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We report on the derivation of determinant representations for the Green’s functions and spectral function
of the trapped Tonks-Girardeau gas on the lattice and in the continuum. Our results are valid for any type of
statistics of the constituent particles, at zero and finite temperature and arbitrary confining potentials, including
nonequilibrium scenarios induced by sudden changes of the external potential. In addition, they are also
extremely efficient and easy to implement numerically with the main computational effort being represented
by the calculation of partial overlaps of the dynamically evolved single-particle wave functions. In the lattice
case we show that the spectral function of a system with a strong harmonic potential presents only two singular
lines compared with three singular lines in the case of a homogeneous system.
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I. INTRODUCTION

Due to the unprecedented degree of control over dimen-
sionality, purity, strength of the interaction, and statistics of
the constituent particles ultracold gases represent an versatile
platform which allows for the investigation of many-body
physics which would be very difficult to study in solid state
systems [1,2]. The experimental realization with ultracold
atomic gases of many physical systems which are well ap-
proximated by integrable or weakly broken integrable systems
paved the way for the exploration of fundamental theoretical
questions regarding the long time dynamics and lack of ther-
malization in such systems [3,4].

A paradigmatic model which is now routinely realized in
laboratories is the Lieb-Liniger (LL) model [5] which de-
scribes one-dimensional (1D) bosons with repulsive contact
interactions. In the limit of infinite repulsion the system is
in the so-called Tonks-Girardeau (TG) regime [6—10] which
allows for a comprehensive analytical investigation of the cor-
relation functions due to the knowledge of the wave functions
via the Bose-Fermi mapping [6]. The lattice counterpart of the
Tonks-Girardeau gas is represented by hard-core bosons on
the lattice (the Bose-Hubbard model with infinite repulsion)
or, equivalently, the isotropic XY spin chain [11] also known
as the XX spin chain. The generalizations of the Lieb-Liniger
and lattice Bose-Hubbard models to arbitrary statistics were
introduced in [12-16] and several proposals of experimen-
tal realizations of such interesting systems with ultracold
atoms were proposed using Raman assisted tunneling [15,17],
periodically driven lattices [18] or multicolor lattice-depth
modulation [19,20].

In the study of many-body systems the Green’s functions
and spectral function (the imaginary part of the retarded
Green’s function) are of primary importance [21]. In partic-
ular, the spectral function provides fundamental information
about the momentum distribution and elementary excitations
of the system. While in solid state systems the spectral func-
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tion is usually accessed using angle-resolved photoemission
spectroscopy (ARPES) [22] in the case of ultracold gases it
has been measured by radio-frequency spectroscopy [23,24]
and its momentum-resolved extension [25,26], Bragg spec-
troscopy [27], lattice modulation spectroscopy [28,29], and,
recently, an ARPES analog has also been proposed [30].

In the case of systems of impenetrable particles in 1D
knowledge of the wave functions, which can be obtained using
the Bose-Fermi [6,31] or Anyon-Fermi [32,33] mappings,
opens the way for the derivation of determinant represen-
tations for the Green’s functions. These representations, as
Toeplitz [6,34-39] or Hankel [40—45] determinants for ho-
mogenous or harmonically trapped finite-size systems or as
Fredholm determinants [46-53] for systems in the thermo-
dynamic limit, are extremely easy to implement numerically
but they also represent the starting point for the derivation
of rigorous analytical results. In general the integral opera-
tors of the Fredholm determinants describing the correlators
of impenetrable particles are of a special type called inte-
grable integral operators, and due to their special structure
they allow for the derivation of classical integrable differen-
tial equations for the correlators and the investigation of the
asymptotics by solving an associated Riemann-Hilbert prob-
lem [54-59]. Other methods for deriving the asymptotics from
the determinant representations are the use of Szeg6’s theorem
and Fisher-Hartwig conjecture [35-39,41,60,61], momentum
space approach [62], connections with Painlevé transcendents
[41,42,63], the replica method [43,64—66], form factor expan-
sions at zero [67—69] and finite temperature [70,71], or the
effective form factor approach [53,72,73].

In this article we derive determinant representations for
the space-, time-, and temperature-dependent Green’s func-
tions and spectral function for a 1D system of impenetrable
particles of arbitrary statistics in the presence of a confining
potential. These representations, for both lattice and contin-
uum systems, are also valid in nonequilibrium scenarios due
to rapid changes of the confining potential or in the case in

©2022 American Physical Society


https://orcid.org/0000-0002-0465-8796
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.053306&domain=pdf&date_stamp=2022-11-07
https://doi.org/10.1103/PhysRevA.106.053306

OVIDIU I. PATU

PHYSICAL REVIEW A 106, 053306 (2022)

which the initial state is not an eigenstate of the final Hamilto-
nian. Our results, obtained via summation of the form factors,
represent the generalization at finite temperature and arbitrary
statistics of the representations obtained by Settino et al. [74]
for bosonic systems at zero temperature and in nonequilib-
rium scenarios the equal-time correlators reduce to the results
derived in [75-77]. Using an elegant operatorial method [78]
Wang derived in [79] similar equivalent representations but
only in the case of time-independent external potentials. In
addition to being the starting point for the analytical analysis
of the asymptotic properties our determinant representations
have the advantage of being extremely easy and fast to imple-
ment numerically with the main quantities which need to be
computed being the partial overlaps of the dynamically evolv-
ing single-particle basis. This allows us to show numerically
that while in the case of a homogeneous system on the lattice
the spectral function of a system of hard-core bosons presents
three singular lines (the first two corresponding to the Type
I and Type II excitations in Lieb’s classification [80] and the
third one due to the presence of the lattice [74]) the addition
of a harmonic potential has a significant effect on the relative
weights and positions of each spectral line. As the curvature of
the potential increases the spectral weight of one of the lines
diminishes approaching zero, while a Mott insulator region
develops in the center of the trap.

The plan of the paper is as follows. In Sec. II we introduce
the anyonic TG gas in the continuum and present the eigen-
states and their dynamics. The determinant representation for
the correlators at finite temperature obtained via summation of
the form factors is presented in Sec. III. The lattice counterpart
of the continuum TG gas is introduced in Sec. IV and the
results for the lattice correlators can be found in Sec. V. In
Sec. VI we compare our results with previous representations
derived in the literature in certain limits and in Sec. VII we
present and discuss numerical results for the spectral function
of a lattice TG gas with harmonic trapping. We conclude in
Sec. VIII. Some technical details regarding the equal-time
limit of one correlation function can be found in the Appendix.

II. THE ANYONIC TONKS-GIRARDEAU GAS IN THE
CONTINUUM

In this paper we will derive determinant representations
for the correlators of 1D impenetrable particles with arbitrary
statistics in the continuum and on the lattice. We start with
the case of continuum systems. A system of N anyons in the
continuum with repulsive contact interactions in the presence
of an external confining potential V (x, t) is described by the
Hamiltonian

2
H= fdx h—(ax\w)(ax\p) +gviuiwy
2m
+[V(x,t) — pl i, (1)

where the anyonic fields Wi (x), U(x) satisfy the commutation
relations

7!7‘[/{ Sgn(x y)\pT(y)\.Il(x) —+ 8()( — y) (Za)
LS Sgn(x—))\y(y)\p(x), (2b)

vowt(y) =
YOW(y) = —

with « € [0, 1] the statistics parameter and sgn(x) =
|x|/x, sgn(0) = 0. In (1) £ is the reduced Planck constant, m
is the mass of the particles, p the chemical potential and g
is the strength of the repulsive interaction. The commutation
relations (2) are fermionic at coinciding points, x = y, and, as
we vary the statistics parameter, they interpolate continuously
between the bosonic commutation relations for k = 1 and
the fermionic anticommutation relations for x = 0. We will
consider a particular type of time-dependent confining poten-
tials V (x, t) which describe certain quantum quenches. More
precisely we will consider scenarios in which at ¢+ = 0 the
system is described by V(x,t = 0) = V;(x) and for r > 0 we
have V(x,t > 0) = Vp(x). For example, the experimentally
relevant situation of a system released from an harmonic trap
is described by V(x,t = 0) = mw0x2/2 and V(x,t > 0) =0.
We will denote the initial Hamiltonian by H; and the final
Hamiltonian which governs the subsequent dynamics after
the quench by Hp. For time-independent Hamiltonians we
obviously have H; = Hp.

In the absence of an external potential the Hamilto-
nian (1) describes the integrable anyonic Lieb-Liniger model
[12,13,16,81] which is the natural generalization to arbitrary
statistics of the bosonic Lieb-Liniger model [5] (see also
[54,82] and references therein). The realization that inte-
grable and near-integrable systems do not thermalize [83-85]
sparked renewed interest in the nonequilibrium dynamics of
such systems. The dynamics of the LL model in various
nonequilibrium scenarios has been studied intensely in the
last decade see [86—116]. When V (x, t) # O the Hamiltonian
(1) is no longer integrable except when g =0 and in the
impenetrable limit g = 0o also known as the Tonks-Girardeau
regime. This regime of very strong repulsive interaction will
be the main focus of this paper. At = 0 the eigenstates of the
system described by H; are [54,77,81]

¥y (k) = dxy - -dxy Yy (e, - xv )W (oy)

il
W (x))]0), A3)

where |0) is the Fock vacuum satisfying W(x)|0) =
(0| (x) = 0 for all x and (0|0) = 1. Each eigenstate is in-
dexed by a set of integers k = (ky, . .., ky) and the many-body
anyonic wave function is determined using the Anyon-Fermi
mapping [32,33], which allows us to write it in terms of the
wave function of noninteracting fermions subjected to the
same external potential

N- 1)/2 T gom)
Un(xi, .. xylk) = l_[ s
' 1<a<b<N
x det [¢x, (xp)], 1 N> )

.....

with ¢;(x) the eigenfunctions of the initial single-particle
Hamiltonian pr(x) —(R?/)2m)(8%/3x*) + V (x,t = 0),

, HP (O Pr(x) = e(k)i(x) and e(k) the single-particle
d1sper31on relation. Using ¢'2 5800 = cos(k /2) +
isgn(x, — xp)sin(wrk /2) it is easy to see that (4) reproduces
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the bosonic result [6,47] when x = 1 and satisfies
Un( . X Xigts .- K)
= —mSENCN Dy (L Xy, Xy . K &)

being symmetric(antisymmetric) under the permutation of
two particles when the system is bosonic (x = 1) [fermionic
(x = 0)]. For an anyonic system, « € (0, 1), Eq. (5) indicates
that the space-reversal symmetry is broken resulting in a non-
symmetric momentum distribution. The eigenstates (3) form
a complete set, are normalized (Y (k)|¥y(&')) = 8 4, and
satisfy

N
Hyl Py (k) = Ex()[ ¥y (k) with Ex(k) =) [e(ki) — pl.
i=1

(6)

In order to compute the form factors and, subsequently, the
correlators we will also need ¥y (k,¢)) = e‘”HFliﬁN(k)). In
the case of a time-independent external potential (H; = Hp)
the time-evolved eigenstate |y, (k, ¢)) is defined by a similar
expression with (3) with the time-dependent many-body wave

J

¢ ()C) _ efmwzxz/Z 1 (m_w !
e V2RI T

with (k) = hw(k 4 1/2).

function given by [77,86]

Yn(xr, ... xnlk, 1)

NIN=1)/2

Y N! l<a<b<N
(7

where ¢ (x,1) = e @ ¢ (x). In the case of a quantum
quench (H; # Hp) the many-body wave function is also
given by (7) with ¢ (x, ) being the unique time-dependent
solution of the Schrodinger equation iid¢;(x,t)/dt =
HPE(x)¢i(x, 1)  with  HEP(x) = —(#*/2m)(3%/9x?) +
V(x,t > 0) and initial condition ¢ (x, 0) = ¢ (x) [remember
that ¢ (x) are eigenfunctions of the initial single-particle
Hamiltonian HP (x) = —(h%/2m)(8*/3x%) + V(x,t = 0)].

Finally, let us give some concrete examples of systems
which can be considered.

Harmonic trapping: Vi(x) = mw?x?/2. In this case the
single-particle functions are the Hermite functions

) P Jmex). k=0.1.2. ... (8)

Triangular potential: Vi(x) = |x| (Chap. 8.1.2 of [117]). In this case for k even (2, 4, .. .) the single-particle functions are

o= ()" L af(2)
YT\ ) A e

while for k odd (1, 3, ... ) the functions are
b = sino(22) L aif (2
= sin — ——Ai| [ —=
K Nz ) a7

where Ai(x) = 5 fj;o €@+ gz is the Airy function
and a; and a; are the kth zeros of Ai(x) and Af'(x)
respectively.

Dirichlet boundary conditions: The single-particle func-
tions satisfy ¢r(0) = ¢(L) = 0 (the system is defined on
[0, L]) and are given by

R T2k?
k)= — ———.
e(k) 2m L?

Y

Neumann boundary conditions: The single-particle func-
tions satisfy %(0) = %(L) = 0 (the system is defined on
[0, L]) and are given by

1/3

1/3

3 2
(x| — S(k)]}, e(k) = —a2+1<%> ; €))

1/3 72 1/3
) (x| — S(k)]], e(k) = —ar4 <%> ) (10)
[
1 2 2k2
N BV/3 -
¢k(x)_=%cos(”7“) k=1,2,...,8(k)_2m 12
(12)

We should point out that our formalism is not valid for systems
with no confining potential and periodic boundary conditions.
In this case determinant representations for the correlators can
be found in [34,38,39,47-49,54].

III. DETERMINANT REPRESENTATIONS FOR FINITE
TEMPERATURE CORRELATORS IN THE CONTINUUM

In this section we will derive determinant representations
for the space-, time-, and temperature-dependent field-field
correlators of impenetrable particles in the continuum which
can be investigated numerically or constitute the starting point
for the analytic investigation of their asymptotic behavior.
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More precisely, we are interested in

g0, 3, ) = (W e, WO, )t

= Tr[e "/TWT (x, )W(y, /)] /Tr[e /T

= Z Z B WIT ()W (e, W, )Wy (K)) Z Z o~ Ent)/T (13)

N=0 kj<--<kyt1 N=0 kj<--<ky

and
P, 153,17 = (W, OV (3, 1) 7
= Trle /T W(x, )W (y, t')]/Tr[e /7]
=D D POy @V OV 3 )P Y Y e, (14)
N=0 g1 <--<qn N=0 q<-<qy

where  Wi(x, 1) = "W (x)e " and  W(x,t) =

eMri(x)e~™rt . These are the field-field correlators
evaluated in a thermal state of the initial Hamiltonian #;
described by the grand-canonical ensemble at temperature 7'
and chemical potential u. In equilibrium we have H; = Hp,
while in a quench scenario the subsequent time evolution
of the fields is described by the final Hamiltonian Hp. The
field correlators (13) and (14) allow us to describe the usual
six Green’s functions (advanced, retarded, time-ordered,
anti-time-ordered, greater, lesser) usually employed in the
study of many-body systems (see Chap. 2.9.1 of [21]). In
particular, the greater and lesser Green’s functions are given
by

G~ (x, t;,1') = —i(Wx, OV (7, 1)) 7 = —igP(x, 153, 1),
(15)
G=(x, t;y, 1) = —i(¥ (3, YW (x, 1)) 7 = —ig (v, 5%, 1),
(16)
and the retarded Green’s function is

GRx,t;9, 1) =0 — )G (x, ;9. 1')+ G=(x, 15y, 1)]
(17)
=—i0¢ - 5y, )+ 00, 55,01, (18)
where ©(¢) is the Heaviside function. The spectral function

is the imaginary part of the Fourier transform of the retarded
Green’s function

with

+00 ) +00 +00 )
GR(k, w) = / dt &' / / dxdy e =
—o0 —00 J—00

x GR(x, 13y, 0). (20)

The density and the momentum distribution of the sys-
tem are given by p(x,t) =g (x,t;x,t) and n(k,t) =
[0 [1 dxdy e Mg (x, 15y, 1), respectively.

A. Form factors

In order to derive determinant representations for the field
correlators (13) and (14) we are going to employ the summa-
tion of form factors [48,54]. We are going to compute first
the form factors for a finite-size system and express the mean
value of bilocal operators in an arbitrary state as a sum over
them. The summation can be performed using a well-known
technique known as the “insertion of summation under the
determinant”[48,54] (this can be understood as an application
of a slightly modified Cauchy-Binet formula [74]) which will
allow the derivation of a single determinant for the mean
value. The final result valid in the thermodynamic limit is
obtained using von Koch’s formula.

We start with the computation of the form factors for a
finite-size system. Inserting a resolution of the identity in each
mean value of bilocal operators appearing in (13) and (14) we

Atk @) — —%Im GR (k. o), (19)  obtain (the bar denotes complex conjugation)
J
Wy O18 @ DWO. O Py ) = Y (U I G D[y @) (B @G 1) [Py 4 (K)), h
q1<---<gN f,v(k,q\x,t) Fy(k.qlyt")
W@V OV GOy @) = D W@V D[Py K) Py ST 0L )Yy (@), (22)
ky<--<kng1 Fy(k,q|x,t) FN(kwqb’J/)

which shows that each of this quantities can be expressed as sums over form factors which are defined as

Fy(k, qlx, 1) = (Y (@IV(x, )Py, (K)), (23)
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where k = (ky, ..., kys1) and ¢ = (g1, ..., gy ) describe arbitrary states with N + 1 and N particles, respectively. Note that we
need to define only the form factor of the W(x, ¢) operator, the equivalent quantity for the creation operator W' (x, ¢) is given by
the complex conjugate of Fy(k, q|x, t). Using the equal-time commutation relations (2) and the definition of the eigenstates (3)
we obtain

Fy(k,q|x,t) =e™+/N + 1 / dxy - -dxyyni1(xr, .. xn, xlk Yy, ., XN, T), 24)
with
N2 1_[ S ﬁ 5 5em10xy ) Z Pﬁ
lﬁ]\u,_](xl, - ,.XN,X|k,l‘) = el Xa=Xp ez Xj—% (-1) ¢k,,(j)(x_,~,t)qbk,,(NH,(x,t),

VIV + D! 1<a<b<N j=1 PeSN 41 Jj=1

(25)
B (—i)VN=D/2 s : 0 N
— —15 Xa—Xp _ .
V(o g, 1) = e [] e~ D DT gein@so 1), (26)
: 1<a<b<N QeSy j=1

where Sy is the group of permutations of N + 1 elements, (—1)” the signature of the permutation and ¢ (x, ) are the time-
evolved single-particle eigenfunctions [when we do not have a quench we have ¢ (x, 1) = e~ *®" ¢, (x)]. In (24) L. quantify the
size of the system which depends on the potential or boundary conditions. For example, in the case of a harmonic potential we
have Ly = $o0, while in the case of a system with Dirichlet boundary conditions at 0 and L we have L_ = 0 and L; = L. In all
cases due to the completeness and orthonormality of the single-particle eigenfunctions we have

Ly _
&V, )P (v, 1) dv = &t 4. (27)
L.

Using the explicit form of the wave functions (25) and (26) the analytic expression for the form factor (24) can be written as a

sum of factorized terms

M iN - Lt » N — _
Fv(k, qlx, 1) = — / dxy--dxy Y Y (=D 780y, (x), Dy, 05 1) | Py (1), (28)
. L N
j=1

- PeSyy1 QeSy

with

Ly K — Tk * — TR Ly —
/ TSN (v, g (v ) dv =T [ (v, )P (v, 1) dv + €T (v, 1) (v, 1) dv
L L

X

Ly _
=e'2 <3k,q — (1 —€7) &(v, 1), (v, t)dv), (29)
where we have used the completeness relation (27). Introducing
flk,glic,x,t) = &g — (1 — ") br(v, )¢, (v, 1) dv, (30)
we find
. . _ak\N N
el (le i ) Pio
Fyle,gle, ) = ——=—— 3 3 (=D [T f ke, qeiplics %, 1) | $r (6 1)
PeSy+1 Q€SN Jj=1
et (ie= 1% )" fk,qomle) -+ flki.qomle) ¢y
Qo . .
=—r 2D .. : (x,1). 31)
' Qesy flkny1, gqomle) -+ flknyt, gqoanlk) Py
For each permutation Q rearranging the columns of the matrix appearing in the last expression Q — (1, ..., N) gives a (—1)¢

factor, and for each of the N! permutations we obtain the same result. Therefore, the final result for the form factor is
Fy(k,qlx.1) = ¢" (ic”%)" det B(k.qlx.1). (32)
N+1

where B is a square matrix of dimension N + 1 with elements

fka, qple, x,t), a=1,...,.N+1, b=1,...,N,

Bas (k. qlx, 1) = {a&ka(x,t), a=1,....N+1, b=N+1. (33)
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B. Determinant representation for (¢ +1(k)|\Ifr (x, O)W(y, )|y (k)

We can obtain a determinant representation for the mean values of bilocal operators appearing in the definition of the
correlation functions (13) and (14) by using the explicit formula for the form factors (32) and the “insertion of summation
under the determinant” [48,54]. From (21) we have

7= Wy OOV, Oy K) = Y Falk, qlx, )Fv(k, qly. 1)

q1<--<qn

= i N gitlB(k,qpc,t)lcviitlB(k,q|y,t’). (34)

q1<<qy
The product of the two determinants is symmetric in ¢’s and vanishes when two of them are equal; therefore we can write

*lﬂ(t t) [0.9] o0
A = —— 3" Z det B(k, qlx, 1) det B(k, qly, )

q1=1 4N=1

—ip@—t'y X

= - N Z Z (= 1)P+Q(l—[f(kP(/> qjlic, x, 1) f (kogj)» i1k, y, t ))‘ﬁkpwm(x Do, 35 1)

qi1=1 =1PeSy+1 Q€SN+ Jj=1

‘Mg

—ip(t—t') 0 N _ _
=TZ---Z >y (—1>R(1"[f<kRQ<,->,qu,x,t)f(kgm,q,|x,y,t’))askw,)(x,z)¢>ka+,><y,r/>. (395)

qi=1 qv=1 RESN+1 Q€SN +1 Jj=1

In the third line of (35) we have used the fact that for any two permutations P and Q we have P = RQ with R another permutation.
It is easy to see that the last line of (35) can be written as

¢
A N )
q1=1 gn=1 Q€SN+
Flkoay, qi1x, O f (koay, quily, ) -+ Flkoay, gn1x, ) f (koay, Gy 1) brg 6 DPrgsr, 05 1)
x : : : .
flkowv+y, qilx, ) f (koay, qily, t') -+ flkow+ny, anlx, 1) f(koay, gnly, t') 5kQ(NH)(XJ)¢kQ(N+,)(y, t')

Because g; appears only in the ith column we can sum inside the determinant. Introducing two matrices (depending on the
state k)

o

ﬁ;y;xx, ty, 1) = Z?(ka, qlic, x, ) f (ky, qlic, v, 1), ab=1,....N+1, (36)
g=1

RO, t:y.1) = ¢y, (x. Oy, 0 1), ab=1,....N+1, (37)

the last relation can be written as

us) Ul RS

o e—iu(t—t’) Q(l) o(l) o Q(l) O(N) O(1),0(N+1)
V= - : syt
AT = —o Zsj : o o .ty ')
O UQ(N+1) om UQ(N+1) o) RQ(N+1) ON+1)
77 (=) (=) r7(=)
. N+1 U1,1 Rl,j Ul N+1
= MEON D @), (38)
i—1 |77(=) (=) r7(=)
i=l Uviin RN-H,j o Uydvm
where in the last line we have reorganized the columns and rows such that Q — (1, ..., N + 1). Using the fact that ﬁf;b) is a
rank 1 matrix we can write the final result
W1 1T 2 Wy, )]y () = e ”a—z det (U7 +2R)| _, (39)
_ e*w(’*”)[det T + ROy — det (7<*>]. (40)
N+1 N+1
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C. Determinant representation for (¥ (q)|¥(x, )% (y, )| ¥y (q))

Similar to the previous case we can obtain a determinant formula for the mean value of bilocal operators appearing in (14).
From (22) we have

AT = (Y@ DY @ )Y@ = ) Fulk qlx, 0)F n(k, gly. 1)

ki <-<kni

= /1) Z det Bk, glx. 1)det Bk, gly. ). (41)

ky<--<knyi

The product of determinants is symmetric in k’s and vanishes when two of them are equal. Therefore the summation over all the
states with N 4 1 particles can be written as

pintt—t) 2 o0 N _ _
AP = ——— 3" 3N N (DT [ fkeiiys aslic, x, OF (hoiys i1k 3 1) | Bk X DBy, 0 1)

TN+ D)
( ) k=1 ky1=1 P€Sy11 Q€SN+ j=1

eintt—t) 2 > N — , — ’
=m2--- >y Z(—1)R<1"[f(kRQ(,->,qj|x,x,t)f(kg<,->,q,-|x,y,t))askkw(x,t)askgw,)(y,r>
| &

1 kny1=1 RESN+1 Q€SN +1 Jj=1

N
ein—1")

o0 N
)IEED DD (H?(k@j)’CIle,y,t’)@gwm(y,t’))

= T
(N + 1) k=1 kyp1=1 Q€S+ \j=1
Flkoay qilk.x.t) - flhkow. anlk.x.1) iy, (1)
X : 5 : ' -
flkowv+y, qulic, x, 1) - flkov+1), gn 1K, X, 1) gy (X5 1)

Like in the previous case in the second line we have expressed the permutations P as a product of R and 0. Now we multiply the
Jjth row of the determinant from the third line of (42) with f(ko(j), gjl«, y,t) and the N + 1-th row with ¢, owven, O t') obtaining

eina—t) X2 >

AP — (N+1)_!Z... Z

k=1 kny1=1 Q€Sn+1

Flkoay, qilx, 0 f (kgays qily. 1) -+ flhkoays anlx. f (koays qily. 1) Guge, (8. 1) flkoarys qily: 1)
X _ _ — ; .
fkowy, qilx, ) f tkowys anly, 1) -+ flkowy, gn1x, 1) f (kowy, au 1y, 1) rgu, (5, 1) f (ko) gnly. 1)
flkow+1ys qu1x, Dbpy,, 001 o flkowv+n), gnlx, gy, 0, 1) Bregory X3 DDy, 05 1)

In the previous expression kg, appears only in the jth row, and, therefore, we can sum inside the determinant. Introducing the
q =(qi, ..., qn)-dependent matrix and functions

o0
UG 3.6 =" flk, gplic, x, O f (k, qalic, y. ), a.b=1,...,N, (43)
k=1
Gty ) =Y flk qalk. x. ), (0.1),  a=1,....N, (44)
k=1
~ OO p—
e, 13, 0) =Y fk, qulic, y, (e (x, 1), a=1,...,N, (45)
k=1
together with
oo
g, 3, 1) =Yl Py (v, 1), (46)
k=1

the last expression can be written as [the sum over the Q permutations produces (N + 1)! identical terms]

r7(+) 210 IS
Uy - Uy &

A — pint=t) : : : (x, 12y,
i) TR N DR
U1~V,1 UNN,N ey
el eN 8
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Expanding this result on the last column we obtain our final result
Uy (@)W, OV (3, )Yy () = ef“<’-")[g+ a%} det (U —2R™)|__,, (47)
— pint=t) [dﬁt(ﬁ(“ — R+ g—1) d,st (7(+>], (48)
with R a g-dependent matrix with elements

R Gty 1) =20, 13y, 008 (x, 153, 8), a,b=1,...,N. (49)

D. Thermodynamic limit

In order to compute the thermodynamic limit we are going to use von Koch’s determinant formula, which states that for any
square matrix of dimension M (which can also be infinite) denoted by A and z a bounded complex parameter we have [118]

M > M M
det(1+zA)=l+ZZAm,m+%ZZ

m=1 m=1 n=1

Am,m

m,n P
Anm  Ana| T (50)

We start with g (x, t;y, t') defined in (13). As a first step we need to compute the partition function Z = Trle~ "1/ Tt is
easy to se that [Ey (k) = Zflzl(s(ki) — )]

[e¢]

z— i 3 BT ST (1 4 e 0T, (51)

N=0 ky<---<ky k=1

Using the determinant representation for the mean value of the bilocal operator (39) the numerator of (13) can be written as

NO =37 3 e @My ()1 (e, W, )Py ()

N=0 kj<--<kyti
o0
— ointi=1) e—ENH(k)/T[det T 1+ RO _ det ﬁ(—)]_ 50
NX;)k Z; det (T +R) — det (52)
=0k <--<Kkn41

The energy term e~ Ev+10)/T — o= X1 €k)—m/T g distributed inside the determinants as follows: the ith row is multiplied by
e~ Ck)=W/2T \while the jth column is multiplied by e~¢®%)~=#)/2T" Using von Koch’s determinant formula (50) we obtain for the
numerator

N = e 0= det (14 U, + RY;”) — det (1 + US,)], (53)
with infinite dimensional determinants and matrices U/(u—) and R/(u—) defined by
(U Tap(x, 133, 8) = e C O U x5y, 1) e €O g b= 1,2, (54)
Ry las(x, £33, 1) = e ORI RO (x, 11y, ) e CO=WPT g p=1,2,..., (55)
and
oo
U .ty t) =) fla.qlc.x.0f(b. qlk.y.t), a.b=1.2, ..., (56)
g=1
ROty 1) = ¢, (x. DG 1), a.b=1,2,.... (57)

It is important to note that while U a(_b>(x, 1), I?fl_b)(x, t;y,t") were finite-size matrices that were dependent on particular
eigenstates k = (ky, ..., ky1) the matrices U;_h) (x,1;y,1")and Rl(l_b) (x, t;y,t") are infinite dimensional. From the numerator (53)

we can extract (1 4+ e~ O=#/T)1/2 from the ith row and (1 + e~ ¢=/T)1/2 from the jth column obtaining an infinite product
equal to the partition function (51). In this way we obtain the final result for the g~ correlator in the thermodynamic limit

¢y, 1) = e M det(1 + VT + RT) — det(1 4+ VT, (58)

with
VG tiy ) = V0(a) (UG ) (13, 8) — 800) VOB), ab=1,2, ..., (59)
R, t:3.8) = V0@R ). t:3.£) Vo), ab=1.2,..., (60)
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where 6(a) = 1/(1 + “¢@~1/T) is the Fermi function. In a similar fashion we can obtain the thermodynamic limit for the

second correlation function (14) obtaining

g0 1y 1) = e OMdet(1+ VI = RTH) 4 (g — D det(1 + V)], (61)
with ¢ = g(x, t;y,t') defined in (46) and
VI iy, ) = V0@ (U)o 1y, t) — 845) VOB), ab=1,2,..., (62)
R :3.8) = V0@R ). t:3.6) /o), ab=1,2,..., (63)
where U™ (x, 7;y, t') and R™(x, 1, y, ') are infinite matrices with elements
o0
UG 158 = 3 flk, blic, x, 0F Gk, Bli, y,1), a,b=1,2,..., (64)
k=1
R G iy 1) =2,(x, 11y, ep(x, t5y.8') a,b=1,2,..., (65)
and e(x, t;y,1"), e(x, t;y,t') are infinite vectors with elements
ea(x, iy, 1) = flk.alic, x, (3. t). a=1,2,..., (66)
k=1
ety t) =Y flkoalk,y.t)i(x. 1), a=1,2,.... (67)
k=1

IV. HARD-CORE ANYONS ON THE LATTICE

All the results for the correlation functions of the TG gas in
the continuum can be easily extended in the case of lattice sys-
tems. The lattice analog of the anyonic TG gas is represented
by hard-core anyons in the presence of an external potential
with Hamiltonian [14,15]

L-1 L-1
H=—J (afaj +al,a) + ) V(1) - plaja;,
j=1 j=1

(63)

where J is the hopping parameter, L is the number of lattice
sites (we consider the lattice spacing ap = 1), and V (j, t) is
the confining potential. As in the continuum case we will con-
sider both time-independent external potentials like V (j) =
WlIlj — (L + 1)/2]|* with « = 1,2, ... and time-dependent
potentials implementing quantum quenches with V(j,t =
0)=V(j) and V(j,t > 0) = Vr(j). An example would be
the sudden change of depth of a harmonic potential char-
acterized by V;(j) = Vo[j — (L + 1)/2]* and Vp(j) = V1[j —
(L +1)/21> with Vy # V,. The initial and final Hamilto-
nian which governs the dynamics will be denoted by H;
and H, respectively. The anyonic creation and annihilation
operators on different lattice sites satisfy the commutation
relations

aia; — _emink sgn(i—j)a;ai + 8ij, (69a)

(69b)

aa; = P Sgn(zfj)ajai’

and the hard-core condition {a;,a}} =1, (a})* = (a;* =0
at the same lattice site. The commutation relations (69) are

(

bosonic when k = 1 and fermionic when ¥ = 0. In terms of
fermionic operators described by {f;, f;} =68, 1fj, fi}=0
the anyonic operators can be expressed via the generalized
Jordan-Wigner transformation [14,15] as

j—1 i1 )
a; _ fj(l_[ eim{f;fﬂ>7 a; = (1—[ einxfﬁf,e)fj’ (70)
B=1 p=1

which shows that the hard-core anyonic operators are products
of an odd number of fermionic operators. We consider open
boundary conditions for finite-size systems. In the bosonic
case the Hamiltonian (68) is equivalent with the Hamilto-
nian of the XX spin chain ([11], Chap. I of [82]) after the
identification a; = crj*, a; = crf. We should point out certain
characteristics of impenetrable particles systems on the lattice
which makes their study extremely worthwhile. While at low
filling fractions the results for lattice systems reproduce the
ones for continuum systems at moderate and large fillings
the presence of the lattice introduces new physics like the
Mott insulator phase [119] and the emergence of quasicon-
densates at finite momentum after expansion [120,121]. From
the computational point of view finite-size systems on the
lattice have the advantage of being easier to access numer-
ically due to the finite size of the associated single-particle
Hilbert space. Determinant representations for some correla-
tors (static or equal time at nonequilibrium) and the dynamics
of hard-core particles on the lattice in various nonequilib-
rium scenarios have been previously investigated in [14,35—
37,44,85,120,122-137].

Introducing the Fock vacuum defined by a;|0) = (Ola; =
0 for all j the eigenstates of the system at t =0 are k =
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(ks ..., ky) [14,15,51]:
L- L-1
Wyk)=—= Z wmml,...,mmk)aj,,N -a}, 10),
(71)
with the many-body anyonic wave function given by
Yn(my, ..., mylk)
NON= 1)/2
[T &% detign, (mp)l, e,
1<a<b<N
(72)

and e(m)=1 for m >0 and e(m) = —1 for m < 0. We
should point out that the value of €(0) is not physically rel-
evant [the wave function (72) is zero when two coordinates
are equal; see also the discussion in [50]], but our previous
choice makes some numerical computations easier. In (72)
¢ (m) are the single-particle fermionic wave functions satisfy-
ing H5P (m)gr(m) = (k) (m) with HF = —J 327" (Im +
1) (| + |m) (m + 1]) + Sy (V(n. £ = 0) — p)|m){m| and
m) = f,:HO). The eigenstates (71) form a complete set,
are normalized, and satisfy H;|¥y(k)) = En(k)|¥y) with
En(k) = 30 [e(ki) — pl.

The dynamics of the eigenstates is given by |y (k,t)) =
e "Mr |y (k)) with the time-dependent many-body wave
function

Yn(my, ... ,mylk,t)
NO- 1)/2

Y . I<a<b<N
(73)

where in the case of a time-independent external potential
(H; = Hr) we have ¢p(m,t) = e %' ¢ (m), while in
the case of a quantum quench (H; # Hp) ¢r(m,t) is
the unique time-dependent solution of the Schrédinger
equation ihogy(m,t)/ot = Hsp(m)qbk(m t) with Hsp(m)
—IY 2y (im0 (ml + m) (m + 1)) + 3y (V(m, £ > 0) —
w)|m){m| and initial condition ¢y(m, Q) = ¢p(m). As in
the continuum case our formalism is not valid for systems
with V(j,t) = 0 and periodic boundary conditions. For this
situation the Fredholm determinant representations for the
correlators can be found in [50,51].

V. DETERMINANT REPRESENTATIONS FOR FINITE
TEMPERATURE CORRELATORS ON THE LATTICE

The determinant representations for the field correlators
can be derived in a similar fashion as in the continuum case.
The relevant correlation functions are now

¢y, 1) = (@ (Day (@) ur
= Trle "/"al (t)ay(t)]/Tele /7], (74)

gD, 13y, 1) = (a(a] (1)) .

= Trle ™/ a,(t)al (t"))/Trle /7], (75)

where al (1) = eMr'ale= " and a,(t) = e'*r'ae~ "', The
spectral function is defined as

1
Ak, ) = ——Im GR(k, w),
T

+00
GR(k, w) = / dr ey " e * G (x, 15y, 0), (76)

© xy

with the retarded Green’s function in real space and time
defined by

GR(x,t;y,1)
= —iO(t — 1) [{ax()a] (1)) + (@) (¢ )ax(®)) 1],
= —i0@ — g (x, t;3,1) + 7, s x, 0. (77)

We need to clarify an important point. In general the retarded
Green’s function for bosonic operators is defined as the dif-
ference between the greater and lesser Green’s functions, and,
therefore, one might expect a minus sign on the right-hand
side of (17) and (77). However, as it can be seen from the
Jordan-Wigner transformation (70) the anyonic operators can
be expressed in terms of a product of an odd number of
fermionic operators, and in this case the spectral function is
defined as the sum of the greater and lesser Green’s functions
as is discussed in Chap. 3.3. of [21]. Using (ax(t)a;(O))MyT =

(a,(—1)a}(0)),.r we obtain

+00 ) )
Ak, w) = / di e Y ek
—00 P

x [¢7(x, 1:y,0) + g7 (3, 0;.x, 1)]. (78)

The determinant representations for g (x, ¢;y,¢') on the
lattice are given by the same expressions as in the continuum
case, (58) and (61), the only difference being that in the def-
initions of the V(T'i)(x, t;y,t") and RTH)(x, t;y,t") kernels
defined in (59), (62), (60), and (63) now the f(k, gql«,x,1t)
function is given by

Fll, glic, x, 1) =8, g — (1= ™) Y~ (¥, ), (', ).

(79)

VI. COMPARISON WITH PREVIOUS RESULTS

For an easier numerical implementation, but also in or-
der to compare with previously derived similar results, it is
useful to express the representations derived in Sec. IIID
in terms of products and determinants of simple matrices.
First, we introduce a column vector defined by ¢(x,7) =
(P1(x, 1), ...,qu(x,t))T where M is the dimension of the
single-particle Hilbert space (or the truncated dimension). For
continuum models M is infinite, but in the case of finite-
size lattice systems M is finite. The adjoint of ¢(x,?) is
6 ) =@ (x,0) = (@,(x, 1), ..., Py (x,1)). We also need
to introduce two additional matrices

Pop(x. 1) = f(a, blk, x, 1),
Fop=36apy0(a), a,b,=1,2,....,  (80)
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with f(a, b|x, x, t) defined in (30) for continuum systems and
in (79) for lattice systems and 6(a) = 1/(1 + e*@=1/T) js
the Fermi function. Using f(a, b|k, x,t) = f(b,a| —«, x,1)
it can be shown that V"' and R7%) defined in (59), (62),
(60), and (63) can be expressed in terms of the previous
matrices as follows (1 is the identity matrix):
VO (x, 1y,1) = FIP(y, ' [K)P(x, 1] — k)" — 1IF
= [F(P(y.1'[K)P(x,1| — k) — DF]",
(81a)
VIR (x, t:y,1") = F[P(y,1'| — k)P(x, t|k) — 1]F, (81b)

R (x, 1;y,1') = F ¢p(x, )" (3, t')F, (81c)
RUP(x, 13y,6') = F [P(y, '] — k)(x, 1)]
x[¢' (v, 1P (x, t|K)IF (81d)

and g(x,t;y,t') = ¢'(y, t')P(x, t). Our results for the corre-
lation functions (58), (61) can be rewritten using a simple
formula which states that for any square matrix of dimension
M and u and v two column vectors of the same dimension the
following relation is valid [138]:

det(A 4+ uv”) = det A + detAv" A7 u. (82)
Using this formula and (81) we find
g 1y, 1)) = e (det W L)) (v, 1 )F W )
xFa(x, 1),
gV, 13y, 1) = T (det W 1) (3, 1 )(x, 1)
—¢"(y. tP(x, t1)F W FP(y.1'| — k)
x@(x, 1)], (83b)

with Wy =1+ [F@P,t|k)P(x,t| —«)—DF]"  and
Wuy =14+ F[P(y,t'| — k)P(x,tlk) —1]F. In the case of
time-independent potentials similar results were derived by
Wang [79]. The final results (83) are expressed as sums,
products, and determinants of matrices with elements
given by partial overlaps of the single-particle wave
functions, (30) and (79). In many experimentally relevant

J

(83a)

situations these overlaps can be calculated analytically
like in the case of continuum systems with harmonic
trapping [76], triangular potential [117], Dirichlet and
Neumann boundary conditions, or very easily numerically by
quadratures or simple summations (this of course requires
as a preliminary step the determination of the dynamically
evolved single-particle eigenfunctions which are obtained
by solving the appropriate time-dependent Schrodinger
equation). This makes our results (83) extremely easy and
efficient to implement numerically requiring three simple
steps: (1) computation of the time-evolved single-particle
eigenfunctions, (2) calculation of the P and F matrices
and ¢(x, 1), ¢(y,t") vectors, and (3) determination of the
g(i)(x,t;y,t’) correlators using (83). Let us look at some
particular cases where results for the correlators are known.

Free fermions: In the case of free fermions, x = 0, we have
f(a,b|0,x,t) =68, and, therefore, the matrix P reduces to
the identity matrix. We obtain

g0, 15y, 1) = e N 0 (@)g,(x, Dy, 1), (84)

g, 1y,1) = &Y 11— 0(@)]p, (5, 1 )palx, 1),
' (85)

which in the equilibrium case, ¢, (x, t) = e~ @ ¢, (x), are the
well-known results for free fermions at finite temperature.

Zero temperature: At zero temperature the elements
of the F matrix become F,,=234,, for a<{N and
F,,=0 for a>N where N is the number of par-
ticles in the ground state. The multiplication with F
acts as an projector on the first N states obtaining
¢T(y9 t/)F = (¢l(ys t/)v cees ¢N(y’ l/)v Os 07 cee )T9 F¢()C, t) =
(o1 (x, 1), ..., dn(x,1),0,0,...) and so on. For the rele-
vant matrices we find [W )l = [P(y, t'|c)P(x,t] — K)]Z;b
for a,b< N and [W_)lsp =8s for a>N or b>N
and [W )l = [Py, t'|k)P(x,t] — k)]ap for a,b < N and
[W 4ylap = 8ap for a > N or b > N. Therefore, at zero tem-
perature we obtain

g0, 13y, 1) = e D det [Py, ' [1)P(x, t| — k)] X ¢7 (v, 1 )P, ' 11)P(x, t| — k)] T (x, 1), (86)

g (x, 13,1 = " det [P(y, 1’| — 1)P(x, i)@' (v, 1 )p(x, 1)
— ¢T3 OP(x, 1) [P(y, 1] — k)P(x, ti)] P(y, 1] — 1)p(x, 1)], (87)

where in the above expressions with the exception of @' (y, ")@(x, 1) all the determinants and products of matrices need to be
understood as projections on the first NV states. In the case of impenetrable bosons (x = 1) this is the result obtained by Settino
et al. [74] (in our result we have extracted the dependence on the chemical potential in the first term).

Equal-time case of g7 (x, t;,t'): The simplifications that appear in the equal-time case of the g~ correlator are investigated
in the Appendix. In this case the determinant representation in the continuum case is considerable simpler

g7 iy, 1) =det(1 + v + 1) —det(1 + vT7), (88)
with
y_
vty ) = —(1 — 7 S8RO)gen y —x)\/G(a)Q(b)/ b, (v, Dpp(v,0)dv, ab=1,2,..., (89)
ré,Té_)(x» £y, 1) = /0(a) g (x, pp(y, 1) /O (), a,b=1,2,.... (90)
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FIG. 1. Logarithm of the zero temperature spectral function InA(k, w) of a TG gas on the lattice for different values of the statistics
parameter. The relevant parameters are L = 300, N = 100, and V (j, ¢ > 0) = 0. In the second panel the continuous blue, red, and yellow lines
mark the ¢;(k), e;;(k), and &;;; (k) singular lines [see Eqgs. (92a), (92b), (92¢)], while the corresponding dashed lines describe —¢g;(k), —e;(k),

and —&rr (k)

In the lattice case (88) remains valid the only difference is that
the V;Tb’_) kernel is now

_ efinKSgn(y*X))sgn(y — x)v/0(a)d(b)
y—1

X Y Pum Ogp(m. 1), ab=12,....

m=x

T,— .
vty ==

oD

For the continuous bosonic system (k = 1) the representa-
tions (88) at zero and finite temperature were derived in
[75] and [76], respectively, while the anyonic generaliza-
tion was obtained in [77] (please note that in [76,77] the
g(’)(x, t;y,t) correlator is related to the one presented in this
paper by complex conjugation). In the case of lattice systems
the representation (88) with (91), which represents the lattice
generalization of Lenard’s formula [47], to our knowledge has
not been reported previously in the literature except for the
particular case of bosons at zero temperature in equilibrium
[139].

VII. SPECTRAL FUNCTION FOR A TRAPPED
TONKS-GIRARDEAU LATTICE GAS

In this section we are going to investigate the influence of
a harmonic trapping potential on the spectral function of a TG
gas on the lattice. The spectral function A(k, w) defined in (76)
quantifies the probability for exciting a particle(hole) with
energy w(—w) and momentum k. In general this probability
interpretation is not valid in the case of bosonic systems due
to the fact that for these systems A(k, w) can be negative.
However, in the case of impenetrable systems of any statistics
it can be shown [79] that both contributions on the right-hand
side of (76) are positive, and therefore the probabilistic inter-
pretation is still valid. In Fig. 1 we present the logarithm of the
zero temperature spectral function In A(k, w) for a finite-size
system with L = 300 and N = 100 particles for different val-
ues of the statistics parameter and V (j, t 2> 0) = 0. There are
three main singularity lines [74,79], and below we are going to
derive their explicit expressions. We will focus on the bosonic
case as the results for different statistics can be obtained by
a simple momentum shift with «(kp — 1) (see Fig. 7 of [59]

and the mean field discussion in [79]). For a system of N
particles on a lattice with L sites with no external potential
and open boundary conditions the single-particle dispersion
is e(k) = —2J cos(k) with the Fermi vector kr = wN/L and
the chemical potential given by —2Jcoskr = . The first
singular line corresponds to the case when a particle is excited
from the Fermi level kr to kg + g. This particle-type excita-
tion is also present in continuous systems (Type I excitation
in Lieb’s classification [80]) and has energy —2J cos(kr +
q) + 2J cos kr and momentum k = kr + g — kp. Using the
definition of the chemical potential the first singularity line is
g1(k) = —2J cos(kr + k) — . The second line is due to hole-
type excitations (Type II excitations in Lieb’s classification)
in which a particle from the Fermi sea with quasimomentum
—kr < k < kp moves to the first unoccupied state above the
Fermi level, i.e., kp + m /L. Neglecting 1/L corrections, the
energy and momentum of these excitations are —2J cos kr +
2J cos g and k = kr — g respectively. Therefore, the singular-
ity line is give by &;;(k) = 2J cos(kr — k) + . The third line
has no equivalent in continuous systems and is generated by
excitations from an occupied state inside the Fermi sea g to a
state with quasimomentum 7 — g. The energy and momenta
of these excitations are —2J cos(w — q) + 2Jcosq and k =
7 — 2q, and the line is described by &7 (k) = —2J cos[(w +
k)/2] + 2J cos[(w — k)/2] = 4J sin(k/2). The general result
valid for any value of the statistics parameter « is obtained by
shifting k — k + kp(k — 1). We find

er(k) = =2J cos(k + kpx) — , (92a)
en(k) = 2J cos(k + kpk — 2kp) + 1, (92b)
ep(k) = 4J sin[(k + kpx — kr)/2]. (92¢)

In the case of homogeneous continuous systems the nonlin-
ear Luttinger theory [140] predicts that the spectral function
has a power-law behavior A(k, w) ~ | — g;(k)|™*/ with j =
{, 11} near each singular line ¢;(k). The spectral function of
a lattice system at small filling fractions presents power-law
behavior near the singular lines with power exponents which
are very close to the nonlinear Luttinger liquid predictions
[74,79]. From Fig. 1 we see that as the statistics parameter
decreases the spectral weight from ¢;;(k) and ej7;(k) also
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FIG. 2. First row: Logarithm of the spectral function In A(k, @) for a harmonically trapped (V (j, t > 0) = Vy[j — (L + 1)/2]%) bosonic
TG gas on the lattice at temperature 7 = 0.05 and different values of the curvature V;. The other relevant parameters are L = 240 and N = 80.
The second row presents the logarithm of the momentum distribution In n(k) and the third row the density of particles p(j) on the lattice.

decreases being transferred to &;(k) which becomes the only
singular line at ¥ = 0 as it is expected for a free fermionic
system.

Figure 2 presents results for the spectral function, momen-
tum distribution and density profile for a system of hard-core
bosons (k = 1) at temperature 7 = 0.05 in the presence
of a harmonic trapping potential V (j,¢ > 0) = Vy[j — (L +
1)/2]? of different curvatures. The presence of the confining
potential has a dramatic effect on both static and dynamic
properties of the system. While in the case of open boundary
conditions the density is almost constant with small distor-
tions along the boundaries from the last row of Fig. 2 we see
that as we increase the strength of the harmonic potential the
density profile becomes nonuniform with a large number of
particles concentrated in the center of the trap and very few
particles at the edges. At a critical value of the curvature (the
number of particles is kept constant) the density of the parti-
cles in the center of the trap will become one and by further
increasing Vj this insulating region with zero compressibility
will further increase. What we have described is the well-
known superfluid to Mott insulator quantum phase transition
(QPT) [1] induced by the variation of the potential’s curvature.
The microscopic origin of this QPT has been investigated in

[141]. While in the case of trapped continuum system the
energy level spacing of the single-particle system is constant,
in the lattice case the level spacing decreases with increasing
level number until a degeneracy sets in and the level spacing
becomes monotonously increasing. The eigenfunctions of the
degenerate states have the interesting characteristic of having
zero weight in the middle of the trap, and as the level increases
this region in which the eigenfunctions have zero weight also
increases. The QPT occurs when the Fermi energy is close
to the level where this degeneracy sets in and the density in
the center of the trap approaches one. Further increasing the
curvature of the potential results in a similar increase of the
insulating region and due to the Pauli principle the eigenfunc-
tions should also have an increasing region with zero weight
in the center of the trap as the level increases, which is exactly
the phenomenon mentioned above.

Signatures of the QPT can also be seen in the momentum
distribution which due to the presence of the lattice is a
periodic function in the reciprocal lattice. While in the case
of bosons and fermions the momentum distribution n(k) is
symmetric with respect to k = 0 we should point out that for
anyonic systems this is no longer valid as a result of the broken
space reversal symmetry of the commutation relations (69).
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At zero temperature and small values of the curvature there
is always a region in which n(k) = 0, but as we increase Vj
another way of identifying the presence of the insulating phase
is the fact that n(k = 4 ) becomes nonzero [141]. As the size
of the insulator region increases this is also accompanied by a
similar increase of n(k = %). At finite but low temperature
we can see from the second row of Fig. 2 that we encounter
a similar phenomenon. When Vj = 0 the momentum distri-
bution is very close to the usual quasicondensate behavior at
T =0 with n(k) ~ k='/? at k = 0 and n(k = &) ~ 0 (this
is due to thermal fluctuations). As we increase the strength of
the confining potential n(k = £) also increases, and as an
insulating plateau develops we see that n(k) becomes almost
flat with a smooth peak at k = 0.

As the spectral function quantifies the probability that a
particle (hole) to be excited (filled) at a given momentum
k and energy w and the tails of the momentum distribution
become more populated with increasing curvature one would
expect that the spectral weight would get transferred to the
hole component (w < u) of A(k, w) as V; increases. This is
indeed the case, and it can be seen in the first row of Fig. 2.
An interesting peculiarity of one dimensional systems is that
at low energies the spectral function has a region in which
it is zero (or it is very small at finite temperatures). In our
case for the homogeneous system at 7 = 0 this region is
defined by |w — u| < &(k) and is due to the fact that the
Fermi sphere in 1D comprises only two points +kg. While
in higher dimensions the hole excitations lead to a continuum
extending to zero energy for all momenta g smaller than 2kp
in 1D the only place where the hole excitations can reach
zero are for ¢ = 0 and ¢ = 2kr. At moderate values of the
curvature, Vo = 0.0001, we see that the region in which the
spectral function vanishes for a homogeneous system de-
creases considerably but as we further increase the curvature
the opposite phenomenon occurs. An interesting feature is
revealed at Vy = 0.0004 where we can see that A(k, w < ) is
almost similar with A(k, @ > w) for a homogeneous system
(Vo = 0). For V) = 0.001 and zero temperature the system
would develop an insulator region in the middle of the trap. In
this case we see from Fig. 2 that the spectral function presents
only two singular lines compared with the three in the case
of the homogeneous system or for the trapped system before
the QPT. Therefore, the measurement of the spectral function

J

Ly

would provide an alternative way of identifying the presence
of the Mott insulator phase in a trapped 1D system.

VIII. CONCLUSIONS

We have derived determinant representations for the
Green’s functions and spectral function of impenetrable parti-
cles of arbitrary statistics on the lattice and in the continuum.
Our results are valid at zero and finite temperature and for
general confining potentials including nonequlibrium scenar-
ios due to the sudden changes of the external potential. The
main advantage of our approach is the numerical efficiency
with the main computational cost being the calculation of par-
tial overlaps of the dynamical evolving single-particle basis.
Our numerical analysis of the spectral function for a trapped
TG gas on the lattice showed that the presence of the ex-
ternal potential has a profound effect on the distribution of
the spectral weight culminating with the vanishing of one of
the spectral lines present in the homogeneous system as we
increase the curvature of the potential. In addition, our results
also constitute the starting point in the rigorous analysis of
the asymptotics of the correlation functions using powerful
techniques developed in the last decades [54,67,70,72] and
can be used for benchmarking numerical work in the finite
coupling case [142,143]. A natural generalization of our re-
sults would be the derivation of similar representations for the
correlators of impenetrable multicomponent systems like the
Gaudin-Yang and Hubbard models. This will be deferred to a
future publication.
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APPENDIX: THE EQUAL-TIME CASE
OF g (x, t3y,1')

In this Appendix we investigate how the g7 (x,#;y,t")
correlator simplifies when t =¢'. In the continuum case we
have Ug ) (r. 13 1) = Y0, f(a. qlic.x.)f (b. glk. . 1) with
f(a, qlk, x,t) defined in (30). We introduce & = (1 — €'™*)
and consider first the case x < y. We have
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We will show first that the second term on the right hand sided of (A1) cancels the fourth using the completeness of the ¢, (v)
functions
Ly

BV, DV, 1) =8aps Y P, )a(y 1) = 8(x — y). (A2)
a=1

L_

We introduce 5a(v, =1y +]E(I(U, t)and a;,(v, t) = 1,2, 196(v, t) with 1, 7§ the characteristic function of the interval [y, L],
i.e., is 1 when v is inside the interval and O otherwise. We have

Ly ~

L+_ ~ -
¢, (v, t)pp(v,t)dv = o, (v, )pp(v,t)dv
L_

y

Ly Ly ~ -
Z/ $¢¢(vat)8(v_w)¢b(w,t)dvdw

ad Li ~ Ly _ ~
=Z( ¢a<v,t>¢q<v,t)dv)( ! ¢q<w,t>¢b<w,t)dw)

= \JL-
0 Ly Ly

= Z( ¢a(v,t)¢q(v,t)dv>( ¢q(w,t)¢b(w,t)dw)- (A3)
g=1 ¥ ¥

This relation together with & + & = £& = 2 — 2 cos wk shows that the second and the fourth terms of (A1) cancel. In a similar
fashion it can be shown that the third term is zero. Considering 56,(1), 1) = l[x,y]q_ba(v, t) and ab(v, t) = 1,1, 194(v, t) we have
i “ ¢, (v, t)d?b(v, t)dv = 0 and by inserting a resolution of the identity this is identical with the third term on the r.h.s. of (A1).

Therefore, for x < y we have
US) G iy, 1) — 80 =
In the case x > y we obtain

Ui;b)(x’ Yy, t) - Sa.,b =

-_— y_
—5/ ¢, (v, 1)dp(v, 1) dv. (A4)

—& f b.(v, (v, 1) dv. (AS)
g

From (A4) and (AS5) we obtain (89). The result for the lattice case is given by (91).
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