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Quantum simulation of the XXZ model with a two-component Bose- or Fermi-Hubbard model based on a
Mott insulator background has been widely used in the investigations of quantum magnetism with ultracold
neutral atoms. In most cases, the diagonal spin-spin interaction is always accompanied by a large spin-exchange
interaction which hinders the formation of long-range magnetic order at low temperature. Here, we show that
the spin-exchange interaction can be strongly reduced in a Mott insulator of paired atoms, while the diagonal
spin-spin interaction remains unaffected. Thus, the effective magnetic models become the exact quantum Ising
models in a one-dimensional (1D) or two-dimensional (2D) lattice. Meanwhile, we analyzed an experimentally
achievable three-component Fermi-Hubbard model of 6Li with two hyperfine levels of atoms paired in the lattice.
We find the long-range antiferromagnetism of such a three-component Fermi-Hubbard model can be much
stronger than that of a typical two-component Fermi-Hubbard model at low temperature. Our results may be
useful for experimental investigations of the quantum phase transition and quantum criticality of the 1D and 2D
quantum Ising models with ultracold neutral atoms.
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I. INTRODUCTION

Quantum simulation [1] of magnetic models has made
much progress in recent years. In the systems of supercon-
ducting circuits [2–6] and trapped ions [7–11], the simulated
magnetic models are usually the Ising models with spatially
dependent spin-spin interactions. The number of simulated
spins is usually limited due to the control difficulties. An-
other direction is to simulate a large-scale quantum magnet
in an optical lattice by controlling the long-range dipole-
dipole interaction of polar gases and Rydberg atoms. It is
reported that the XXZ model [12] and the antiferromagnetic
Ising model [13–17] have been realized. There are also many
theoretical proposals of simulating a Heisenberg-like mag-
netic model with polar molecules [18–21] and theoretical and
experimental works about simulating magnetic models with
laser-dressed Rydberg atoms [22–25]. However, the effective
spin-spin interaction arising from a dipole-dipole interaction
is intrinsically long range and usually inhomogeneous in the
lattice. Moreover, it is typically hard to reach thermal equilib-
rium in the lattice due to the complexity of the dipole-dipole
interaction.

Besides the dipole-dipole interaction, the superexchange
interaction between neutral atoms in an optical lattice is
also widely used to simulate magnetic models. The effec-
tive spin-spin interaction derived from the superexchange
interaction is usually homogeneous throughout the lattice
and only involves nearest-neighbor spins. Thermal equi-
librium can also be reached by atom collisions in most
cases. Apart from some special designs of magnetic mod-
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els [26,27], the effective magnetic models are described by
a XXZ model with a nearest-neighbor spin-spin interaction
JzŜ

z
i Ŝz

j and a spin-exchange interaction J⊥(Ŝ+
i Ŝ−

j + H.c.). The
antiferromagnetic spin correlations of various kinds of Fermi-
Hubbard models [28–34], the spin-charge separation of a
hole-doped Fermi-Hubbard model [35], and the propagation
of magnons [36,37] and spinons [38] have been observed
with ultracold neutral atoms. However, the spin-exchange in-
teraction is usually quite large compared with the diagonal
spin-spin interaction in these XXZ models realized with neu-
tral atoms. Though there are reported studies of simulating an
exact Ising model in a tilted lattice [26,39] and a tunable XY Z
model with a p-band Mott insulator [40], these methods suffer
from the defect of a highly excited Mott insulator background
which makes effective magnetic models unstable in the lattice.

Here, we propose a general method of simulating an Ising-
like quantum magnet with the superexchange interaction of
neutral atoms in an optical lattice. The main idea is to con-
struct low-energy effective magnetic models based on a Mott
insulator of paired atoms. This idea is applicable to both
bosonic atoms and fermionic atoms and has broad lattice
compatibility. Especially, an exact transverse Ising model with
an achievable thermal equilibrium can be simulated in certain
cases. The only requirement is to find suitable atom species to
realize such kinds of Mott insulators without severe heating
or loss caused by a three-body recombination. These features
make the paired-atom Mott insulator an ideal method to sim-
ulate exact Ising models in an optical lattice.

II. THE SUPEREXCHANGE INTERACTION
OF PAIRED ATOMS

To begin with, we first analyze the superexchange interac-
tion in a Mott insulator of paired atoms. In a simplified two-
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FIG. 1. (a) The low-energy effective model of a Mott insula-
tor with spin-paired fermionic atoms is an antiferromagnetic Ising
model. At each site, the same spin components of each species of
atoms are paired so that |na

i↑ = 1, nb
i↑ = 1〉 and |na

i↓ = 1, nb
i↓ = 1〉

can be mapped to spin up and down of a single spin, respectively.
(b) The second-order low-energy superexchange interaction between
spin-paired fermions. It can be seen that the spin-exchange terms are
prohibited. (c) The Mott insulator of paired bosonic atoms generates
an effective ferromagnetic Ising model when the on-site repulsive
interaction of heteronuclear atom pairs U ab is larger than those of
homonuclear atom pairs Ua,Ub.

species two-spin Fermi-Hubbard model shown in Fig. 1(a),
the Hamiltonian can be written as

ĤFH
pair = ĤFH

a + ĤFH
b + ĤFH

ab ,

ĤFH
s=a,b = − ts

∑
σ=↑↓

∑
〈i j〉

(ŝ†
iσ ŝ jσ + H.c.) + Us

∑
i

n̂s
i↑n̂s

i↓

− txs

∑
i

(ŝ†
i↑ŝ j↓ + H.c.) + δzs

∑
i

(
n̂s

i↑ − n̂s
i↓

)
,

ĤFH
ab = − U ab

∑
σ=↑↓

∑
i

n̂a
iσ n̂b

iσ . (1)

Here, 〈i j〉 represents the nearest-neighbor sites. The param-
eters are set as ts, txs, δzs � Ua,Ub,U ab (s = a, b). At the
half-filling regime for each species of atoms, large Ua,Ub

requires each lattice site to be filled with only one a atom
and one b atom. U ab provides a strong pairing interaction
between the same spin components of a, b atoms so that there
are only two possible occupation states |n̂a

i↑ = 1, n̂b
i↑ = 1〉 and

|n̂a
i↓ = 1, n̂b

i↓ = 1〉 for the lowest-energy subspace, which can
be mapped to |Ŝz

i = 1/2〉 and |Ŝz
i = −1/2〉 of a single S = 1/2

spin, respectively. Up to second-order perturbations, the low-

energy effective spin model of ĤFH
pair can be written as

ĤFH
eff = JFH

z

∑
〈i j〉

Ŝz
i Ŝz

j − hFH
x

∑
i

Ŝx
i + hFH

z

∑
i

Ŝz
i , (2)

with JFH
z = ∑

s
4t2

s
U ab+Us

, hFH
x = 4txatxb

U ab , hFH
z = 2(δza + δzb).

Comparing with the typical two-component Fermi-Hubbard
model of generating a low-energy effective Heisenberg
model [41], we could find the spin-pairing interaction Ĥab

is the key factor for the realization of an exact Ising model
[Fig. 1(b)].

When we consider a Mott insulator of two species of
bosonic atom pairs as shown in Fig. 1(c), the Hamiltonian of
such a Bose-Hubbard model can be given as

ĤBH
pair =ĤBH

a + ĤBH
b + ĤBH

ab ,

ĤBH
s=a,b = − ts

∑
〈i j〉

(ŝ†
i ŝ j + H.c.) +

∑
i

Us

2
n̂is(n̂is − 1),

ĤBH
ab =U ab

∑
i

n̂ian̂ib − tab

∑
i

(â†
i b̂i + H.c.). (3)

Here, ŝ†
i , ŝi (s = a, b) become bosonic operators. The parame-

ters satisfy ts, tab, |Ua − Ub| � Us,U ab − Us (s = a, b). With
the same spin mapping in Fig. 1(c), the effective Hamiltonian
becomes

ĤBH
eff = JBH

z

∑
〈i j〉

Ŝz
i Ŝz

j − hBH
x

∑
i

Ŝx
i + hBH

z

∑
i

Ŝz
i , (4)

with

JBH
z =

∑
s=a,b

[
4t2

s

2U ab − Us
− 12t2

s

Us

]
, hBH

x =
∑
s=a,b

2t2
ab

U ab − Us
,

hBH
z = Ua − Ub + 12t2

b

Ub
− 12t2

a

Ua
.

Here, we ignored the boundary differences. It can be seen that
JBH

z < 0 so that the ferromagnetic Ising model can also be
exactly simulated. It is also noticeable that the magnitude of
|JBH

z | can be several times larger than a typical superexchange
interaction with a magnitude 4t2/U . If such a model can be
implemented in experiment, the requirement of a low-spin
temperature to observe the magnetic order induced by a su-
perexchange interaction can be strongly relieved.

III. THE THREE-COMPONENT
FERMI-HUBBARD MODEL

Equations (1) and (3) provide two ideal models of simulat-
ing an exact Ising model with a Hubbard model. However,
when considering the experimental realization of ĤFH

pair and

ĤBH
pair, there are two non-negligible concerns which need to

be taken into account. One is the three-body recombination
which may cause serious atom loss or heating in the lattice.
The other is the realization of U ab should be in accordance
with Ua and Ub, considering the on-site interactions are mainly
tuned with Feshbach resonance by controlling the s-wave scat-
tering length ass′ (B) (s, s′ are the same or two different atoms)
with a magnetic field B [42]. However, there are six different
ass′ (B) curves between the four different atoms in Fig. 1(a)
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FIG. 2. The three-component Fermi-Hubbard model (TFH
model). (a) Spin up and down can be represented by a atoms and
b, c atom pairs in each lattice site, respectively. (b) The eigenenergy
spectrum and the nearest-neighbor spin correlations C (k)

1 of the low-
est NS = 20 eigenstates of the TFH model are both consistent with
those of the effective XXZ model. Here, k is the index of eigenstates.
The parameters are set as ta = tb = tc = 1/7, Uab = Uac = −Ubc =
1, Na = Nb = Nc = 3, L = 6. (c) The effective nearest-neighbor spin
correlation C (g)

1 and the pairing ratios γss′ (ss′ = ab, bc, ac) of the
ground state with respect to Ubc. When Ubc is decreased from Ubc = 1
to Ubc = −1, an antiferromagnetic ground state comes into existence
gradually (C (g)

1 → −1/4) as b, c atoms begin to be paired (γbc →
0.5, γab → 0, γac → 0).

and three different ass′ (B) curves for the bosonic case, while
the tuning parameter is only the magnetic field B. ĤFH

pair is

nearly impossible to be realized while ĤBH
pair can be possibly

realized with certain atom species. For example, it is possi-
ble to simulate ĤBH

pair with a mixture of 87Rb |F = 1, mF =
−1〉 (denoted as a atoms) and 85Rb |F = 2, mF = −2〉 (de-
noted as b atoms) considering aaa = 100.4a0 [43], abb =
−443a0[1 − 10.7/(B − 155.04)] [44], and aab = 213a0[1 −
5.8/(B − 265.4)] [45]. Under a magnetic field of around B =
163.8 G, aaa = 100.4a0, abb = 100.6a0, and aab = 225.2a0

can be obtained. Here, a0 is the Bohr radius. Since aaa and
aab are quite insensitive to B when B < 200 G, it is very easy
to tune aaa − abb at around B = 163–165 G.

Meanwhile, to indicate the experimental feasibility of a
paired-atom Mott insulator with fermionic atoms, we intro-
duce a three-component Fermi-Hubbard model (TFH model)
shown in Fig. 2(a),

Ĥ = −
∑
〈i j〉

∑
s=a,b,c

ts(ŝ
†
i ŝ j + H.c.) +

∑
i

∑
s 
=s′

Uss′ n̂isn̂is′ . (5)

Here, ta, tb, tc are the tunneling energy of each species of
atoms and Uss′ (ss′ = ab, ac, bc) are the on-site interactions
between different atom pairs in each site. We assume each
lattice site is filled with either an a atom or a b, c atom
pair and the number of each species of atoms is half the
number of lattice sites Nsite. The parameters satisfy ta, tb, tc �
Uac − Ubc,Uab − Ubc,Uac + Uab + Ubc. Thus, |n̂ia = 1〉 and
|n̂ib = 1, n̂ic = 1〉 can be mapped to spin up and down for
the lowest-energy subspace [Fig. 2(a)], respectively. The low-

FIG. 3. Realization of the TFH model with 6Li atoms. (a) The
lowest three hyperfine levels of 6Li can just be mapped to the
a, b, c atoms required in Fig. 2(a). The s-wave scattering lengths ass′

(ss′ = ab, ac, bc) of 6Li satisfy aab, aac > 0, abc < 0 when 570 G �
B � 590 G, and the three-body recombination rate of a, b, c atoms
reaches a minimum at around B = 560–590 G [46,47]. (b) The es-
timated magnetic interaction Jz, Jxy of the TFH model based on the
experimental parameters of the Fermi-Hubbard model realized with
6Li [33]. Here, we assume Uss′ (B) = ass′ (B)/210a0 ∗ 6.50 kHz, ta =
tb = tc = 0.90 kHz. The inset is the mean three-body occupation n̄3

of the lowest NS eigenstates in Fig. 2(b) per lattice site calculated in
a 1D lattice with L = 6.

energy effective model in a cubic lattice can be written as

Ĥeff =
∑
〈i j〉

JzŜizŜ jz − Jxy(ŜixŜ jx + ŜiyŜ jy). (6)

Here, Jz = ∑
s=a,b,c

2t2
s

Us2
and Jxy = 4tatbtc

Ua2Ub2
+ 4tatbtc

Ua2Uc2
+ 4tatbtc

Ub2Uc2
with Ua2 = Uab + Uac, Ub2 = Uab − Ubc, Uc2 = Uac − Ubc. Jxy

comes from the third-order perturbative terms and Jxy � Jz.
To make a quantitative study of the TFH model, we cal-

culate the eigenenergy spectrum and the nearest-neighbor
spin correlations C(k)

1 = ∑L−1
i=1 〈ψk|ŜizŜi+1,z|ψk〉/(L − 1) of

the lowest NS = L!
Na!(L−Na )! eigenstates of Ĥ under Uab =

Uac = −Ubc = 1, ta = tb = tc = 1/7. Here, |ψk〉 is the kth
lowest eigenstate of Ĥ , and L = 6 and Na = L/2 are the lattice
length and the number of a atoms in our numerical calcula-
tion, respectively. The results show good consistency of the
eigenenergy spectrum and the nearest-neighbor correlation
functions of Ĥeff [Fig. 2(b)]. There is also a large energy gap �

(� � Jz) above the lowest NS eigenstates so that the partition
function of the TFH model Z = tr(e−Ĥ/kBT ) ≈ tr(e−Ĥeff /kBT )
when kBT is at the same order as Jz. Meanwhile, to validate the
relation between a reduced spin-exchange interaction and the
pairing of b, c atoms, we calculate the spin correlation C(g)

1 =∑L−1
i=1 〈ψg|ŜizŜi+1,z|ψg〉/(L − 1) and the pairing ratio between

different species of atoms γss′ = ∑L
i=1〈ψg|n̂isn̂is′ |ψg〉/L (ss′ =

ab, ac, bc) of the ground state |ψg〉 of Ĥ at different Ubc. It
can be seen that C(g)

1 approaches to −1/4 while γbc → 0.5,
γab → 0, γac → 0 when Ubc is decreased from Ubc = 1 to
Ubc = −1 [Fig. 2(c)], validating the reduced spin-exchange
interaction is due to the pairing of b, c atoms.

For the possible experimental realization of the TFH
model, the a, b, c atoms can just be represented by the low-
est three hyperfine levels of 6Li [Fig. 3(a)]. The three-body
loss feature of the lowest three hyperfine levels of 6Li has
been widely investigated experimentally [46–48]. In the range
of about B = 560–590 G, the three-body recombination rate
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K3 reaches a minimum K3,min ≈ 10−25 cm3/s [46,47]. In this
magnetic range, ass′ is at the order of hundreds of Bohr radius
and the bound states of a, b, c atoms with positive ass′ are
sufficiently deep so that the atom-dimer coupling can be safely
ignored. In this way, the mixture of a, b, c atoms in an optical
lattice can just be described by the TFH model. If the lattice
is filled as shown in Fig. 2(a), the three-body loss rate of
a, b, c atoms in each lattice site can be roughly estimated
as �loss = K3〈n̂3〉/a6

lat [46,49]. Here, alat is the lattice con-
stant and 〈n̂3〉 = ∑

i〈n̂ian̂ibn̂ic〉/Nsite is the mean three-body
occupation number in each lattice site. The estimated mean
three-body occupation number n̄3 = N−1

S

∑NS
k=1〈n̂3〉k of the

lowest NS eigenstates in Fig. 2(b) is evaluated under a proper
selection of parameters [Fig. 3(b)]. It can be seen that n̄3 is
quite small for the lowest NS eigenstates when the on-site
interaction of a three-body occupation is high. If we make
an approximation 〈n̂3〉 ≈ 0.01, alat = 532 nm, the loss rate
per lattice site will be �loss ≈ 0.04 Hz. For a lattice with
Nsite ≈ 100, the three-body loss rate is at the order of several
Hz. Therefore, the Mott insulator of a, b, c atoms [Fig. 2(a)]
can be stable in a timescale of hundreds of milliseconds. For
a tunneling energy at the order of hundreds of Hz, it is long
enough for the experimental observation of the antiferromag-
netic order under thermal equilibrium before severe atom loss.

Another concern is the magnitude of Jz and Jxy which de-
termines the magnitude of the required temperature. In the re-
alization of the typical two-component Fermi-Hubbard model
with 6Li [33], aab = 210a0, t = 0.90 kHz, U = 6.50 kHz can
be achieved in a lattice of Vlat = 7.4ER, alat = 569 nm under a
magnetic field of B = 576 G. Here, Vlat is the lattice depth and
ER is the recoil energy. This yields an effective Heisenberg
model J

∑
〈i j〉 Si · S j with J = 4t2/U = 0.50 kHz = 24 nK.

Here, we set the Planck constant and the Boltzmann constant
to unity for simplicity hereafter. To make a proper estimate
of the magnitude of experimentally accessible Jz and Jxy, we
assume the TFH model is realized in the same lattice configu-
ration as in Ref. [33]. Accordingly, ta = tb = tc = 0.90 kHz,
Uss′ (B) = ass′ (B)/210a0 ∗ 6.5 kHz can be estimated if the
magnetic field is near 576 G. Under such a selection of param-
eters, ta, tb, tc � Uab − Ubc,Uac − Ubc,Uac + Uab + Ubc can
be maintained in 570 G < B < 590 G so that the mapping
to Ĥeff is always valid. The estimated Jz, Jxy are shown in
Fig. 3(b). It can be seen that Jz can be improved while
Jxy is largely reduced. Especially, Jz = 29 nK, Jxy = 6.3 nK
can be achieved with Uab = 6.5 kHz, Uac = 4.1 kHz, Ubc =
−2.1 kHz at B = 576 G.

To quantitatively evaluate the antiferromagnetism of the
TFH model and the Fermi-Hubbard model (FH model), we
calculate the effective spin correlation and the staggered mag-
netization

Cd = 1

Nd

∑
r

〈
Ŝz

rŜz
r+d

〉
, mz =

√√√√〈∑
r

(−1)x+yŜz
r/Nsite

〉2

,

(7)

of the TFH model and the FH model in a 3 × 3 lattice. Here,
r = (x, y) and d = (dx, dy) and Nd is the number of allowed
Ŝz

rŜz
r+d. From Figs. 4(a) and 4(b), it can be seen that the

antiferromagnetism of the TFH model is much closer to the

(a)

(b)
0.25
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FIG. 4. Enhanced antiferromagnetism of the three-component
Fermi-Hubbard model (TFH model) compared with the two-
component Fermi-Hubbard model (FH model). (a) The nearest-
neighbor spin correlation C1 and the staggered magnetization mz

of the FH model (Jeff = 24 nK), the Heisenberg model (J =
24 nK), the TFH model (Jeff

z = 29 nK, Jeff
xy = 6.3 nK), and the

Ising model (Jz = 29 nK) in a 3 × 3 lattice. The parameters of the
TFH model are assumed to be ta = tb = tc = 0.90 kHz, Uss′ (B) =
ass′ (B)/210a0 ∗ 6.5 kHz (with B = 576 G) according to the param-
eters t = 0.90 kHz, U = 6.5 kHz of the FH model realized with
6Li [33]. (b) The long-range spin correlations Cd of the FH model
and the TFH model. It can be seen that the antiferromagnetism of
the TFH model is apparently enhanced compared with the FH model
when T � 20 nK.

Ising model instead of the Heisenberg model. In addition, the
antiferromagnetism of the TFH model is apparently enhanced
in the low-temperature limit (T � 20 nK), especially, much
stronger than that of the FH model when T reaches below
5 nK.

IV. CONCLUSION AND OUTLOOK

In summary, we have analyzed a general scheme to sim-
ulate the quantum Ising models driven by a superexchange
interaction in a Mott insulator of paired atoms. Compared with
other methods of simulating an Ising model, this method fea-
tures homogeneous nearest-neighbor spin-spin interactions,
broad lattice compatibility, and achievable thermal equilib-
rium. Also, we showed the enhanced antiferromagnetism
of an experimentally achievable three-component Fermi-
Hubbard model of 6Li with two hyperfine levels of atoms
paired. Similar ideas can be applied to other mixtures of
atoms. Meanwhile, it is also very promising to realize ĤBH

pair to
simulate an exact 2D transverse Ising model experimentally.
Since the exact analytical solution of a 3D Ising model, which
can be mapped to the 2D transverse Ising model by quantum-
classical mapping [50], is still beyond theoretical reach [51],
it may promote the research of this problem by experimentally
realizing an exact 2D transverse Ising model. Our results may
be useful for experimental investigations of the quantum Ising
models with ultracold neutral atoms.
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