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Gradient corrections to the local-density approximation in the one-dimensional Bose gas
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The local-density approximation (LDA) is the central technical tool in the modeling of quantum gases in
trapping potentials. It consists in treating the gas as an assembly of independent mesoscopic fluid cells at
equilibrium with a local chemical potential, and it is justified when the correlation length is larger than the
size of the cells. The LDA is often regarded as a crude approximation, particularly in the ground state of the
one-dimensional (1D) Bose gas, where the correlation length is “therefore said to be” infinite (in the sense that
correlation functions decay as a power law). Here we take another look at the LDA. The local density ρ(x) is
viewed as a functional of the trapping potential V (x), to which one applies a gradient expansion. The zeroth
order in that expansion is the LDA. The first-order correction in the gradient expansion vanishes due to reflection
symmetry. At second order, there are two corrections proportional to d2V/dx2 and (dV/dx)2, and we propose
a method to determine the corresponding coefficients by a perturbative calculation in the Lieb-Liniger model.
This leads to an expression for the coefficients in terms of matrix elements of the density operator, which can in
principle be evaluated numerically for an arbitrary coupling constant; here we show how to efficiently evaluate
the coefficient associated to the curvature of the potential d2V/dx2, which dominates the deviation to LDA near
local minima or maxima of the trapping potential. Both coefficients are evaluated analytically in the limits of
infinite repulsion (hard-core bosons) and small repulsion (quasicondensate). The corrected LDA density profiles
are compared to density-matrix renormalization group calculations, with significant improvement compared to
zeroth-order LDA.
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I. INTRODUCTION

Since the achievement of a Bose-Einstein condensation
(BEC) [1,2], tremendous improvements in ultracold gas ex-
periments have been realized, especially for low-dimensional
systems. Indeed, experiments on ultracold atoms have en-
abled the study of the dynamics and the physical properties
of quasi-one-dimensional (1D) systems [3–5]. To mention
but one peculiar property of 1D gases, it has been estab-
lished theoretically [6,7] and observed experimentally [8]
that there is no Bose-Einstein condensation for 1D atomic
gases. For high densities, a quasicondensate regime ap-
pears characterized by an absence of density fluctuations and
vanishing phase fluctuations at T = 0. Moreover, ultracold
atomic gas experiments constitute ideal setups to better under-
stand out-of-equilibrium quantum physics, highlighting exotic
properties for 1D integrable quantum systems. Thenceforth
one can confront well-known theoretical models such as the
Lieb-Liniger model [9–11], which describes a homogeneous
gas of δ-interacting bosons and real physical systems.

Experimentally, the atom cloud is confined by magnetic
or optical potentials [7] that usually break the homogeneity
of the system. In order to model a 1D gas in an external
potential V (x), one commonly relies on the local-density ap-
proximation (LDA). The LDA applies in the limit where the
typical length � of variation of the potential, which can be
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estimated to be of order � ∼ |∂xV/V |−1 (or � ∼ |∂2
x V/V |−1/2

near a local extremum of the potential), is much larger than
the healing length ξheal = h̄/

√
2mμ (μ is the chemical po-

tential and m is the atom mass). In that limit, the gas can
be viewed as a collection of uncorrelated fluid cells of meso-
scopic length, much larger than the healing length but much
smaller than �. Then the potential V (x) is locally constant,
and each mesoscopic fluid cell is at equilibrium with the local
chemical potential μ − V (x), where the global chemical po-
tential μ is determined by the total number of particles in the
cloud.

Of course, near the edges of the cloud where the density
vanishes, the assumptions underlying the LDA break down,
and the LDA becomes inaccurate. For instance, in a harmonic
trap at zero temperature the LDA predicts a sharp edge [12],
while the true density profile has Gaussian tails reminiscent
of those of the single-particle harmonic oscillator orbitals. Let
us stress that, in this paper, we are not interested in correcting
the LDA near the edges.

Instead, our goal is to better understand the LDA in the bulk
of the cloud, where it typically provides a good description
of the trapped gas for many practical purposes [12–20], even
though the approximation of uncorrelated mesoscopic fluid
cells is a very crude one, especially in the ground state where
correlation functions decay as power laws and the correlation
length is infinite [21]. We want to analyze the corrections to
the LDA in the ground state of the inhomogeneous 1D Bose
gas in order to evaluate its accuracy and to allow improved
calculations of density profiles. Indeed, the density profile
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predicted by the LDA is exact only in the limit where the ratio
�/ξheal(x) = �

√
2m(μ − V (x))/h̄ → +∞. When this ratio is

large but finite, the LDA must acquire corrections. Our goal is
to find a way to estimate these corrections.

The main idea is as follows. For a fixed global chemi-
cal potential μ, the local density of the trapped gas can be
regarded as a local functional of the trapping potential V ,
〈ρ(x)〉 = F[V ](x). By “local functional” we mean that 〈ρ(x)〉
depends on V (y) for positions y that are in the neighborhood
of x. Then this functional should be a function of V (x) and
its derivatives, F[V ](x) = f (V (x), ∂xV (x), ∂2

x V, . . . ), and it
should have a gradient expansion of the form

〈ρ(x)〉 � ρLDA(V (x)) + A(V (x))
dV (x)

dx

+ B(V (x))
d2V (x)

dx2
+ C(V (x))

(
dV (x)

dx

)2

+ · · · . (1)

To zeroth order, this is the LDA, and the function
ρLDA(V (x)) is nothing but the ground-state density of the
homogeneous gas evaluated at the local chemical potential
μ − V (x) (see also Sec. II A below). Higher orders in deriva-
tives of V (x) give corrections to the LDA. The coefficients A,
B, C, depend only on the local value of the potential. Because
of the reflection symmetry (x → −x) of the homogeneous
Bose gas, we have A = 0. Thus the first nonzero corrections to
the LDA are of second order in the derivatives, and they reflect
the dependence of the density on the curvature, (d2V/dx2),
and on the slope, (dV/dx)2, of the potential, respectively.

In this paper we study the coefficients B(V ) and C(V ) in
the Lieb-Liniger model of bosons with δ repulsion [9,10,22],
which describes many experiments on the 1D Bose gas [23].
In the Lieb-Liniger theory of the homogeneous gas at density
ρ0 [9,10], the dimensionless parameter

γ = mg

h̄2ρ0
(2)

determines the different regimes of the model. Here m is the
mass of the atoms and g > 0 is the 1D coupling constant (see
Hamiltonian (4) below). In particular, the Lieb-Liniger model
possesses two simple limits: the strongly interacting limit of
hard-core bosons (γ → ∞) [24], and the weakly interacting
limit of the quasicondensate (γ → 0) [25].

When the particle is inhomogeneous, the parameter γ be-
comes a function of the position, γ (x) = mg/[h̄2ρLDA(V (x))].
Then from dimensional analysis, we see that the coefficients
B and C must have the following form:

B(V ) = − m α(γ )

h̄2ρ3
LDA(V )

, C(V ) = − m2β(γ )

h̄4ρ5
LDA(V )

, (3)

where α(γ ) and β(γ ) are dimensionless coefficients. Here the
minus sign is a convention introduced for later convenience.
The functions α(γ ) and β(γ ) are the central objects of this
paper.

We analyze the coefficients α(γ ) and β(γ ) in detail be-
low. In particular, we derive their general expressions from
response theory, we analyze their asymptotic behavior in the
limits γ → +∞ and γ → 0, and we are able to evaluate
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FIG. 1. Density profile for the Lieb-Liniger gas perturbed by a

Gaussian barrier V (x) = V0 e− x2

2σ2 . Here m = h̄ = 1, g = 0.02, and
far from the barrier the density is ρ∞ = 0.0412, corresponding
to a Lieb parameter γ = 0.48 and a chemical potential μ(ρ∞) =
0.000 65. The parameters of the barrier are V0 = 0.000 13 and σ =
55(= 2.27ρ−1

∞ ). The length of variation of the potential (∼σ ) is of
the order of the healing length ξheal � 28(= 1.15ρ−1

∞ ). The standard
LDA (solid orange line) shows a clear deviation from the numerically
exact result (black line), obtained from a DMRG simulation of a
lattice gas of 40 particles on L = 1000 sites. The corrected den-
sity profile (dashed red line) ρcurv

LDA(x) = ρLDA(x) + B(V (x))d2V/dx2,
which includes only the correction due to the potential’s curvature, is
much more accurate. Inset: view of the full system x ∈ [−L/2, L/2]
used in the DMRG simulation. The LDA also deviates from the true
density profile near the boundaries, where the density vanishes, but
that deviation is not captured by a gradient expansion of the form (1),
and it is not what we focus on in this paper (see text).

α(γ ) numerically for a large range of values of γ (Fig. 2).
Unfortunately, the numerical evaluation of β(γ ) for arbi-
trary γ is more difficult, and we have not been able to
extract it in a reliable way. However, we find that includ-
ing only the curvature-sensitive correction B(V (x))d2V/dx2

in the corrected density profile ρLDA(V (x)) [Eq. (1)] al-
ready gives significant improvement, as illustrated in Fig. 1.
There, we consider a small perturbation of the homogeneous
Lieb-Liniger gas with γ � 0.5 by a Gaussian barrier V (x) =
V0e−x2/2σ 2

. The amplitude of the barrier is small so that the
density variation at the peak of the barrier is about 15%, and
its width is σ � 1.9ξheal. Therefore the length scale � ∼ σ of
variation of the potential is larger, but still of the same order,
as the microscopic length scale in the problem. The devia-
tion of the standard LDA prediction ρLDA(x) from the exact
density profile [evaluated with a density-matrix renormaliza-
tion group (DMRG) calculation, see Sec. V for details] is
clearly visible in Fig. 2, especially at the center of the barrier.
Adding the curvature-sensitive correction B(V (x))d2V/dx2 to
ρLDA(x) leads to a very clear improvement of the density
profile. Notice that the potential’s slope vanishes at the local
extrema of the potential, so the slope-induced term in Eq. (1),
had it been included, would have had a negligible effect on the
density profile near these points.

The paper is organized as follows. In Sec. II we briefly
recall LDA, and we derive general expressions for the
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FIG. 2. The coefficient α as a function of γ obtained by summing
the form factors for three different system sizes L = 100, L = 150,
and L = 200. The asymptotic behavior of α(γ ) predicted by the
Gross-Pitaevskii approach α(γ → 0) = 1

4γ 2 is shown by the red
dashed line. In the inset, the magenta dashed line is the asymptotic
value expected in the Tonks-Girardeau limit α(γ → ∞) = − 1

12 π4 .
Notice the change of sign of α for γ ≈ 28. The numerical process
used to compute α is detailed in Fig. 4 and in Sec. IV B.

coefficients α(γ ) and β(γ ) using response theory. In Sec. III
we give analytic results for the coefficients α and β in the
limiting cases γ → ∞ and γ → 0. In Sec. IV we use the nu-
merical method developed to evaluate the above coefficients
for general interaction strength γ . In Sec. V we compare dif-
ferent density profiles obtained from DMRG simulation with
the standard LDA and the LDA corrected with our coefficient
α(γ ). Finally, we conclude this article in Sec. VI, and we
discuss future perspectives.

II. EXPRESSION OF COEFFICIENTS α(γ ) AND β(γ ) FROM
RESPONSE THEORY

In this section we present our approach to determine the
coefficients α(γ ) and β(γ ). The main idea is to start from
the gradient expansion (1), assumed to be valid for an ar-
bitrary potential V (x), and to specialize it to the case of an
almost constant potential V (x) = const. + δV (x), with an in-
finitesimal δV (x) which we treat in perturbation theory. The
coefficients α(γ ) and β(γ ) can then be expressed in terms of
susceptibilities that appear in perturbation theory around the
ground state of the homogeneous gas.

For completeness, we start by briefly recalling the Lieb-
Liniger model and the relation between the particle density
and the chemical potential in that model, which underlies
standard LDA calculations in the 1D Bose gas.

A. The translationally invariant Lieb-Liniger model, and the
relation between the density ρ0 and the chemical potential μ

We consider the Lieb-Liniger model, defined by the trans-
lationally invariant Hamiltonian

H =
∫ L

0
dx �†(x)

(
− h̄2

2m

∂2

∂x2
− μ + g

2
�†(x)�(x)

)
�(x),

(4)

where �(x) and �†(x) are bosonic operators that obey
the canonical commutation relation [�(x), �†(y)] = δ(x −
y), the coupling constant g is positive so that the contact inter-
action between the atoms is repulsive, and μ is the chemical
potential. The ground state |0〉 of (4) for chemical potential μ

has N particles, and the particle density is ρ0 = N/L.
Lieb and Liniger constructed the ground state of the Hamil-

tonian (4) with the Bethe ansatz [9,10,26] and determined the
energy per particle exactly in the thermodynamic limit. The
result reads e(γ ) − μ, where e(γ ) is the sum of the kinetic
and interaction energy per particle,

e(γ ) = h̄2

2m
ρ2

0
γ 3

ḡ3

∫ 1

−1
dλ λ2 fγ (λ), (5)

where fγ (λ) is the (dimensionless) rapidity distribution,
which solves the Lieb equations

fγ (λ) − 1

2π

∫ 1

−1
dλ′ 2ḡ fγ (λ′)

ḡ2 + (λ − λ′)2
= 1

2π
(6)

and

ḡ = γ

∫ 1

−1
dλ fγ (λ). (7)

Equation (6) is a Fredholm integral equation of the sec-
ond kind, which can be solved numerically by discretizing
the integral [27]. For more on the Lieb equation, see, e.g.,
Refs. [9,12,28].

Since, by definition, (e(γ ) − μ)ρ0 is the energy density
in the ground state, it must satisfy d

dρ0
[(e(γ ) − μ)ρ0] = 0,

because it is minimal when the particle density is equal to
the ground-state one. Therefore the chemical potential μ is
related to the function e(γ ) as

μ = d (ρ0e(γ ))
dρ0

= e(γ ) − γ
de(γ )

dγ
. (8)

Since γ is given in terms of ρ0 by Eq. (2), we have obtained
the chemical potential as a function of the particle density
μ(ρ0). Inverting this function gives the ground-state density as
a function of the chemical potential ρ0(μ). It is this function
that plays the central role in all LDA calculations.

Indeed, when one describes the inhomogeneous 1D Bose
gas in a potential V (x) within the LDA, it is that function
ρ0(μ) that enters the LDA; see, e.g., Refs. [12,16]. The density
at a point x is simply replaced by the ground-state density at
the value of the local chemical potential μ − V (x): the func-
tion ρLDA(V (x)) in Eq. (1) is equal to ρ0(μ − V (x)), where the
global chemical potential μ is fixed. In practice, μ is adjusted
so to give the correct total number of particles in the system,
N = ∫

dx ρ0(μ − V (x)).

B. Response theory

Now we come back to the inhomogeneous 1D Bose gas
in a potential V (x), and we assume that the gradient ex-
pansion (1) holds. We recall that Eq. (1) assumes a fixed
global chemical potential μ. The standard (zeroth-order) LDA
density ρLDA(V (x)) is given by ρ0(μ − V (x)), as reviewed in
Sec. II A. The higher orders in the gradient expansion (1) are
expressed in terms of the coefficients α(γ ) and β(γ ), which
are not known. The goal of the rest of this section is to find
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a way to express them in terms of calculable quantities in the
Lieb-Liniger model.

To do this we specialize the gradient expansion (1) to
the case of an almost constant potential V (x) = V0 + δV (x),
where V0 is a constant and δV (x) is infinitesimal and will be
treated within perturbation theory. Plugging that potential into
Eq. (1) and expanding to second order in δV (x), one finds

〈ρ(x)〉 = ρLDA(V0) + B(V0)
d2δV (x)

dx2
+ C(V0)

(
dδV (x)

dx

)2

+
(

dρLDA

dV

∣∣∣∣V0 + dB

dV

∣∣∣∣
V0

d2δV (x)

dx2

)
δV (x)

+ δV (x)2

2

d2ρLDA

dV 2

∣∣∣∣
V0

. (9)

One then has to relate the coefficients B and C, or equiva-
lently, the dimensionless coefficients α(γ ) and β(γ ) defined
in Eq. (3), to susceptibilities that appear in response theory of
the Lieb-Liniger model, which is what we do next.

The strategy is to compare the right-hand side of Eq. (9)
with the results of perturbation theory around the ground state
of the translationally invariant Hamiltonian (4). We consider
the Hamiltonian (4), where we make the substitution μ →
μ − V0, and we add the infinitesimal perturbation

H +
∫ L

0
dx δV (x) �†(x) �(x). (10)

We compute the ground state of the perturbed Hamiltonian to
second order in δV (x) and then evaluate the expectation value
of the density operator ρ(x) in this perturbed ground state (see
Appendix B for detailed calculations). The density variation is
of the form

〈ρ(x)〉 − ρ0 =
∫ L

0
dy χ (x, y) δV (y)

+
∫ L

0

∫ L

0
dy dz φ(x, y, z) δV (y) δV (z)

+ O(δV 3), (11)

where we introduce the linear and nonlinear susceptibility
χ (x, y) and φ(x, y, z). The linear susceptibility is given by

χ (x, y) =
∑
n �=0

〈0|ρ(x)|n〉〈n|ρ(y)|0〉
E0 − En

+ 〈0|ρ(y)|n〉〈n|ρ(x)|0〉
E0 − En

, (12)

which involves a sum over all eigenstates |n〉 of the systems.
Similarly, for the nonlinear susceptibility we have

φ(x, y, z) = 1

2

′∑
n,m

〈m|ρ(x)|n〉〈n|ρ(y)|0〉〈0|ρ(z)|m〉
(E0 − En)(E0 − Em)

+ {perm. of x, y, z}, (13)

where
∑′

n,m is the sum over eigenstates n and m with n �=
0, m �= 0, and n �= m, and the result includes the six terms
corresponding to all permutations of the coordinates x, y, z.

Thanks to translation invariance, the first-order susceptibil-
ity depends on a single variable χ (x, y) = χ (x − y) = χ (u),
and by introducing the Fourier modes ρ(x) = 1

L

∑
q e−iqxρ̃q

with q ∈ 2π
L Z , its Fourier transform is expressed in terms of

matrix elements

χ̃ (q) =
∫ L

0
eiquχ (u)du

= 1

L

∑
n �=0

|〈n|ρ̃q|0〉|2
E0 − En

+ 1

L

∑
n �=0

|〈n|ρ̃−q|0〉|2
E0 − En

= 2

L

∑
n �=0

|〈n|ρ̃q|0〉|2
E0 − En

. (14)

In the Lieb-Liniger model, the matrix elements 〈n|ρ̃−q|0〉 can
be evaluated with the algebraic Bethe ansatz [26,29–31].

Analogously, the nonlinear susceptibility φ(x, y, z) =
φ(x − y, x − z) is expressed in Fourier space as

φ̃(q1, q2) =
∫ L

0

∫ L

0
dudv eiq1u eiq2vφ(u, v)

= 1

2L

( ′∑
n,m

〈m|ρ̃−q3 |n〉〈n|ρ̃−q1 |0〉〈0|ρ̃−q2 |m〉
(E0 − En)(E0 − Em)

+{perm. of q1, q2, q3}
)

, (15)

where q3 = −q1 − q2.
Having introduced the (linear) and (nonlinear) suscepti-

bilities χ̃ (q) and φ̃(q1, q2), we express α(γ ), in Sec. II C,
and β(γ ), in Sec. II D, in terms of these susceptibilities by
matching the terms in the expansion (9) with those in the
expansion (11).

C. General expression for α(γ )

We are interested in long-wavelength corrections to the
LDA, which are governed by the behavior of the susceptibility
at low wave vector q. The Taylor expansion of the linear
susceptibility χ̃ (q) around q = 0 is

χ̃ (q) = χ̃ (0) + ∂2χ̃ (q)

∂q2

∣∣∣∣
q=0

q2

2
+ O(q4), (16)

where the first order vanishes because χ̃ (q) = χ̃ (−q). The
coefficient χ̃ (0) is the compressibility defined in the homo-
geneous case as the derivative of the density with respect to
the chemical potential.

Applying an inverse Fourier transform to the above expan-
sion and inserting it in Eq. (11), one obtains

〈ρ(x)〉 − ρ0 = χ̃ (0) δV (x) − 1

2

∂2χ̃ (q)

∂q2

∣∣∣∣
q=0

∂2
x δV (x)

+ O(δV (x))2. (17)

Comparing with the relation (9), the first term in (17) is in-
cluded in the standard LDA, and the last term is identified with
the quantity B(V (x))∂2

x V (x) = − m α(γ )
h̄2ρ3

LDA(x)
∂2

x V (x). The coeffi-

053309-4



GRADIENT CORRECTIONS TO THE LOCAL-DENSITY … PHYSICAL REVIEW A 106, 053309 (2022)

cient α(γ ) defined in Eq. (3) is then

α = h̄2ρ3
0

2m

∂2χ̃ (q)

∂q2

∣∣∣∣
q=0

. (18)

This is the first main result of this paper. It gives an explicit
expression of the coefficient α in terms of the small-q behavior
of the linear response susceptibility χ̃ (q). To see that the
coefficient α depends only on γ , notice that, from dimensional
analysis, χ̃ (q) = f (γ , q/ρ0)/ρ0, with f (γ , q/ρ0) a dimen-
sionless function.

D. General expression for β(γ )

In order to compute β, we adopt the same method as
above but we go beyond the first-order perturbation and we
take into account the second order. Expanding the nonlinear
susceptibility φ̃(q1, q2) around (q1, q2) = (0, 0) up to second
order gives

φ̃(q1, q2) = φ̃(0, 0) + q1 ∂q1 φ̃(0, 0) + q2 ∂q2 φ̃(0, 0)

+ q1 q2 ∂q1∂q2 φ̃(0, 0) + q2
1

2
∂2

q1
φ̃(0, 0)

+ q2
2

2
∂2

q2
φ̃(0, 0) + O

(
q3

1

)
. (19)

Due to reflection symmetry, the terms containing first deriva-
tives vanish. Taking the inverse Fourier transform of (19), the
second term in Eq. (11) reads, up to second order,∫ L

0

∫ L

0
dy dz δV (y) δV (z) φ(x − y, x − z)

= φ00 δV (x)2 − φ11

(
dδV (x)

dx

)2

− φ22
d2δV (x)

dx2
δV (x),

(20)

with φ00 = φ̃(0, 0), φ11 = ∂q1∂q2 φ̃(0, 0), and φ22 =
∂2

q1
φ̃(0, 0) + ∂2

q2
φ̃(0, 0).

By identifying the above expression with Eq. (9), we
see that the term φ00δV (s)2 in the right-hand side of (20)
comes from the Taylor expansion of ρLDA(V0 + δV (x)).
The term is the one that must be identified with
C(dδV (x)/dx)2 in (9), which leads to C(V (x)) = − m2 β(γ )

h̄4 ρ5
LDA(x)

.

The last term φ22(d2δV/dx2)δV must be identified with
(dB/dV )(d2δV/dx2)δV in Eq. (9), which comes from the
Taylor expansion of the curvature term B(V0 + δV (x)) d2δV (x)

dx2 .
To summarize, we find that the function β(γ ) is determined

by the second derivative ∂2φ̃/∂q1∂q2:

β = h̄4 ρ5
0

m2

∂2φ̃(q1, q2)

∂q1∂q2

∣∣∣∣q1=0
q2=0

. (21)

To see that it depends only on γ , notice that φ̃(q1, q2) =
f (γ , q1/ρ0, q2/ρ0)/ρ3

0 for some dimensionless function
f (γ , q1/ρ0, q2/ρ0).

Equation (21) is the second main result of this work. It
gives an explicit expression for the coefficient β(γ ) in terms
of the small-wave-vector behavior of the nonlinear (second-
order) susceptibility φ̃(q1, q2).

III. LIMITING CASES

A. Analytical expressions for α(γ )

1. Tonks-Girardeau limit

In this section we study the limit γ → ∞. Physically, two
bosons can no longer be at the same point because the system
gains an infinite energy. So we are dealing with a kind of
Pauli principle and the system has a fermionic behavior [24].
In this regime the density is expressed in terms of fermionic
operators ρ(x) = c†(x)c(x), thanks to a Jordan-Wigner trans-
formation

�(x) = e−iπ
∫

dy c†(y)c(y) c(x), (22)

where c(x) and c†(x) satisfy the anticommutation relation
{c(x), c†(y)} = δ(x − y). The ground state |0〉 is a Fermi sea,
which satisfies c†

k |0〉 = 0 if |k| < kF, and ck|0〉 = 0 if |k| > kF.
Here kF = πρ0 is the Fermi momentum.

Introducing the fermionic operator’s Fourier modes c(x) =
1√
L

∑
k eikx ck , the density operator reads in Fourier space,

ρ̃q =
∫ L

0
dx eiqx ρ(x) =

∑
k

c†
kck−q. (23)

Inserting the above relation in (14), we see that we need
the matrix elements 〈n|c†

kck−q|0〉, which are nonzero only
if the eigenstate |n〉 = c†

kck−q|0〉 correspond to a single-
particle-hole excitation above the ground state. The energy

of this excited state is En = E0 + h̄2k2

2m − h̄2(k−q)2

2m . We have
〈n|c†

kck−q|0〉 = 1 if |k − q| < kF and |k| > kF, and zero oth-
erwise. For instance, for q > 0 we have 〈n|c†

kck−q|0〉 = 1 if
kF < k < kF + q and zero otherwise, which leads to

χ̃ (q) = 2

L

∫ kF+q

kF

L dk

2π

1
−h̄2k2

2m + h̄2(k−q)2

2m

,

where we have replaced the sum by an integral over k. Notice
that the excited states contributing to χ̃ (q) for small q are
those for which a particle close to the edge of the domain is
excited above the Fermi level. A similar expression is found
for q < 0. In both cases the evaluation of the integral gives the
static charge susceptibility

χ̃ (q) = − m

h̄2qπ
ln

∣∣∣∣∣
1 + q

2πρ0

1 − q
2πρ0

∣∣∣∣∣
�

q→0
− m

h̄2ρ0 π2
− m

6h̄2 π4 ρ3
0

q2

2
+ O(q4). (24)

Using the result (18) we identify α(γ ) as

αTG = α(γ → ∞) = − 1

12 π4
. (25)

Thus, in the Tonks-Girardeau limit, the coefficient α(γ ) goes
to a negative constant. For any confining potential such as
a harmonic trap, we expect that the density rises, which is
counterintuitive with the fermionic nature of the system.

2. Quasicondensate regime

As we are working at T = 0, we expect that for a small
interaction strength g the gas behaves like a quasicondensate,
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with a macroscopic number of bosons in the lowest one-
particle state [7].

To study this regime we follow the approach of
Refs. [25,32] and we use the phase-amplitude repre-
sentation for the boson annihilation operator: ψ (x) =√

ρ0 + δρ(x) eiθ (x), where δρ(x) and θ (x) are the density
fluctuation and phase fields, which satisfy the commutation
relation [δρ(x), θ (x′)] = i δ(x − x′). Plugging this representa-
tion of ψ (x) into the Hamiltonian (4) and expanding to second
order, one finds

(H − μN )(2)

=
∫ L

0
dx

[
h̄2

8mρ0
(∂xδρ)2 + g

2
δρ2 + h̄2ρ0

2m
(∂xθ )2

]
, (26)

where μ is the chemical potential.
We introduce �†(x) defined by �†(x) = 1

2
√

ρ0
(ρ0 +

δρ(x)) + i
√

ρ0 θ (x) with the commutation relation
[�(x), �†(x′)] = δ(x − x′). Its Fourier modes are given by
�†

q = ∫ L
0 dx eiqx �†(x) = 1

2
√

ρ0
ρ̃q + i

√
ρ0 θ̃q with q ∈ 2π

L Z.

By expressing ρ̃q and θ̃q in terms of �±q and �
†
±q and after

some algebra,

(H − μN )(2)

= 1

2L

∑
q

(
�−q

�†
q

)†
(

h̄2q2

2m + μ μ

μ
h̄q2

2m + μ

)(
�−q

�†
q

)
. (27)

We have used the relation μ = ρ0 g for the quasicondensate.
We then apply a Bogoliubov transformation,

(
�−q

�†
q

)
=

√
L

(
¯u−q ¯v∗−q

v̄q ū∗
q

)(
b−q

b†
q

)
, (28)

with ūq = cosh(θ̃q/2), v̄q = − sinh(θ̃q/2), and tanh(θ̃q) =
μ

μ+ h̄2q2

2m

. This diagonalizes the Hamiltonian,

(H − μN )(2) =
∑

q

εq b†
q bq + const., (29)

with the dispersion relation of the Bogoliubov modes εq =√
h̄2q2

2m ( h̄2q2

2m + 2μ).
The ground state of the Hamiltonian (29) is annihilated

by the Bogoliubov destruction operators bq|0〉 = 0, while the
excited states are obtained by acting on the ground state with
b†

q. We can express the Fourier mode of the density opera-
tor ρ̃q in terms of the Bogoliubov creation and destruction
operators:

ρ̃q =
√

ρ0L[(ū−q + v̄q)b−q + (ū∗
q + v̄∗

−q)b†
q]. (30)

Plugging this into the expression for the static susceptibility
(14), we see that only one eigenstate |n〉 contributes to the

sum: |n〉 = b†
q|0〉. This leads to

χ̃ (q) = −2ρ0
|ū∗

q+ v̄∗
−q|2

εq
|〈0|bqb†

q|0〉|2

= −2ρ0
|ū∗

q+ v̄∗
−q|2

εq
. (31)

Using the expressions for ūq and v̄q, we find

ū∗
q + v̄∗

−q = e−θ̃q/2 =
(

h̄2q2/2m

2μ + h̄2q2/2m

)1/4

, (32)

which leads to the static susceptibility

χ̃ (q) = −1

g

(
1 + 1

2

h̄2q2

2mρ0 g

)−1

�
q→0

−1

g
+ m

2h̄2ρ3
0γ 2

q2

2
+ O(q4). (33)

Comparing this with Eq. (18), we find that

αGP(γ ) = α(γ → 0) = m

4h̄2γ 2
. (34)

Contrary to the Tonks-Girardeau limit, the correction here
decreases the density around a local minimum of the potential.
Surprisingly, the condensed properties of the Bose gas are re-
duced, and the bosons seem to repel each other in a confining
potential.

B. Analytical expression for β

1. Tonks-Girardeau limit

The Tonks limit is treated by inserting relation (23) in the
three matrix elements of (15). Here we just need to study the
first term in (15), because all the other terms can be deduced
from it by permuting the indices. This term is equal to

′∑
n,m

〈m|ρ̃−q3 |n〉〈n|ρ̃−q1 |0〉〈0|ρ̃−q2 |m〉
(E0 − En)(E0 − Em)

=
′∑

n,m

∑
k,l,p

〈m|c†
pcp+q3 |n〉〈n|c†

kck+q1 |0〉〈0|c†
l cl+q2 |m〉

(E0 − En)(E0 − Em)
.

(35)

The two last matrix elements set the states |n〉 = c†
kck+q1 |0〉

and |m〉 = c†
l+q2

cl |0〉. We obtain

′∑
n,m

〈m|ρ̃−q3 |n〉〈n|ρ̃−q1 |0〉〈0|ρ̃−q2 |m〉
(E0 − En)(E0 − Em)

= 4m2

h̄4

∑
k,l,p

〈0|c†
l cl+q2 c†

pcp+q3 c†
kck+q1 |0〉

(k2 − (k + q1)2)((l + q2)2 − l2)
. (36)

We apply the Wick theorem and the conditions −kF −
q1 < k < kF − q1 and −kF < l < kF select only two nonvan-
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ishing terms:

− 4m2

h̄4q1q2

∑
k,l,p

〈0|c†
l ck+q1 |0〉〈0|cl+q2 c†

p|0〉〈0|cp+q3 c†
k |0〉

(2k + q1)(2l + q2)

− 〈0|c†
l cp+q3|0〉〈0|cl+q2 c†

k |0〉〈0|c†
pck+q1 |0〉

(2k + q1)(2l + q2)
. (37)

The above matrix elements give specific restrictions on the
indices, for example, it is possible to express p and l in terms
of k and the Fourier modes q3, q1, and q2. For the two terms
in (37), one find the same condition q3 = −(q1 + q2), but in
order to compute the sum we have to distinguish many cases
depending on the sign of q3, q1, and q2. For a given set of
restrictions on q1 and q2, we change the sum by an integral
and the integration domain is given by the superposition of
the restrictions fixed by the matrix elements. The complete
treatment of expression (37) is done in Appendix B.

The function φ̃(q1, q2) is recovered by adding up all six
permutations. For each term in (37), the integral is easily
calculated, and for the Tonks-Girardeau limit one has

φ̃(q1, q2) = 2m2

h̄4π (q1 + q2)q1q2

× ln

(
2kF + q1

2kF − q1

2kF + q2

2kF − q2

2kF − (q1 + q2)

2kF + (q1 + q2)

)
.

(38)

This formula is remarkably simple and has the following
symmetry properties: φ̃(q1, q2) = φ̃(q2, q1) and φ̃(q1, q2) =
φ̃(−q1,−q2).

Expanding the logarithm around (k, k′) → (0, 0),

φ̃(q1, q2) � − m2

2h̄4

(
1

π4ρ3
0

+ q2
1 + q2

2

4π6ρ5
0

+ q1q2

4π6ρ5
0

)
, (39)

we can identify β as

βTG = β(γ → ∞) = − 1

8 π6
. (40)

Together with the coefficient α, our theory shows a perfect
agreement with the results of Samaj and Percus [33], who
developed a recursion approach to expand the local density
of a one-dimensional free fermion gas. As the method they
used is completely different from ours, we are confident in
our calculations and results.

2. Quasicondensate regime

In this regime the function β is equal to zero because of
symmetry considerations:

βGP = β(γ → 0) = 0. (41)

The Gross-Pitaevskii approach consists in studying small den-
sity fluctuations around the density in the ground state ρ0, and
it appears that considering fluctuations above or under ρ0 does
not matter. In other words, changing δρ in −δρ keeps the
Hamiltonian (26) unchanged.

According to relation (13), the nonlinear susceptibility is
proportional to δρ3. Turning δρ into −δρ changes the sign
of φ(x, y, z), and the latter has to be zero to conserve the
Hamiltonian symmetry.

IV. NUMERICAL PROCEDURE TO OBTAIN THE
COEFFICIENT α(γ ) ASSOCIATED WITH THE

CURVATURE OF THE POTENTIAL

In this section we present our numerical method to obtain
the functions α(γ ) through the static charge susceptibility
χ̃ (q) through Eq. (18). The method is discussed in detail.
We have tried to develop a similar method to evaluate the
coefficient β(γ ) but with less success; this attempt is reviewed
in Appendix C. The relations (14) and (15) involve a sum
over an infinite number of form factors, and it is therefore not
possible to directly estimate the susceptibility.

The study of the strongly and weakly interacting regime
suggests that states with a single-particle-hole excitation dom-
inate the linear susceptibility χ̃ (q). Indeed, for an infinite
interaction strength the form factor in (14) is strictly equal to
zero, except for one-particle-hole pair excited states, and for
the limit γ → 0 there is only one excited state contributing to
the susceptibility. Moreover, in the thermodynamic limit the
excited states which dominate the susceptibility are those with
a hole created near the Fermi level. So the main idea is that we
can evaluate the susceptibility by considering a few modes q
near q = 0.

A. Computing the susceptibility

The procedure to determine the susceptibilities is decom-
posed in several steps. First we generate the ground state of
the Lieb-Liniger model as a sequence of N Bethe integers {I j}
included between −N−1

2 and N−1
2 [9,22]. This set of Bethe

integers defining the ground state is a Fermi sea. Here we
are interested in particle-hole excitations, i.e., we construct
the excited states by removing a particle in the Fermi sea and
creating another one above the Fermi level. All excited states
are generated from the ground state and classified according to
the number of particle-hole pairs they have. A given excited
state corresponds to a unique sequence of Bethe integers.
Since the sum in (14) is infinite, we introduce a momentum
cutoff as a multiple of 2π

L , which limits the number of ex-
cited states we build. For a fixed cutoff, we can create every
particle-hole pair excitations using combinatorial operations.
Then we can convert a given set of Bethe integers to the
corresponding rapidities sequence by solving the Bethe equa-
tions [34],

λ j = 2π

L
Ij − 2

L

∑
k

arctan

(
h̄2(λ j − λk )

mg

)
, (42)

where L is the size of the system. We then deduce from the
rapidities λ the energy and momentum for each state. Finally,
we compute the matrix element 〈n|ρ̃q|0〉 in Eq. (14) by evalu-
ating the analytical expression of form factors that are known
from the algebraic Bethe ansatz; see Eq. (2.12) in [29].

Considering only one-particle-hole pair excited states to
determine the linear susceptibility seems to be a crude approx-
imation, but as we can see in Fig. 3, the contribution of the
two-particle-hole pairs excited states remains small compared
to one-particle-hole pair excited states, even for an intermedi-
ate value of γ . Moreover, the contribution of two-particle-hole
pairs excited states is minimum for the smallest modes q and
three orders of magnitude less than the contribution of the
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FIG. 3. Linear susceptibility χ̃ (q) obtained numerically by truncating the sum (14). We compare the results obtained by keeping:
(i) only eigenstates corresponding to a single-particle-hole excitation (blue cross), (ii) eigenstates corresponding to one- or two-particle-hole
excitations, and (iii) eigenstates corresponding to one-, two-, or three-particle-hole excitations. The states with two- or three-particle-hole
excitations are restricted by the cutoff κ = 20π/L (see text). Here the density is ρ0 = 1, and the coupling constant is fixed such that the
dimensionless Lieb parameter is γ = 1. At low q the sum is clearly dominated by one-particle-hole excited states. Two- and three-particle-hole
eigenstates become important only for larger values of q.

one-particle-hole pair excited states. The first figure in Fig. 3
also shows the three-particle-hole pair excitations which have
a negligible importance for the linear susceptibility.

B. Extracting α(γ )

The process explained in the previous section allows us
to have the linear susceptibility, but to deduce from it the
correction to the LDA, we have to reach the thermodynamic
limit. As we are numerically limited by the size of the system,
the general idea is to determine the value of χ (q) for the first
q modes and for a given interaction strength γ . As shown in
Fig. 4, we then fit these values with a quartic polynomial in

q in order to extract ∂2χ̃ (q)
∂q2 |q=0, which is just the coefficient

proportional to q2.The function α(γ ) is immediately deduced
using the relation (18).

We repeat this procedure for increasing system sizes to
ensure the convergence of our numerical scheme. In this way
one can in principle construct the function α(γ ) as shown
in Fig. 2. For the three system sizes used to perform the
calculation, we see that for each value of γ the function α

converges to the same value.
The numerical evaluation of α(γ ) shows a perfect agree-

ment with the asymptotic value predicted in the Tonks-
Girardeau limit even for small system sizes.

As shown in Fig. 2, the numerical summation of form
factors matches with the theoretical curve for the Gross-
Pitaevskii regime. However, one needs to increase the size of
the system to converge to the theoretical value.

V. COMPARISON WITH DMRG

In this section we make a comparison between density
profiles obtained by DMRG calculation [35] and our corrected
LDA for different types of trapping potential.

The DMRG calculation was performed by using the library
Itensor [37] and was based on the scaling limit of the XXZ
chain explained in Appendix A. The local-density approxima-
tion provides a good description of bulk properties but fails to
reproduce the behavior at the edges. However, it can be shown
that an Airy scaling occurs at the edges, and the behavior of
the LDA becomes independent of the trapping potential; see
Ref. [36].

The corrections we add to the LDA offer a better agreement
with the DMRG calculation. In Figs. 6 and 5, the effects of
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L = 200
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FIG. 4. Susceptibility χ̃ (q) at low q and extraction of the sec-
ond derivative d2χ̃ (q)/dq2 via polynomial fit. The blue diagonal
crosses are the linear susceptibility χ̃ (q) numerically computed for
the seven first values of q with a number of particles N = 200.
The density is ρ0 = 1, and the Lieb parameter is γ = 1. These
crosses are fitted with a fourth-order polynomial in q (orange solid
curve) a1q4 + a2q2 + a3. The coefficient a2 is the second derivative
d2χ (q)/dq2|q=0.
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FIG. 5. Density profile for the Lieb-Liniger gas in a double-
well potential V (x) = 1.8 × 10−12 x4 − 10−7 x2. Here we normalized
the density profile by the maximum density ρmax = 0.116, which
corresponds to a Lieb parameter γ = 0.17 and a chemical poten-
tial μ(ρmax) = 0.002. The interaction strength is g = 0.02, and the
healing length is ξheal � 16(= 1.8ρ−1

max ). The standard LDA (orange
solid line) deviates from the numerical exact density profile (black
solid line) around the local extrema of the exact density profile. The
black curve is obtained from a DMRG simulation of a lattice gas
prepared with 40 particles on L = 1000 sites. The red dashed line
is the standard LDA corrected with the curvature term ρcurv

LDA(x) =
ρLDA(x) + B(V (x))d2V/dx2, and it is clear that the corrected LDA is
more accurate in the description of the local extrema of the density
profile. The standard LDA is not the appropriate tool to reproduce the
behavior of the density profile at the edge of the domain, since the
edges are mainly governed by one-particle physics (see Ref. [36]).

the corrections are particularly visible where the curvature
is important. Adding the coefficient B to the standard LDA
always improves the accuracy of the local-density approxi-
mation. The benefit in precision is much important where the
LDA fails to match with the DMRG simulation. As mentioned
before, the LDA cannot explain the exponential decaying of
the edge density and therefore the correction is also useless
for the edges. According to the value of β for the two limiting
cases, we suppose that this coefficient remains small even for
finite γ . As mentioned in the Introduction, heavier calcula-
tions are required to numerically compute β, and we choose
to deal with this part in future works. However, the coefficient
α remains sufficient to improve the LDA near the potential’s
local extrema.

VI. CONCLUSION

In summary, our goal was to revisit the local-density
approximation (LDA) that allows study of the behavior of
quantum gases in a confining potential. With the LDA being
the zeroth order of the gradient expansion (1) of the local
density, we showed that it is possible to include corrections to
it, and in particular, we focused on the effect of the potential’s
curvature and slope. The curvature effects are encoded in the
coefficient α(γ ), which is numerically determined for any
interaction strength γ by using the summation of the form
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FIG. 6. Density profile for the Lieb-Liniger gas in an asymmet-
ric double-well potential V (x) = 1.25 × 10−12x4 − 1.18 × 10−7(x +
10)2. The density profile is normalized by the maximum density
ρmax = 0.113 associated to a Lieb parameter γ = 0.34 and a chem-
ical potential μ(ρmax) = 0.0037. The coupling constant is g = 0.04
and the healing length is ξheal � 12(= 1.4ρ−1

max ). The standard LDA
(orange solid line) fails to describe the numerical exact density
profile (black solid line) near the extrema of the density profile.
The exact density profile is obtained from a DMRG simulation of a
lattice gas with 40 particles laying on L = 1000 sites. The LDA cor-
rected with the curvature-sensitive term (red dashed line) ρcurv

LDA(x) =
ρLDA(x) + B(V (x))d2V/dx2 improves the efficiency of the standard
LDA, especially near the minimum of the exact density profile. The
standard LDA is unsuitable to describe the edges of the domain for
the reason given in the caption of Fig. 5.

factors. We were also able to compute its analytical expression
for the two limiting cases of the Lieb-Liniger model. For
the correction relating to the potential’s slope, the function
β(γ ) is analytically computed in the two limiting cases, and
it appears that β is exactly zero for the Bogoliubov’s limit
and finite for the Tonks-Girardeau one. However, we were not
able to numerically extract its value for a finite γ from the
form factors, and we leave this as an open problem for future
work. The fact that our approach reproduces the same results
for the Tonks-Girardeau limit as the work of Samaj and Percus
[33] for the one-dimensional free fermions gas confirms its
validity.

Let us conclude with some perspective for future work.
First, while in this paper we focused exclusively on method
development, it would of course be very interesting to adapt
our approach to investigate physical effects that are beyond the
reach of the standard LDA. One striking example is the reen-
trant behavior of the breathing-mode oscillation frequency of
the harmonically trapped 1D Bose gas [38,39], which could
in principle be modeled by developing a gradient expansion
similar to Eq. (1) for the energy functional. It would also be
interesting to study such a gradient expansion of the energy
functional in order to connect our approach with the more
standard one of density functional theory, which can be ap-
plied to 1D gases with local interactions; see, for instance,
Refs. [40–43]. We leave this as an exciting perspective for
future work.
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APPENDIX A: XXZ CHAIN HAMILTONIAN SCALING
LIMIT FOR THE DMRG CALCULATION

In this section we explain why we are using a XXZ Hamil-
tonian for the DMRG calculation in order to simulate density
profiles for the Bose gas. In Ref. [13] it is done by using a
Bose-Hubbard Hamiltonian in order to discretize the Lieb-
Liniger model.

In fact, it exists as a scaling limit of the XXZ chain, which
leads to physical properties of the Lieb-Liniger model [44].
Here we use the procedure found in [45], and we recommend
it for more details about the scaling limit of the XXZ chain.
We consider the following antiferromagnetic Hamiltonian:

HAF = J

4

M∑
j=1

[
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + �

(
σ z

j σ
z
j+1 − 1

)]

+ h

2

M∑
j=1

σ z
j . (A1)

We set the anisotropy as follows: � = cosh(η) for η → iπ +
iε with ε → 0.

An eigenstate of the above Hamiltonian is given by

∣∣φAF
N

〉 = 1√
N!

∑
1�{y}�M

CN
M∑

{y}
φN ({�}|{y}) σ−

y1
. . . σ−

yN
|0〉. (A2)

The reference state |0〉 is chosen with all spins up, and we
create a down spin at the position y by acting with σ−. The
first sum in (A2) is over all the domains where the coordinates
{y} are ordered between 1 and M. The other sum is over all the
ways of placing N down spins on M sites. The rapidities are
written �.

The amplitude φN is defined as

φN = 1√
N!

∑
P∈SN

∏
m<n

sinh
[
�Pm − �Pn + sgn(yn − ym)η

]
sinh

(
�Pm − �Pn

)

×
N∏

l=1

1

sinh
(
�Pl − η

2

)(
sinh

(
�Pl + η

2

)
sinh

(
�Pl − η

2

))yl −1

. (A3)

For the DMRG calculation we use a ferromagnetic Hamil-
tonian so we perform a π rotation in the x-y plane. The new
Hamiltonian is obtained via the following unitary transforma-
tion:

HF = W HAFW †, where W =
∏
k odd

ei π
2 σ z

k =
∏
k odd

iσ z
k .

(A4)
We use the anticommutation relation on the same site

{σα, σ β} = 2 δα,β and obtain

HF = −J

4

M∑
j=1

[
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 − �

(
σ z

j σ
z
j+1 − 1

)]

+ h

2

M∑
j=1

σ z
j . (A5)

The new eigenstate is written as∣∣φF
N

〉 = W
∣∣φAF

N

〉
= 1√

N!

∑
1�{y}�M

CN
M∑

{y}
φN ({�}|{y})

(∏
k odd

iσ z
k

)

× σ−
y1

. . . σ−
yN

|0〉. (A6)

If we assume M even, there are M
2 odd sites. For all coor-

dinates y corresponding to an odd site, the permutation with
σ z in (A6) provides a (−1) factor. So it is possible to simplify
the above expression:∣∣φF

N

〉 = W †
∣∣φAF

N

〉

= ei πM
4√

N!

∑
1�{y}�M

CN
M∑

{y}
φN ({�}|{y})

N∏
l=1

(−1)yl

× σ−
y1

. . . σ−
yN

|0〉. (A7)

Now we give the Bethe equations by imposing periodic
boundary conditions:

e−i p̃(� j )M =
N∏

k �= j

sinh(� j − �k − η)

sinh(� j − �k + η)
. (A8)

where we have introduced a shifted one-particle quasimo-
menta p̃(� j ) = p(� j ) + π .

According to the definitions in [45], we write the one-
particle momentum and energy:

p̃(�) = π − i ln

(
sinh

(
� + η

2

)
sinh

(
� − η

2

))
, (A9)

e(�) = J sinh2(η)

cosh(2�) − cosh(η)
− h. (A10)

To recover the physical quantities of the Lieb-Liniger
model, we just need to expand the above expressions around
η → iπ . After some algebra we obtain

eiλ j L
N∏

k �= j

λ j − λk − ic

λ j − λk + ic
= 1, (A11)

p̃(λ) = aλ, (A12)

e(λ) = −ε2

2
J + J

a2

2
λ2 − h. (A13)

Here we have introduced the lattice spacing a = ε2

c , the
size of the system in the Lieb-Liniger model L = M a, and
the relation between a rapidity � for the XXZ chain and the
one for the Lieb-Liniger model denoted λ : � = ε

c λ. Equa-
tion (A13) suggests fixing J = 1

a2 and the chemical potential
as μ = h + c

2a to get back the energy for the Bose gas.
Finally, the Hamiltonian we used to make DMRG simula-

tion is the following:

HF = −J

4

M∑
j=1

[
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + cos(ε)

(
σ z

j σ
z
j+1 − 1

)]

+ h

2

M∑
j=1

σ z
j . (A14)
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In particular, if we note that cos(ε) = 1√
1+tan2(ε)

where ε =
√

ca, it is possible to write the above Hamiltonian in a more
convenient way:

HF = −J

2

M∑
j=1

σ+
j σ−

j+1 + σ−
j σ+

j+1 − 1

4

M∑
j=1

J

1 + U
2 J

σ z
j σ

z
j+1

+ MJ/4

1 + U
2 J

+
(

μ

2
+ U

4

) M∑
j=1

σ z
j . (A15)

where we introduced the interaction strength density U =
c/a. Equation (A15) is valid for finite interaction strength.

APPENDIX B: SECOND-ORDER CALCULATIONS

1. Second-order perturbation theory

We study an assembly of N bosons subject to a repulsive
contact interaction and moving on a circle of length L. We
introduce a small potential δV , and we treat this potential with
the perturbation theory on the Lieb-Liniger ground state |0〉.
To second order the perturbed ground state reads

|0〉per = |0〉 +
∑
n �=0

〈n|δV |0〉
E0 − En

|n〉

+
∑

n,m �=0

〈n|δV |m〉〈m|δV |0〉
(E0 − En)(E0 − Em)

|n〉

−
∑
n �=0

〈0|δV |0〉〈n|δV |0〉
(E0 − En)2

|n〉

− 1

2

∑
n �=0

|〈n|δV |0〉|2
(E0 − En)2

|0〉. (B1)

We then evaluate the expectation value of the density operator
ρ(x) in this state up to second order:

〈ρ(x)〉 = ρ0 + 2
∫ L

0
dy δV (y)

× �
∑
n �=0

〈n|ρ(y)|0〉
E0 − En

〈0|ρ(x)|n〉

+
∫ L

0

∫ L

0
dydz δV (y)δV (z)

×
( ∑

n,m �=0

〈n|ρ(y)|0〉〈0|ρ(z)|m〉
(E0 − En)(E0 − Em)

〈m|ρ(x)|n〉

+ 2�
∑

n,m �=0

〈n|ρ(y)|m〉〈m|ρ(z)|0〉
(E0 − En)(E0 − Em)

〈0|ρ(x)|n〉

− 2�
∑
n �=0

〈0|ρ(y)|0〉〈n|ρ(z)|0〉
(E0 − En)2

〈0|ρ(x)|n〉

−�
∑
n �=0

〈0|ρ(y)|n〉〈n|ρ(z)|0〉
(E0 − En)2

〈0|ρ(x)|0〉
)

. (B2)

The second-order susceptibility can be written in a com-
pact expression:

φ(x, y, z) = 1

2

∑
σ∈S3

(h1(σ ) − h2(σ ))

= 1

2

∑
n �=m �=0

〈m|ρ(x)|n〉〈n|ρ(y)|0〉〈0|ρ(z)|m〉
(E0 − En)(E0 − Em)

+ perm.(x, y, z), (B3)

where σ is an element of the permutation ensem-
ble S3 = {xyz, xzy, . . . }, and, for example, the functions
h1(xyz) = ∑

n,m �=0 〈m|ρ(x)|n〉 〈n|ρ(y)|0〉〈0|ρ(z)|m〉
(E0−En )(E0−Em ) and h2(xyz) =∑

n �=0 〈0|ρ(x)|0〉 〈n|ρ(y)|0〉〈0|ρ(z)|n〉
(E0−En )2 .

A simplification occurs when one notices that the number
of particles is fixed for all considered Lieb-Liniger eigen-
states: 〈0|ρ(x)|0〉 = 〈n|ρ(x)|n〉 = ρ0. For the particular case
n = m, one has h1(σ ) = h2(σ ), which leads to the formula
(B3).

2. Deriving the expression (38)

We introduce a function �̃ in Fourier space,

�̃(q1, q2, q3) =
∑

n �=m �=0

〈m|ρ̃q1 |n〉〈n|ρ̃q2 |0〉〈0|ρ̃q3 |m〉
(E0 − En)(E0 − Em)

, (B4)

which is the main object of this demonstration:

�̃T G(q1, q2, q3)

=
′∑

n,m

∑
k1,k2,k3

〈m|c†
k1

ck1−q1 |n〉〈n|c†
k2

ck2−q2 |0〉〈0|c†
k3

ck3−q3 |m〉
(E0 − En)(E0 − Em)

.

(B5)

From the second matrix element we derive the relation −kF +
q2 < k2 < kF + q2, where kF is the Fermi momentum. This
matrix element selects only one-particle-hole pair excited
states. The second matrix element selects also one-particle-
hole pair excited states, and we have the condition −kF <

k3 < kF . The two last matrix elements set the states |n〉 =
c†

k2
ck2−q2 |0〉 and |m〉 = c†

k3−q3
ck3 |0〉. By inserting these states

in the first matrix element in (B5), one has

�̃T G(q1, q2, q3)

= 4
∑

k1,k2,k3

〈0|c†
k3

ck3−q3 c†
k1

ck1−q1 c†
k2

ck2−q2 |0〉[
k2

2 − (k2 − q2)2
][

(k3 − q3)2 − k2
3

]

= − 4

q2q3

∑
k1,k2,k3

〈
c†

k3
ck2−q2

〉〈
ck3−q3 c†

k1

〉〈
ck1−q1 c†

k2

〉
(2k2 − q2)(2k3 − q3)

−
〈
c†

k3
ck1−q1

〉〈
ck3−q3 c†

k2

〉〈
c†

k1
ck2−q2

〉
(2k2 − q2)(2k3 − q3)

, (B6)

with 〈c†
acb〉 ≡ 〈0|c†

acb|0〉. In the following we treat the two
terms separately, and we want to find an interval in which
the conditions emerging from the matrix elements cover each
other.

053309-11



FRANÇOIS RIGGIO et al. PHYSICAL REVIEW A 106, 053309 (2022)

a. First term

(a) k2 ∈ (−∞,−kF ) ∪ (kF ,+∞) and 〈ck1−q1 c†
k2
〉 = 1 if

k1 = k2 + q1

(b) k2 + q1 ∈ (−∞,−kF ) ∪ (kF ,+∞) and 〈ck3−q3 c†
k1
〉 =

1 if k3 = k2 + q1 + q3

(c) k2 − q2 ∈ [−kF , kF ] and 〈c†
k3

ck2−q2〉 = 1 if k3 = k2 −
q2

(d) q1 = −(q2 + q3)
We have to distinguish many cases depending on the sign

of q2 and q3. From these cases we find the integration domain
of k2:

q1 < 0 q1 > 0

q2 > 0 q3 > 0 0 0
q2 > 0 q3 < 0 [kF − q1, kF + q2] [kF , kF + q2]
q2 < 0 q3 > 0 [−kF + q2, −kF ] [−kF + q2, kF − q1]
q2 < 0 q3 < 0 0 0

So we have four integration domains.

I = −
∑

k2

4/q2q3

(2k2 − q2)(2k2 + q1 − q2)

I → −
∫
D

2L dk/q2q3π

(2k2 − q2)(2k2 + q1 − q2)

= L

πq1q2q3
(− ln(|2k2− q2|)+ ln(|2k2+ q1 − q2|))D,

(B7)

where the subscript D is an integration domain defined in the
above table.

(1) q1 < 0 q2 < 0 q3 > 0

I = L

πq1q2q3
ln

(
(2kF − q2)(2kF − q1 + q2)

(2kF + q2)(2kF + q3)

)

(2) q1 > 0 q2 < 0 q3 > 0

I = L

πq1q2q3
ln

(
(2kF − q2)(2kF − q3)

(2kF + 2q1 + q2)(2kF + q3)

)

(3) q1 > 0 q2 > 0 q3 < 0

I = L

πq1q2q3
ln

(
(2kF − q2)(2kF − q3)

(2kF + q2)(2kF + q1 − q2)

)

(4) q1 < 0 q2 > 0 q3 < 0

I = L

πq1q2q3
ln

(
(2kF − 2q1 − q2)(2kF − q3)

(2kF + q2)(2kF + q3)

)

b. Second term

(a) k2 ∈ (−∞,−kF ) ∪ (kF ,+∞) and 〈ck3−q3 c†
k2
〉 = 1 if

k3 = k2 + q3

(b) k2 − q2 ∈ [−kF , kF ] and 〈c†
k1

ck2−q2〉 = 1 if k1 = k2 −
q2

(c) k2 − q1 − q2 ∈ [−kF , kF ] and 〈c†
k3

ck2−q1−q2〉 = 1 if
k3 = k2 − q1 − q2

(d) q1 = −(q2 + q3)

We have to distinguish many cases depending on the sign
of q2 and q3. From these cases we find the integration domain
of k2:

q1 < 0 q1 > 0

q2 > 0 q3 > 0 0 0
q2 > 0 q3 < 0 [kF , kF + q1 + q2] [kF , kF + q2]
q2 < 0 q3 > 0 [−kF + q2,−kF ] [−kF + q1 + q2, −kF ]
q2 < 0 q3 < 0 0 0

So we have four integration domains.

J =
∑

k2

4/q2q3

(2k2 − q2)(2k2 − q1 − q2)

J → L

q2q3π

∫
D

2dk

(2k2 − q2)(2k2 − q1 − q2)

= L

πq1q2q3
(− ln(|2k2 − q2|) + ln(|2k2 − q1 − q2|))D′ .

(B8)

Once again, the subscript D′ represents an integration do-
main of the above table.

(1) q1 < 0 q2 < 0 q3 > 0

J = L

πq1q2q3
ln

(
(2kF − q2)(2kF − q3)

(2kF + q2)(2kF + q1 − q2)

)

(2) q1 > 0 q2 < 0 q3 > 0

J = L

πq1q2q3
ln

(
(2kF − q3)(2kF − 2q1 − q2)

(2kF + q3)(2kF + q2)

)

(3) q1 > 0 q2 > 0 q3 < 0

J = L

πq1q2q3
ln

(
(2kF − q2)(2kF − q1 + q2)

(2kF + q2)(2kF + q3)

)

(4) q1 < 0 q2 > 0 q3 < 0

J = L

πq1q2q3
ln

(
(2kF − q2)(2kF − q3)

(2kF + 2q1 + q2)(2kF + q3)

)

We then compute I + J for each set of conditions, obtain-
ing

(1) q1 < 0 q2 < 0, q3 > 0

I + J

= L

πq1q2q3
ln

[(
2kF − q2

2kF + q2

)2 2kF − q1 + q2

2kF + q1 − q2

2kF − q3

2kF + q3

]

(2) q1 > 0 q2 < 0, q3 > 0

I + J

= L

πq1q2q3
ln

[(
2kF − q3

2kF + q3

)2 2kF − q2

2kF + q2

2kF − q1 + q3

2kF + q1 − q3

]

(3) q1 > 0 q2 > 0, q3 < 0

I + J

= L

πq1q2q3
ln

[(
2kF − q2

2kF + q2

)2 2kF − q1 + q2

2kF + q1 − q2

2kF − q3

2kF + q3

]
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(4) q1 < 0 q2 > 0, q3 < 0

I + J

= L

πq1q2q3
ln

[(
2kF − q3

2kF + q3

)2 2kF − q2

2kF + q2

2kF − q1 + q3

2kF + q1 − q3

]

Some remarks here. One can notice there are only
four conditions on q1, q2, and q3, giving a non-null
expression to �̃(q1, q2, q3) in the Tonks-Girardeau
limit. Our result preserves the symmetry properties of
�̃(q1, q2, q3): �̃(q1, q2, q3) = �̃(−q1,−q2,−q3) and
�̃(q1, q2, q3) = �̃(q1, q3, q2).

To recover the relation (38), one needs to add up all
the remaining permutations of �̃(q1, q2, q3). Thanks to sym-
metry properties it is sufficient to compute three terms:
�̃(q1, q2, q3), �̃(q2, q1, q3), and �̃(q3, q1, q2).

We start by setting the condition on the indices, for exam-
ple, q1 < 0, q2 < 0, q3 > 0, and the corresponding quantity:

�̃T G(q1, q2, q3)

= L

πq1q2q3
ln

[(
2kF − q2

2kF + q2

)2 2kF − q1 + q2

2kF + q1 − q2

2kF − q3

2kF + q3

]
.

(B9)

Permuting the modes changes the initial condition on
q1, q2, and q3, and for each permutation the new condition
selects a given expression I + J :

�̃T G(q2, q1, q3)

= L

πq1q2q3
ln

[(
2kF − q1

2kF + q1

)2 2kF + q1 − q2

2kF − q1 + q2

2kF − q3

2kF + q3

]
,

(B10)

�̃T G(q3, q1, q2) = 0. (B11)

The last term is zero, because there is no integration domain
for the new condition (see the two tables in the previous
section).

Finally, adding up all the permutations, one has

�̃T G(q1, q2, q3) + �̃T G(q2, q1, q3) + �̃T G(q3, q1, q2)

= 2L

πq1q2q3
ln

(
2kF − q1

2kF + q1

2kF − q1

2kF + q1

2kF − q3

2kF + q3

)
, (B12)

which is the relation (38).

APPENDIX C: ATTEMPT AT NUMERICAL EVALUATION
OF THE COEFFICIENT β(γ ) ASSOCIATED WITH THE

POTENTIAL’S SLOPE

Here we present an attempt at numerically summing the
form factors in (15) and deriving the coefficient β(γ ). The
idea is similar to what we did in Secs. IV A and IV B for
the coefficient α(γ ). We consider only the one-particle-hole
excited states, and we compute the nonlinear susceptibility for
few modes q1 and q2.

In Fig. 7 we show the nonlinear susceptibility φ̃(q1, q2)
evaluated for γ = 3 × 105, for small values of q1, q2. It is
well fitted by a quadratic form a1 + a2q1q2 + a3q2

1 + a4q2
2.

The coefficient β is then identified with a2, see Eq. (21).

0.010 0.015 0.020 0.025 0.030
Mode q1

2πρ0

0.010

0.015

0.020

0.025

0.030

M
od

e
q 2

2π
ρ

0

φ̃(q1, q2)

−0.005148

−0.005146

−0.005144

−0.005142

−0.005140

−0.005138

−0.005136

−0.005134

FIG. 7. The colored surface represents the nonlinear susceptibil-
ity φ̃(q1, q2) for γ = 3 × 105, ρ0 = 1, and L = 150. The data can
be well fitted by a quadratic form a1 + a2q1q2 + a3q2

1 + a4q2
2; level

lines of that quadratic form are plotted with the white dashed line.

Our attempt to construct the full function β(γ ) consists
in repeating this procedure for different values of γ , and
also for different values of L in order to check convergence
with system size. Our results are shown in Fig. 8. For very
large values of γ , our numerical procedure works well. The
results converge quickly with system size L, and they match
the expected value − 1

8π6 , see Eq. (21). Moreover, we can
estimate the coefficients a3 and a4 in the quadratic form
and check the symmetry property a2 = a3 = a4 expected
from the symmetry φ̃(q1, q2) = φ̃(q2, q1) = φ̃(q1,−q1 − q2).
For instance, for a Lieb parameter γ = 3 × 105 we have
a2 � –0.000 131 2 and a3 = a4 � –0.000 130 0. How-
ever, this quickly gets worse as we decrease the value
of γ . For instance, for γ = 104, a2 �–0.000 153 6 and
a3 = a4 � −0.000 114 0, and the discrepancy between the

104 105 106

γ

−0.00040

−0.00035

−0.00030

−0.00025

−0.00020

−0.00015

−0.00010

−0.00005

β
(γ

)

L = 100

L = 150

L = 200

FIG. 8. The coefficient β as a function of γ obtained by summing
the form factors with only one-particle-hole pair excited states for
different system sizes: L = 100, L = 150, and L = 200. The ma-
genta dashed line represents the asymptotic value predicted in the
Tonks-Girardeau regime β(γ → ∞) = − 1

8π6 , see (40). The numeri-
cal evaluation of β converges to the expected value for γ → ∞.
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coefficients gets worse as γ is lowered. This is a clear in-
dication that the fit of our numerical estimate of φ̃(q1, q2)
(obtained by restricting the double sum over form factors to
one-particle-hole states only) by a quadratic form is no longer
reliable. Furthermore, as we can see in Fig. 8, we observe a
slower convergence with respect to system size L when γ is
decreased.

We conclude that, unfortunately, restricting the infi-
nite double sum defining φ̃(q1, q2) to one-particle-hole
excitations does not allow one to obtain a reliable es-
timate of the coefficient β(γ ) away from the Tonks-
Girardeau limit. We must therefore leave the numerical
evaluation of β(γ ) for arbitrary values of γ as an open
problem.
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