining Eqs. (25) and (26) for κ = 1 (the
equal mass case) does not give the same result as in
Refs. [32,41] and only agrees when s = s′ is one of the
solutions to Eq. (16) for κ = 1. This is because the latter
references appropriately substitute Eq. (16) for κ = 1 into the
result for the hyperangular integral to simplify the expression.

However, for a general value of κ we have to be more care-
ful. For a specific κ , the s eigenvalues produced by Eq. (16)

are orthogonal to one another when Eq. (25) is evaluated only
for that specific value of κ , i.e., the s eigenspectrum for κ = x
produces an orthogonal set of states only when Eq. (25) is
evaluated using κ = x. However, the noninteracting values of
s (s = 4, 6, 8, . . . ) are orthogonal to one another regardless of
the value of κ .

Now that we can calculate the wave-function overlaps we
can evaluate the Ramsey signal for the forward and back-
ward quenches for any initial state with l = 0 and any mass
imbalance. In Figs. 1 and 2 we plot the forward and back-
ward quenches, respectively, for a variety of κ and initial
states.
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FIG. 1. Ramsey signal for the forward quench for a variety initial
states and mass imbalances. In all panels, the dotted-dashed red line
corresponds to (qi, si ) = (0, 4), the dashed green line corresponds
to (qi, si ) = (1, 4), and the solid blue line corresponds to (qi, si ) =
(2, 4). The upper, middle, and lower plots correspond to κ = 0.1, 1,
and 10 (heavy impurity, equal mass, and light impurity), respectively.
Each Ramsey signal is obtained by evaluating Eq. (22) with ten terms
in each sum, i.e., 100 terms total. In this limit we find that the sum is
convergent.

Before we discuss the properties of the Ramsey signals, in
Figs. 1 and 2, it is worth exploring what we may expect in a
general sense. Assuming in Eq. (22) that the sum is dominated
by a few terms, the general form for S(t ) can be represented by
S(t ) ≈ Ae−ait + Be−bit + Ce−cit . The magnitude of the signal
oscillates with angular frequencies (a − b), (b − c), (a − c)
with the more heavily weighted terms being more signifi-
cant. However, the phase of the signal is dominated by the
angular frequencies of the most heavily weighted terms, not
the difference between angular frequencies of different terms.
In our case the angular frequencies (a, b, c, . . . ) are the dif-
ferences between a postquench eigenenergy and the initial
energy, and the difference between the angular frequencies

FIG. 2. Ramsey signal for the backward quench for a variety of
initial states and mass imbalances. In all panels, the dotted-dashed
red line corresponds to qi = 0, the dashed green line corresponds
to qi = 1, and the solid blue line corresponds to qi = 2. The upper,
middle, and lower plots correspond to κ = 0.1, 1, and 10 (heavy im-
purity, equal mass, and light impurity) and si = 2.004 . . . , 2.166 . . . ,
and 3.316 . . . , respectively. Each Ramsey signal is obtained by eval-
uating Eq. (22) with ten terms in each sum, i.e., 100 terms total. In
this limit we find that the sum is convergent.

[(a − b), (b − c), (a − c), . . . ] is the difference between dif-
ferent postquench eigenenergies.

In Fig. 1 we plot the Ramsey signals of the forward quench
for a variety of initial states and mass imbalances. We find an
irregularly repeating Ramsey signal, which is in contrast to
similar calculations performed for the two-body problem [30]
where the signal is periodic with period π/ω. This irregular
periodicity arises from the unitary s eigenspectrum. In this
case angular frequencies of each term in Eq. (22) are irrational
and so are the differences between them, in general. These
irrational angular frequencies lead to the irregular phase and
magnitude.

For the κ = 0.1 (heavy impurity) forward quench
the most heavily weighted terms in Eq. (22) for the
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(qi, si ) = (0, 4) initial state (red line in the upper panel
of Fig. 1) are the |〈F0,4φ0,4|F0,2.004φ0,2.004〉|2 ≈ 0.539,
|〈F0,4φ0,4|F0,5.817φ0,5.817〉|2 ≈ 0.134, and |〈F0,4φ0,4|F1,2.004

φ0,2.004〉|2 ≈ 0.179 terms. The corresponding angular
frequencies are ≈−2ω, ≈1.8ω, and ≈0.004ω, respectively.
Hence the phase displays features with a period of ≈π/ω, and
the magnitude has three main modes with periods ≈0.5π/ω,
π/ω, and ≈1.1π/ω.

For the κ = 1 (equal mass) forward quench the most
significant terms for the (qi, si ) = (0, 4) initial state
are |〈F0,4φ0,4|F0,2.166φ0,2.166〉|2 ≈ 0.499, |〈F0,4φ0,4|F0,5.127

φ0,5.127〉|2 ≈ 0.297, and |〈F0,4φ0,4|F1,2.166φ1,2.166〉|2 ≈ 0.13.
The corresponding angular frequencies are ≈ − 1.8ω, ≈1.1ω,
and ≈0.17ω, respectively. The phase is then dominated by a
mode with period ≈1.1π/ω and the magnitude is dominated
by modes with periods ≈2π/3ω, π/ω, and ≈2π/ω.

For the κ = 10 (light impurity) forward quench the most
significant terms for the (qi, si ) = (0, 4) initial state are
|〈F0,4φ0,4|F0,3.3169φ0,3.3169〉|2 ≈ 0.607, and |〈F0,4φ0,4|F0,4.707

φ0,4.707〉|2 ≈ 0.350. The corresponding angular frequencies
are ≈−0.7ω/π and ≈0.7ω/π , respectively, hence the phase
has an approximate periodicity of 2.8π/ω and the magnitude
has a period of ≈1.4π/ω.

In Fig. 2 we plot the Ramsey signals of the backward
quench for a variety of initial states and mass imbalances.
We find a strongly periodic magnitude. In the noninteract-
ing regime we have s = 4, 6, 8, . . . for every value of κ .
This means that every oscillatory term in the magnitude
has an angular frequency that is a multiple of two, hence
the period of π/ω. However, the behavior of the phase is
still dominated by the largest terms in the summation. For
κ = 0.1 (heavy impurity) and (qi = 0, si = 2.004 49 . . . ) the
largest term is |〈F0,2.004φ0,2.004|F0,4φ0,4〉|2 ≈ 0.539 and this
defines the period of ≈π/ω we see in the phase. Sim-
ilarly for κ = 1 (equal mass) and (qi = 0, si = 2.166 . . . )
the largest term is |〈F0,2.166φ0,2.166|F0,4φ0,4〉|2 ≈ 0.499 defin-
ing a period of ≈1.1π/ω for the phase, and for κ = 10
(light impurity) and (qi = 0, si = 3.3169 . . . ) the largest term
is |〈F0,3.3169φ0,3.3169|F0,4φ0,4〉|2 ≈ 0.607 defining a period of
≈2.8π/ω for the phase.

B. Particle separation

The Ramsey signal is not the only quench observable we
investigate. We can also calculate the expectation value of R̃,
i.e., the particle separation.

The expectation value of R̃(t ) is given by

〈R̃(t )〉 = 〈(t )|R̃|(t )〉
=

∑
j, j′

〈i(0)| ′
j〉〈 ′

j′ |i(0)〉〈 ′
j |R̃| ′

j′ 〉e−i(Ej′ −Ej )t/h̄,

(27)

where i is the initial prequench state with energy Ei and
 is the postquench state.  ′

j and  ′
j′ are eigenstates of the

postquench system with eigenenergy Ej and Ej′ , respectively,
with the sum over j and j′ taken over all postquench eigen-
states.

The COM wave function is independent of the interparticle
interaction and does not change when the system is quenched

and does not impact the postquench dynamics. Due to the
hyperangular wave function’s orthogonality in s, two sums
over s and s′ collapse into a single sum over s. Hence 〈R̃(t )〉 is
given by

〈R̃(t )〉 =
∑
q′,q

∑
s

〈Fqisiφlisi |Fq′sφlis〉〈Fqsφlis|Fqisiφlisi〉

×〈Fq′sφlis|R̃|Fqsφlis〉e−i(Eqlis−Eq′ lis )t/h̄. (28)

All integrals required for calculating Eq. (28) are calcu-
lated in Sec. III A except for 〈Fq′s|R̃|Fq′s〉. This is given by
[35]

〈Fqs|R̃|Fq′s′ 〉 = a2
μ

2

(
q + s

q

)(
q′ + s′

2 − s
2 − 3

2

q′

)
�

(
s + s′ + 3

2

)

×3F2

(
− q,

s′ + s + 3

2
,

s − s′ + 3

2
; s + 1,

s − s′ + 3

2
− q′; 1

)
. (29)

This result, combined with the results of Sec. III A, allows us
to calculate 〈R̃(t )〉 for the forward and backward quench for
any initial state with l = 0 and any mass imbalance.

In Sec. III A we note that the magnitude and phase of
the Ramsey signal for the forward quench is irregular and
this is because the s eigenvalues are irrational at unitarity.
Additionally, the phase for the backward quench is also ir-
regular and this is due to the irrationality of si. However, the
angular frequencies of the terms in Eq. (28) are always even
integers because the s contributions to the energies cancel,
leaving angular frequencies proportional to (2q′ − 2q)ω and
q, q′ ∈ Z�0. This results in the angular frequency of every
term in the summation being a multiple of 2ω, causing 〈R̃(t )〉
to have a period of π/ω in both the forward and backward
quench.

In Fig. 3 we have plotted 〈R̃(t )〉 for the forward quench
for κ = 0.1, κ = 1, and κ = 10 (heavy impurity, equal mass,
and light impurity) in the upper, middle, and lower panels,
respectively. For each κ we have taken the initial state to be the
ground state and calculated the sum in Eq. (28) over q, q′, and
s up to Nmax = 3, 6, 12, and 24, where Nmax is the number of
terms in each individual sum, so there are N3

max terms total. In
each case we find that the results for 〈R̃(t )〉 have converged at
Nmax = 24. As discussed above, 〈R̃(t )〉 oscillates with a period
π/ω.

Additionally, we observe that as κ increases (impurity
becomes lighter), the amplitude of the oscillation decreases.
In the κ → ∞ limit the unitary s eigenspectrum approaches
s → 4, 6, 8 . . . [10] and the initial noninteracting ground
state overlaps perfectly with the unitary ground state. As
such, the amplitude decreases as κ increases until eventu-
ally 〈R̃〉 reaches a constant value of 2.18 . . . , which is 〈R̃〉
for q = 0, s = 4. This is also 〈R̃(t = 0)〉, so the maximum
particle separation does not change with κ but the mini-
mum increases to decrease the amplitude. Conversely, in the
κ → 0 (heavy impurity) limit, the unitary s eigenspectrum
approaches s → 2, 6, 10, 14 . . . , and analytically this presents
a problem. The noninteracting ground state, si = 4, is orthog-
onal to the unitary s eigenspectrum because it is a subset

053310-5



A. D. KERIN AND A. M. MARTIN PHYSICAL REVIEW A 106, 053310 (2022)

FIG. 3. 〈R̃(t )〉 for the forward quench from the noninteracting
ground state, (qi, si ) = (0, 4), for κ = 0.1 (upper panel, heavy im-
purity), κ = 1 (middle panel equal mass), and κ = 10 (lower panel
light impurity). The dotted-dashed red line corresponds to Nmax = 3,
the dashed green line to Nmax = 6, the solid blue to Nmax = 12, and
the dotted black line to Nmax = 24. As can be seen from the plots, the
sum is convergent with Nmax.

of the noninteracting eigenspectrum, except s = 2 which is
forbidden for l = 0 because it causes the hyperangular part
of the wave function to be zero. Numeric investigations for κ

as small as 10−3 imply that the minimum 〈R̃(t )〉 asymptotes
to ≈1.7 . . . as κ becomes very small. The maximum particle
separation remains at 2.18 . . . aμ regardless of the value of κ

because the initial noninteracting state does not depend on κ .
In Fig. 4 we have considered 〈R̃(t )〉 for the backward

quench for the κ = 0.1, κ = 1, and κ = 10 cases (heavy im-
purity, equal mass, and light impurity) in the upper, middle,
and lower panels, respectively. For each κ we have taken the
initial state to be the ground state and calculated the sum in
Eq. (28) over q, q′, and s up to Nmax = 3, 6, 12, and 24.
Similar to r = |�r1 − �r2| in the two-body case [30] we observe
in the backward quench that the particle separation diverges

FIG. 4. 〈R̃(t ) for the backward quench from the interacting
ground state for a variety of κ . In all panels, qi = 0, in the upper
panel (κ = 0.1, heavy impurity) si = 2.004 . . . , in the middle panel
(κ = 1, equal mass) si = 2.166 . . . , and in the lower panel (κ = 10,
light impurity) si = 3.3169 . . . . The dotted-dashed red line corre-
sponds to Nmax = 3, the dashed green line to Nmax = 6, the solid
blue to Nmax = 12, and the dotted black line to Nmax = 24. This sum
diverges logarithmically with Nmax away from t = nπ/ω.

away from ωt = nπ . For the three-body case we find that
〈R̃[t = (n + 1/2)π/ω]〉 diverges logarithmically with Nmax.
More specifically, we find that if the number of terms in the
sums over q and q′ is fixed, then as more terms are included
in the sum over s, 〈R̃(t )〉 converges. The divergence in 〈R̃(t )〉
comes from the sums over q and q′ and therefore from the
hyperradial wave function. This divergence warrants further
scrutiny, so to this end we investigate the evolution of the
probability distribution of R(t ),

P(R′, t ) = 〈(t )|δ(R − R′)|(t )〉. (30)

In Fig. 5 we plot P(R, t ) at t = 0, 0.17π/ω, 0.34π/ω, and
π/ω for κ = 0.1, 1, and 10 (heavy impurity, equal mass, and
light impurity, respectively) as a function of R for the forward
quench. We find that the peak of the probability distribution
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FIG. 5. The evolution of the hyperradial probability distribution,
Eq. (30), following a forward quench. Each plotted curve is P(R, t )
for a specified value of t and the upper, middle, and lower panels
correspond to κ = 0.1, 1, and 10, the heavy impurity, equal mass,
and light impurity cases, respectively. The red dotted-dashed line
corresponds to t = 0, the dashed green line to t = 0.17π/ω, the solid
blue line to t = 0.34π/ω, and the dotted black line to t = 0.5π/ω.
For all plots the initial state is (qi, si ) = (0, 4) and calculations are
performed with Nmax = 24. Each curve is convergent with Nmax.

shifts inward as the system evolves, reaching its innermost
point at t = π/2ω and then evolving in reverse back to its
original configuration and continuing to oscillate in this way
with period t = π/ω. The magnitude of oscillation is smaller
for larger κ . This oscillatory behavior and its dependence
on κ is unsurprising given the behavior observed in Fig. 3.
However, the double peak, which is present for κ � 5,
is unusual. We can illuminate the double-peak structure
by looking at the overlaps of the pre- and postquench
wave functions. Looking at the κ = 0.1 (heavy impurity)
case, the largest overlaps are |〈F0,4φ0,4|F0,2.004φ0,2.004〉|2 ≈
0.539, |〈F0,4φ0,4|F0,5.817φ0,5.817〉|2 ≈ 0.134, and
|〈F0,4φ0,4|F1,2.004φ0,2.004〉|2 ≈ 0.179. 〈R̃〉 of these
states projected onto are ≈1.66, ≈2.56, and

≈2.07, respectively. Compare this to the κ = 10
(light impurity) case where the most significant
states are |〈F0,4φ0,4|F0,3.3169φ0,3.3169〉|2 ≈ 0.607, and
|〈F0,4φ0,4|F0,4.707φ0,4.707〉|2 ≈ 0.350 and 〈R̃〉 of the states
projected onto are ≈2.01 and ≈2.33. For small κ , the initial
state most heavily overlaps with a few states, with a relatively
large variation in 〈R〉 across the states. For large κ the
overlaps are with a few states that are clustered in 〈R〉, hence
P(R, t = π/2ω) is singly peaked in the latter case but doubly
peaked in the former. Physically speaking, the oscillation
amplitude grows smaller for a lighter impurity particle
because the less mass (and therefore momenta) it has, the less
it is able to affect the positions of the two fermions. For the
forward quench we find P(R, t ) is convergent as Nmax → ∞
at all points in time, as expected given 〈R(t )〉 is convergent
for the forward quench. We now turn to the divergent case,
the reverse quench.

In Fig. 6 we plot P(R, t ) at t = 0, 0.17π/ω, 0.34π/ω,
and π/ω for κ = 0.1, 1, and 10 (heavy impurity, equal mass,
and light impurity, respectively) as a function of R for the
backward quench. As with the forward quench P(R, t ) os-
cillates with period π/ω, however, the peak initially moves
outward rather than inward. The magnitude of the oscillations
grows smaller for larger κ (lighter impurity) but the behavior
is qualitatively similar regardless of the mass imbalance. For
t = nπ/ω, P(R, t ) is approximately a Gaussian and converges
with Nmax, however, away from t = nπ/ω the probability
distribution develops a long tail. The behavior of the tail at
t = π/2ω for κ = 1 is plotted in Fig. 7 for various Nmax

and the behavior is qualitatively similar for different κ . The
long tail decays approximately as 1/R̃2 before becoming ex-
ponentially suppressed, a “cutoff.” The larger Nmax is, the later
the cutoff occurs. While P(R, t = π/2ω) is normalized as
Nmax → ∞, this increasing long tail means that the integral of
RP(R, t = π/2ω) from R = 0 to R → ∞ is divergent, hence
〈R̃〉 diverges.

In the two-body case it has been suggested that the di-
vergence in 〈r〉 = 〈|�r1 − �r2|〉 is due to the 1/r divergence in
the two-body relative wave function [30]. In the three-body
case the hyperradial part of Eq. (8) does not have a 1/R
divergence and has a cusp at R̃ → 0 for the unitary κ = 0.1
(heavy impurity) and κ = 1 (equal mass) ground states but
not for the κ = 10 (light impurity) ground state. Nonetheless,
the divergence in 〈R̃(t )〉 is present in all three cases. More
specifically, we find that for si < 3 the initial wave function
exhibits a cusp, while for si � 3 there is no cusp in the initial
wave function. Regardless of which regime the initial state is
in, the logarithmic divergence of 〈R̃(t )〉 persists.

However, it is clear that the finite range of the interaction in
a real system provides a natural cutoff in the sum in Eq. (28).
A finite range of interaction defines a minimum de Broglie
wavelength which in turn defines a maximum energy which
defines a maximum number of terms in the sums of Eq. (28)
and thus a maximum 〈R̃(t )〉. For a system of three sodium
atoms (i.e., κ = 1) in a 1-kHz trap and an interaction cutoff
of 10−9 m we obtain a cutoff energy of Erel ≈ 8.7 × 106h̄ω

and thus expect a maximum 〈R̃(t )〉 of ≈11. With this cutoff
〈R̃(t )〉 for the backward quench oscillates between ≈1.5 and
≈11, with an amplitude of ≈5. This is significantly larger
than in the forward quench where 〈R̃(t )〉 oscillates between
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FIG. 6. The evolution of the hyperradial probability distribution,
Eq. (30), following a backward quench. Each plotted curve is P(R, t )
for a specified value of t and the upper, middle, and lower panels
correspond to κ = 0.1, 1, and 10, the heavy impurity, equal mass, and
light impurity cases, respectively. The red dotted-dashed line corre-
sponds to t = 0, the dashed green line to t = 0.17π/ω, the solid blue
line to t = 0.34π/ω, and the dotted black line to t = 0.5π/ω. The
initial state is given qi = 0 for all plots, for the upper, middle, and
lower plots si = 2.004 . . . , 2.166 . . . , and 3.3169 . . . , respectively,
and all calculations are performed with Nmax = 24. Only the t = 0
curve (red dotted-dashed) is convergent with Nmax.

≈1.8 and ≈2.2. In light of the divergence it is natural to
consider the effect of using finite-range interaction models
rather than zero range as done here, and the case of two bodies
with a soft-core interaction has been solved analytically in
a one-dimensional harmonic trap [42]. In the limit of small
interaction range it is likely that the dynamics will be similar,
but the effects of longer-range interactions on the dynamics
are unclear. If the source of the 〈R̃(t )〉 divergence is indeed
the zero-range nature of the interaction, then the finite-range
model may not have the divergence present in the zero-range
model.

FIG. 7. The tail of P(R, t = π/2ω) in the reverse quench with
κ = 1 (equal mass) and (qi, si ) = (0, 2.166 . . . ) for various values
of Nmax. The dotted-dashed red line corresponds to Nmax = 10, the
dashed green line to Nmax = 20, the solid blue line to Nmax = 30, and
the dotted black line to Nmax = 40.

However, the zero-range interaction is not the only non-
physical aspect of this model. We assume that the quench in
as is instantaneous, and in experiment as will change con-
tinuously over some finite time. The instantaneous quench
we consider here may also be related to the 〈R̃(t )〉 diver-
gence in the backward quench, but it is difficult to calculate
a noninstantaneous quench in this formalism. In the two-
body formalism it is possible to quench between any two
scattering lengths [30] and thus numerically calculate a non-
instantaneous quench. It would be interesting to see how this
would affect the dynamics of the system and if this affects the
divergence.

IV. CONCLUSION

In this paper we examine the time evolution of quenched
systems. We consider a harmonically trapped system of two
identical fermions plus a distinct particle interacting via a
contact interaction where the system is quenched from nonin-
teracting to strongly interacting or vice versa. We calculate the
static wave function in both the noninteracting and strongly
interacting regimes for general mass and use these solutions
to calculate two time-dependent postquench observables: the
Ramsey signal S(t ) and the particle separation 〈R̃(t )〉. These
observables are calculated for both the forward and backward
quenches.

For the Ramsey signal we find an irregularly repeating
signal for the forward quench. This irregularity is due to the
irrationality of the unitary energy spectrum and this irregular
behavior is more pronounced for small κ (heavy impurity).
For the reverse quench the magnitude of the Ramsey signal
oscillates with period π/ω as the noninteracting energies are
integer multiples and the phase has an irregular period due to
the irrational initial energy.

For the particle separation the forward quench yields the
expected oscillating result, however, the period is π/ω as the
irrational contributions to the unitary eigenenergies cancel.
For the backward quench we find that the particle separation
diverges logarithmically, similar to divergence in r = |�r2 − �r1|
for the same quench performed on the two-body system [30].
By enforcing a cutoff based on the van der Waals interaction
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range we estimate a very large amplitude of oscillation, ≈5aμ

for κ = 1. From a physical perspective it is unclear why the
divergence occurs for the backward but not forward quench
but it is likely related to the zero-range interaction and/or the
instantaneous quench.

Finally, we note that experimental testing of these the-
oretical predictions is within reach. Few-atom systems can
be reliably constructed with modern techniques [1–5], the
quench in s-wave scattering length can be achieved using
Feshbach resonance [43–46], and the Ramsey signal can
be measured using Ramsey interferometry techniques [47].
Notably, Ref. [48] measured the particle separation of two
harmonically trapped 6Li atoms following a quench in trap

geometry rather than s-wave scattering length. Additionally,
there have been theoretical advances that allow for the four-
body wave function to be characterized analytically in the
untrapped case for 3 + 1 and 2 + 2 Fermi systems [49,50].
These advances may allow for this work to be generalized to
the four-body case.

ACKNOWLEDGMENTS

A.D.K. is supported by an Australian Government Re-
search Training Program Scholarship and by the University
of Melbourne. We thank Victor Colussi for illuminating dis-
cussions regarding the evaluation of the hyperangular integral.

[1] F. Serwane, G. Zürn, T. Lompe, T. Ottenstein, A. Wenz, and
S. Jochim, Science 332, 336 (2011).

[2] S. Murmann, A. Bergschneider, V. M. Klinkhamer, G. Zürn, T.
Lompe, and S. Jochim, Phys. Rev. Lett. 114, 080402 (2015).

[3] G. Zürn, A. N. Wenz, S. Murmann, A. Bergschneider,
T. Lompe, and S. Jochim, Phys. Rev. Lett. 111, 175302 (2013).

[4] G. Zürn, F. Serwane, T. Lompe, A. N. Wenz, M. G. Ries,
J. E. Bohn, and S. Jochim, Phys. Rev. Lett. 108, 075303
(2012).

[5] T. Stöferle, H. Moritz, K. Günter, M. Köhl, and T. Esslinger,
Phys. Rev. Lett. 96, 030401 (2006).

[6] X. Cui, Few-Body Syst. 52, 65 (2012).
[7] J. P. D’Incao, J. Wang, and V. E. Colussi, Phys. Rev. Lett. 121,

023401 (2018).
[8] S. Jonsell, H. Heiselberg, and C. J. Pethick, Phys. Rev. Lett. 89,

250401 (2002).
[9] D. Blume and K. M. Daily, Phys. Rev. Lett. 105, 170403 (2010).

[10] A. Kerin and A. Martin, arXiv:2204.09205.
[11] J. P. Kestner and L.-M. Duan, Phys. Rev. A 76, 033611 (2007).
[12] X.-J. Liu, H. Hu, and P. D. Drummond, Phys. Rev. Lett. 102,

160401 (2009).
[13] X.-J. Liu, H. Hu, and P. D. Drummond, Phys. Rev. A 82, 023619

(2010).
[14] D. Rakshit, K. M. Daily, and D. Blume, Phys. Rev. A 85,

033634 (2012).
[15] D. B. Kaplan and S. Sun, Phys. Rev. Lett. 107, 030601 (2011).
[16] B. C. Mulkerin, C. J. Bradly, H. M. Quiney, and A. M. Martin,

Phys. Rev. A 85, 053636 (2012).
[17] B. C. Mulkerin, C. J. Bradly, H. M. Quiney, and A. M. Martin,

Phys. Rev. A 86, 053631 (2012).
[18] S. Nascimbène, N. Navon, F. Jiang, K. Chevy, and C. Salomon,

Nature (London) 463, 1057 (2010).
[19] M. Ku, A. Sommer, L. Cheuk, and M. Zwierlein, Science 335,

563 (2012).
[20] J. Levinsen, P. Massignan, S. Endo, and M. M. Parish, J. Phys.

B: At., Mol. Opt. Phys. 50, 072001 (2017).
[21] K. M. Daily and D. Blume, Phys. Rev. A 81, 053615 (2010).
[22] V. E. Colussi, J. P. Corson, and J. P. D’Incao, Phys. Rev. Lett.

120, 100401 (2018).
[23] V. E. Colussi, B. E. van Zwol, J. P. D’Incao, and S. J. J. M. F.

Kokkelmans, Phys. Rev. A 99, 043604 (2019).
[24] T. Enss, N. C. Braatz, and G. Gori, Phys. Rev. A 106, 013308

(2022).

[25] G. Bougas, S. Mistakidis, P. Giannakeas, and P. Schmelcher,
Phys. Rev. A 106, 043323 (2022).

[26] D. Peçak, M. Gajda, and T. Sowiński, New J. Phys. 18, 013030
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