
PHYSICAL REVIEW A 106, 053304 (2022)
Editors’ Suggestion

Adiabatic quantum Zeno dynamics of bosonic atom pairs with large inelastic losses
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We report on experiments exploring the non-Hermitian dynamics of pairs of two-level atoms tightly confined
in an optical lattice and driven by a near-resonant laser. Although spontaneous emission is negligible for the
long-lived excited state, two-body dissipation arises from strong inelastic collisions between two atoms in the
excited state. We demonstrate quasi-adiabatic control of the internal state of the pairs in the quantum Zeno regime
where inelastic losses dominate. Preparing each atom pair in the longest-lived eigenstate of the non-Hermitian
Hamiltonian describing the dissipative dynamics, we measure a lifetime enhanced by more than two orders of
magnitude in comparison to the bare two-body lifetime. The measured enhancement factor is in quantitative
agreement with the expected lifetime of the prepared “non-Hermitian dressed state.”
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I. INTRODUCTION

In recent years, the theory of non-Hermitian systems
has emerged as a common framework to describe classical
waves undergoing energy or information loss. Experiments
in optical, mechanical, biological, or electrical systems [1]
demonstrated many phenomena unique to non-Hermitian
systems, such as unidirectional transport, enhanced sensing
capability, or characteristic topological properties in the vicin-
ity of the so-called exceptional points where two (or more) of
the eigenmodes coalesce [2–4].

Non-Hermitian Hamiltonians [5,6] have also been used for
a long time to model dissipative quantum systems, starting
with early studies of radioactive decay [7,8]. Dissipation in
quantum systems often originates from their weak coupling to
a larger environment, described by a Lindblad master equa-
tion [9]

d ρ̂

dt
= 1

ih̄
[Ĥeff , ρ̂] +

∑
α

�α L̂α ρ̂ L̂†
α. (1)

Here ρ̂ is the density matrix, L̂α is the so-called jump operator
for the dissipative channel α, and Ĥeff = Ĥ − i

∑
α

h̄�α

2 L̂†
αL̂α

is the effective Hamiltonian, with the Hermitian part Ĥ
describing the isolated system. The jump operator L̂α de-
scribes environment-induced transitions in the dissipative
channel α at an average rate �α . The quantum trajectory ap-
proach [10–12] interprets the non-Hermitian operator Ĥeff as
an effective Hamiltonian generating a continuous dissipative
evolution interrupted by stochastic quantum jumps described
by the L̂α’s. Thus, in general, the non-Hermitian Hamiltonian
captures only part of the dissipative dynamics.
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Master equations such as Eq. (1) have a long history and
many applications in low-energy physics, in particular in
atomic physics and quantum optics [9,12,13]. More recently,
master equations and non-Hermitian Hamiltonians were used
to study many-body systems out of equilibrium. These studies
were largely driven by experimental progress, for instance,
with ultracold atoms subject to strong one-, two-, or three-
body losses [14–29]. The dissipative part of the Lindblad
master equation can be interpreted as describing generalized
measurements performed on the system [30–32]. For strong
losses, one enters a regime where the quantum Zeno ef-
fect [33–35] (the freezing of the time evolution of a quantum
system subject to frequent measurements) becomes relevant.
This effect prevents transitions to the highly dissipative states,
thereby effectively suppressing dissipation and dramatically
slowing down the decay [14–19]. Atomic systems with strong
two-body losses are plentiful, for instance, two-electron atoms
(as in our work), but also atoms in highly excited Rydberg
states, atoms close to a Feshbach resonance, spinful dipolar
atoms, and so on. These systems also have interesting proper-
ties that led to many original proposals to engineer correlated
quantum states, or more generally, study quantum many-body
physics [36–41].

In this article, we investigate the dissipative properties of
pairs of two-level atoms trapped at isolated nodes of an optical
lattice and driven by a near-resonant laser [42,43]. The two
atoms interact elastically in a state-dependent manner, but also
undergo strong inelastic losses when both atoms are excited.
In a quantum trajectory description, quantum jumps project
the quantum state at each lattice site to the vacuum state,
which does not contribute to any observable. As a result,
expectation values are completely determined by the evolution
under the non-Hermitian Hamiltonian. We demonstrate quasi-
adiabatic [44–50] control of the quantum state of the pairs in
the quantum Zeno regime of strong dissipation. We prepare
each atom pair in the longest-lived “dressed” eigenstate of the
effective non-Hermitian Hamiltonian and observe a lifetime
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TABLE I. Summary of collisional properties. We calibrate ex-
perimentally the interaction strength Ugg for ground-state atoms as in
[42], while Ueg, Uee, and �ee are deduced from it using the measured
scattering lengths [43] and inelastic rate constant [42]. The quantities
p = (Uee − Ugg)/2 and q = Ueg − (Uee + Ugg)/2 determine the shifts
of the transition frequencies (see Fig. 1).

Ugg/h Ueg/Ugg Uee/Ugg h̄�ee/Ugg p/Ugg q/Ugg

1.40 kHz 0.905 1.21 1.02 0.105 −0.20

longer than the bare two-body lifetime by at least two or-
ders of magnitude. Preparing (quasi-)adiabatically many-body
systems in loss-protected states is of paramount importance
to realize experimentally the proposals discussed above. The
experiments presented here are a first step towards this goal.

II. DYNAMICS OF LASER-DRIVEN, INTERACTING ATOM
PAIRS AND NON-HERMITIAN HAMILTONIAN

A. Non-Hermitian Hamiltonian

We consider a pair of bosons with two internal levels
confined to the motional ground state of a tight trap. A near-
resonant laser field of frequency ωL couples the two internal
states |g〉 and |e〉. Neglecting motional excitations, the in-
ternal state is the only dynamical degree of freedom. The
two-particle Hilbert space has only three exchange-symmetric
states that we label |gg〉, |eg〉, and |ee〉 to highlight the occu-
pation numbers of the internal states.

The dynamics is captured by an effective non-Hermitian
Hamiltonian (see the Supplemental Material [51])

Ĥeff = Ĥ0 + Ŵ − i
h̄�ee

2
|ee〉〈ee|. (2)

The first two terms in the right-hand side (rhs) describe coher-
ent internal dynamics, with

Ĥ0 = (p − h̄δ)Ŝz − qŜ2
z , Ŵ = h̄�Ŝx. (3)

Here the coupling strength is given by the Rabi frequency �,
the detuning from the one-atom transition frequency ω0 is δ =
ωL − ω0, and

Ŝz =
⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠, Ŝx = 1√

2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, (4)

are the standard spin-1 matrices. The uncoupled Hamiltonian
Ĥ0 includes the internal energies and the interaction energies
of the pair for each spin configuration |i j〉,

Ui j = 4π h̄2ai j

M

∫
|w(r)|4 d3r, (5)

with M the mass of an atom, ai j the scattering length de-
scribing the particular interaction process, and w the orbital
wave function. The relevant shifts of the transition frequencies
are parametrized by p = (Uee − Ugg)/2 and q = Ueg − (Ugg +
Uee)/2. Relevant values of the various parameters for our
experiment are indicated in Table I.

The last term in the rhs of Eq. (2) proportional to the
projector |ee〉〈ee| describes inelastic losses. We neglect two-
body loss processes for the gg and eg states, in accordance

with experimental measurements [42,43]. Physically, the
losses originate from “principal quantum number changing”
collisions [52,53] (also called “energy-pooling” collisions),
concisely summarized by the reaction e + e → g + e′ with e′
another electronic excited state which eventually radiatively
decays to g. The internal energy released in this strongly
inelastic process makes both atoms escape from the trap. The
two-body loss rate

�ee = βee

∫
|w(r)|4 d3r, (6)

with βee an atom-dependent rate constant, is determined by the
same overlap integral as the elastic interaction in Eq. (5). As a
result, the ratio h̄�ee/Ugg = Mβee/(4π h̄agg) is independent of
the lattice details and of order unity (see Table I).

B. Properties of the non-Hermitian Hamiltonian

We consider how the complex eigenspectrum λn = εn −
ih̄γn/2 (with εn and γn real numbers) Ĥeff changes as a
function of the detuning δ. We call the eigenstates |λn〉 “non-
Hermitian dressed states” in analogy with their Hermitian
counterparts [51]. Note that the imaginary part (“decay rate”)
of the non-Hermitian spectrum is related to the population of
the bare state ee,

γn = −2

h̄
Im(λn) = �ee||〈ee|λn〉||2. (7)

To set the stage, we first discuss the behavior of the co-
herent part Ĥ0 + Ŵ . The spectrum of the Hamiltonian Ĥ0

[thin dotted lines in Figs. 1(b) and 1(d)] gives rise to three
level crossings. Two of these [marked by the thin vertical
dashed lines in Figs. 1(b), 1(c), 1(d), and 1(e)] correspond to
one-photon transitions and occur when δ = (p + q)/h̄ (gg-eg
crossing) and when δ = (p − q)/h̄ (eg-ee crossing). The third
crossing corresponds to a two-photon transition and occurs
when δ = p/h̄ (gg-ee crossing). A nonzero laser coupling Ŵ
turns the level crossings to avoided crossings.

Turning to the spectrum of the complete non-Hermitian
Ĥeff , we find that two regimes emerge either at strong (� �
�ee) or weak (� � �ee) coherent driving, respectively. For
strong driving, the eigenstates are qualitatively similar to the
situation without losses. The real parts εi display avoided
crossings as for the nondissipative version of the problem
[Fig. 1(b)]. Near resonance (|δ| � �), the dressed states
are superpositions of all three bare states with comparable
weights and all decay rates γi are comparable to the bare loss
rate �ee [Fig. 1(c)].

For weak driving (or, equivalently, strong losses), a qual-
itatively different situation emerges. Only the gg-eg avoided
crossing survives. The other two disappear and the real parts
εi cross as in the absence of laser coupling [Fig. 1(d)]. More-
over, the non-Hermitian dressed states no longer mix near
resonance as for strong driving [Fig. 1(e)]. Instead, one notices
that the states {λ1, λ2} form a “lossless” subspace with a decay
rate orders of magnitude smaller than the bare loss rate �ee. As
the decay rate is varied, this subspace remains well isolated
from the lossy λ3 state with a decay rate γ3 ≈ �ee for all
detunings.
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FIG. 1. (a) Sketch of the energy levels of a pair of bosonic atoms with internal states g, e. The parameters p = (Uee − Ugg)/2 and q =
Ueg − (Ugg + Uee)/2 characterize the shifts of the transition frequencies due to state-dependent interactions Uαβ (α, β = {g, e}), δ is the laser
detuning from the atomic resonance, and �ee is a two-body loss rate for two atoms in the excited state e. (b), (c) Real and imaginary parts of
the eigenvalues of the effective Hamiltonian in the regime of weak dissipation with �/�ee = 1. (d), (e): Same in the quantum Zeno regime
�/�ee = 0.1. The thin dotted lines in (b), (d) indicate the uncoupled energy levels gg, eg, ee. The vertical dashed lines in (b)–(e) mark the
position of the one-photon resonances. The dash-dotted lines in (e) indicate the decay rates calculated from the effective Hamiltonian in the
{gg, eg} subspace [Eq. (11)]. We used the experimental values from Table I.

C. Effective Hamiltonian in the lossless subspace

In the quantum Zeno regime, the lossy state remains
isolated in the sense that the complex eigenvalue λ3 never ap-
proaches λ1/2 because of the vastly different imaginary parts.
This is reminiscent of a common situation in quantum me-
chanics, where a low-energy subspace remains well isolated
in energy from the rest of the Hilbert space. The dynamics
in the low-energy subspace can be captured by an effective
Hamiltonian given by the expansion [9]

P̂ Ĥ ′
eff P̂ − P̂ Ĥ P̂ = P̂ĤQ̂

1

Ĥ
Q̂Ĥ P̂ + · · · , (8)

where Q̂ and P̂ = 1̂ − Q̂ are projectors on the high- and low-
energy subspaces.

The formalism of the effective Hamiltonian is easily
adapted to the non-Hermitian case, with Q̂ = |ee〉〈ee| and
P̂ = 1̂ − Q̂ the projectors on the lossy and lossless sub-
spaces, respectively, and with P̂Ŵ Q̂ = (h̄�/

√
2)×|eg〉〈ee|.

The effective Hamiltonian in the lossless subspace spanned
by {|gg〉, |eg〉} is given by

P̂ Ĥ ′
eff P̂ = h̄

2

(
δ′ √

2�√
2� −δ′ − i�eff

)
. (9)

with δ′ = δ − (p + q − �q)/h̄. The eg level acquires an addi-
tional level shift �q and an effective decay rate �eff ,

�q + i
h̄�eff

2
= h̄�2

�ee

x + i

1 + x2
, (10)

with x = 2(p − q − h̄δ)/(h̄�ee). The small parameter of the
expansion is �/�ee � 1 in the quantum Zeno regime, so
that �eff , |�q − q|/h̄ � �. For the experimental parame-
ters �/(2π ) ≈ 150 Hz and �ee/(2π ) ≈ 1.5 kHz, we have,
for instance, �eff/(2π ) ≈ 30 Hz on resonance (x = 0). For

� � �ee, the eigenvalues of the 2×2 effective Hamiltonian
are approximately

λ1/2 ≈ ± h̄�2×2

2
− i

h̄�eff

4

(
1 ∓ δ′

�2×2

)
. (11)

with �2×2 = √
δ′2 + 2�2. The imaginary parts of the two

eigenvalues are shown in Fig. 1(e).
Far off resonance (|x| ≈ 2|δ|/�ee 
 1), the effective decay

rate �eff behaves as �eff ∝ �ee(�/δ)2, which is simply the
bare decay rate �ee times the occupation probability ∝ (�/δ)2

of the ee state in the large detuning limit. The decay of the
slowest decaying state is even smaller and scales as ∝ (�/δ)4.
The scaling reflects that for large detunings, the slowest de-
caying state couples to ee by a two-photon transition.

As the detuning is brought closer to the δ′ = 0 resonance,
the parameter |x| eventually becomes small compared to one,
and the decay rate approaches �eff/2 ∝ �2/�ee � �ee for
both eigenstates. Moreover, the larger �ee the smaller the
saturation value, a behavior typical of the quantum Zeno ef-
fect. Note that a large bare decay rate is essential. Indeed, in
the opposite limiting case where |x| 
 1 near resonance (or
equivalently, 2|q| 
 h̄�ee), one finds instead a perturbative
scaling law �eff ∝ �ee.

III. DESCRIPTION OF THE EXPERIMENTS

A. Experimental system

The experiment is performed with ultracold 174Yb atoms
trapped at isolated sites of a three-dimensional optical lat-
tice. The optical lattice operates at the magic wavelength
λm ≈ 759.4 nm, where the lattice potential is independent of
the internal state g or e. The lattice depth is chosen deep in
the Mott insulator regime with depth Vx,y,z = 25, 25, 27 Er ,
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FIG. 2. Lifetime measurement for a final detuning δ f /(2π ) =
650 Hz and nominal Rabi frequency �/(2π ) = 150 Hz. The fig-
ure shows the total atom number (irrespective of the internal state)
versus hold time. The decay is attributed to two-body losses in
doubly occupied sites initially occupying the center of the trap.
The presence of an outer shell of singly occupied sites explains the
nonzero asymptote. The inset shows a sketch of the temporal profile
of the ramp.

where Er = h×1.98 kHz is the lattice recoil energy. We as-
sume that band occupation beyond the fundamental Bloch
band (including interband transitions induced by the coupling
laser) and tunneling within that band are negligible on ex-
perimental timescales. In this regime, the lattice sites can be
treated as an ensemble of tight traps isolated from each other.
Due to an auxiliary harmonic trap [42], the system forms a
core of doubly occupied sites near the trap center, surrounded
by a shell of singly occupied (or empty) sites (see sketch in
Fig. 2). Our focus is on the dynamics of atom pairs populating
the central “Mott core,” as considered in Sec. II.

B. Landau-Zener ramps

The atoms initially occupy the electronic ground state
g≡1S0, coupled to the excited state e≡3P0 by a narrow-
linewidth “clock” laser with a wavelength around 578 nm. We
prepare the system to the desired final state using “Landau-
Zener ramps” where the detuning changes linearly with time
(inset of Fig. 2). In more detail, the laser is first turned on
with a negligible intensity at an initial detuning δi far from
any resonance. A first intensity ramp of duration t� brings
the Rabi frequency to its nominal value � = 2π×150 Hz,
keeping δ = δi fixed. A second ramp of duration tδ brings the
detuning to the final desired value δi → δ f , keeping � fixed at
the nominal value. For all reported experiments, we perform
the frequency ramp at a constant speed δ̇ ≈ 2π×11.1 Hz/ms,
so that tδ = (δ f − δi )/δ̇, and chose t� = TR/10, for a total
ramp time TR = t� + tδ .

C. Detection

We measure either the total atom number or the popula-
tions in the bare state g or e using absorption imaging after a
time of flight [51]. The e population is measured up to a global
repumping efficiency ηrp ≈ 0.8 [42]. The result of a given
measurement can be expressed in terms of the occupation
probability Pα of the bare atomic states, weighted by the initial

proportions of singly or doubly occupied sites. For instance,
the population of state g is given by

Ng = n1 Pn=1
g + n2 (Peg + 2Pgg). (12)

Here n1/2 denote the number of singly or doubly occupied
sites determined by the initial density profile, respectively.
A similar equation holds for Ne, and the experiment records
ηrpNe.

The outer shell of singly occupied sites thus appears as a
“parasitic” background signal on top of the atom pair signal
of interest. This signal is, however, easy to correct for since
it merely corresponds to an ensemble of n1-independent two-
level systems undergoing a Landau-Zener process. Provided
one is able to determine n1/2, the spurious contribution of
singly occupied sites can be substracted off the measurements
to obtain the contribution of atom pairs.

To measure n1/2, we hold the atoms for a variable time thold

in the presence of coupling laser light after the preparation
ramp and record the remaining g population as a function of
thold. An example of such measurement is shown in Fig. 2. We
fit such curves by an exponentially decaying function f1 +
f2e−γ thold where f1/2 = n1/2 in Eq. (12), and where γ gives the
population decay rate of the prepared non-Hermitian dressed
state.

IV. STRONGLY ENHANCED LIFETIME
IN THE QUANTUM ZENO REGIME

We first discuss the observed lifetime of the state obtained
at the end of the Landau-Zener ramps. We postpone the dis-
cussion of (quasi-)adiabatic following for a non-Hermitian
system to Sec. V. We perform the preparation sequence
described above (i) starting from δi/(2π ) = −1.5 kHz and
increasing the laser detuning, or (ii) starting from δi/(2π ) =
+1.5 kHz and decreasing the laser detuning. In case (i), the
initial state almost coincides with the dressed state λ1 and the
experimental ramp aims at following “adiabatically” this state.
Case (ii) is the same but following λ2.

After the preparation ramp, we hold the atoms for a vari-
able time thold in the presence of laser light and finally record
the remaining e population. For both ascending (i) and de-
scending (ii) ramps, monitoring the atom number as a function
of hold time thold allows us to extract the lifetime of the
prepared dressed state as discussed in Sec. III C.

We report in Fig. 3 the result of all lifetime measurements
using the ascending and descending frequency ramps (i) and
(ii) for several final laser detunings. We compare the measured
decay rates to the calculated decay rates of the eigenstates
λ1 and λ2. The agreement between the predictions and the
measurements is excellent. This validates a posteriori the
description by a non-Hermitian Hamiltonian and supports the
claim of adiabatic following (see also Sec. V below).

To highlight the role of the quantum Zeno effect, we also
show as dashed lines the predictions of a perturbation the-
ory, where the non-Hermitian dressed eigenstates are replaced
by the corresponding eigenstates of Ĥ0 + Ŵ (i.e., setting
�ee = 0 in the non-Hermitian Hamiltonian), and Eq. (7) is
then used to compute the decay rates. This comparison shows
that the lifetime is enhanced by two orders of magnitude near
resonance by the quantum Zeno effect.
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FIG. 3. Measurement of decay rates of the non-Hermitian
dressed eigenstates. Solid: Numerically calculated decay rates.
Dashed: Lifetime expected when treating the non-Hermitian part as
a perturbation.

V. QUASI-ADIABATIC RAMPS

In this section, we examine the notion of quasi-adiabaticity
and relate it to our experiments. We first remind how the con-
cept of adiabatic following in Hermitian quantum mechanics
can be generalized for non-Hermitian systems [44–50] and
thereby define the notion of (quasi-)adiabatic following in a
dissipative system. In a second part, we explore in more detail
the quasi-adiabaticity of the experimental ramps discussed in
the previous section.

A. Quasi-adiabaticity for non-Hermitian systems

We now consider a time-dependent Hamiltonian Ĥeff (t ) =
Ĥeff [δ(t )]. The time dependence originates from the detuning
δ(t ) taken to be a linear function of time with slope δ̇. We note
|λn〉 and 〈λ̄n| the right and left eigenstates of Ĥeff associated
with the eigenvalue λn = εn − ih̄γn/2 (γn � 0). We take the
normalization conventions 〈λ̄m|λn〉 = δmn, 〈λn|λn〉 = 1 [54]
Assuming that the system is initially prepared in one particular
eigenstate α of Ĥeff (0), the non-Hermitian generalization of
adiabatic mapping is [44–50]

|�(0)〉 = |λα[δi]〉 → |�(TR)〉 = eiφα− 1
2 κα |λα[δ f ]〉, (13)

with TR the ramp duration. The system follows the state |λα〉
up to a phase, as in the Hermitian case, but also up to an
attenuation factor e−κα . One may speak of “quasi-adiabaticity”
if the time evolution is well described by Eq. (13). By this,
we mean that the evolution is as close as possible to a truly
adiabatic one, given the dissipative nature of the system at
hand.

It is convenient to parametrize the instantaneous detuning
as δ(x) = (1 − x)δi + xδ f , or equivalently x = δ̇t/(δ f − δi ) ∈
[0, 1]. The quasi-adiabatic phase and attenuation exponent can

then be written as

φα =
∫ 1

0

(
−εα[x]TR

h̄
+ ReBαα[x]

)
dx, (14)

κα =
∫ 1

0

(
γα[x]TR + 2ImBαα[x]

)
dx, (15)

with Bαβ[x] = i〈λ̄β | dλα

dx 〉x a Berry connection associated with
“transport” of the eigenstates in the � − δ space. Note that
the explicit form of φα and κα depend on the choice of the
normalization (see [50] for a detailed discussion).

Since the norm of the wave function is not conserved by
non-Hermitian evolution, the non-Hermitian dressed eigen-
state is transported with a survival probability less than 1,

Ps,α = e−κα . (16)

Equation (16) provides a lower bound for the actual survival
probability, which is realized only for quasi-adiabatic evolu-
tions following the least dissipative eigenstate.

A generic validity criterion for the quasi-adiabatic mapping
(13) is given by the inequality [46]

1

h̄

∣∣∣∣
(

dĤeff

dt

)
βα

∣∣∣∣ = |δ̇|
2

|〈λ̄β |Ŝz|λα〉| � |λα − λβ |2
h̄2

Ps,α

Ps,β
, (17)

∀β �= α. There are two main differences from the analogous
Hermitian adiabatic condition. First, the equality of the real
parts εi is only a necessary condition to follow the initial
dressed state. Second, the right-hand side of Eq. (17) has an
extra factor Ps,α/Ps,β . If α is the least dissipative eigenstate,
this factor is positive and exponentially large for slow ramps:
quasi-adiabaticity is then reinforced by the non-Hermitian
dynamics [44].

B. Experimental ramps

Figure 4(a) shows the experimentally measured popula-
tions in g and the total atom number for each final detuning
δ f of a descending frequency ramp starting from a large and
positive initial detuning δi/(2π ) = +1.5 kHz and lowering
the detuning at constant speed δ̇. This ramp aims at following
the |λ2〉 eigenstate of the non-Hermitian Hamiltonian, which
connects to |gg〉 when δ → +∞. We focus on the descend-
ing ramps in this section for concreteness, but we obtain
equivalent results for the ascending ramps following |λ1〉. The
measured populations closely follow the curves expected from
solving numerically the time-dependent Schrödinger equa-
tion for the experimental ramp.

The survival probability of doubly occupied sites in-
troduced previously provides a more direct experimental
evidence for quasi-adiabatic following. From the decay
measurements discussed in Sec. III C, we obtain the total
populations N2 = 2n2 and N1 = n1 of the central core and
of the outer shell, respectively, for each value of the final
detuning δ f . The resulting curves are shown in Fig. 4(b). The
initial quantity can be interpreted as a measure of the survival
probability of doubly occupied sites times their initial total
population. We observe that the measured N2 agrees well with
the expected population of the |λ2〉 dressed eigenstate, i.e.,
N2(δ f ) = N2(δi )Ps,λ2 . As discussed before, this supports the
interpretation of the experiment in terms of quasi-adiabatic
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FIG. 4. (a) Total atom number and g population following the λ2

dressed state (descending frequency ramps at constant speed δ̇). Note
that the frequency axis is reversed, so that the ramp time increases
from left to right. The insets show a sketch of the “trajectories”
in the � − δ plane. (b) Total populations N2 and N1 of the central
core and of the outer shell, respectively. The first can be interpreted
as a measure of the survival probability of doubly occupied sites.
We observe an excellent agreement with the expected population of
the |λ2〉 dressed eigenstate (solid lines), which provides evidence for
quasi-adiabatic following. The population N1 of singly occupied sites
remains approximately constant. For such sites, the frequency ramp
amounts to an adiabatic passage from g to e for large final detunings.

following of the dressed eigenstate |λ2〉. Note also that the
population N1 remains almost constant, as expected. The
small drop in the calculated curve after crossing the resonance
is due to the slightly lower detection efficiency for atoms in e,
which is included in the calculations.

Finally, we briefly mention that there are small deviations
from adiabatic behavior in Fig. 4(a), namely, large fluctuations
of the observables near the resonance, as well as a small
residual g population for large and negative detunings δ f . In
the Supplemental Material [51], we argue that these deviations
are caused by frequency fluctuations of the driving laser and
unrelated to the non-Hermitian dynamics of doubly occupied
sites that is the focus of this paper.

VI. CONCLUSION AND DISCUSSION

In conclusion, we studied the non-Hermitian dynamics of
atom pairs tightly confined in an optical lattice. With strong
two-body losses, we observe lifetimes much longer than the
natural lifetime set by the inverse two-body loss rate �ee

by at least two orders of magnitude. We discussed how this
feature can be understood from the quantum Zeno effect and
demonstrated quasi-adiabatic preparation of the longest-lived
eigenstate of the non-Hermitian Hamiltonian.

The non-Hermitian dressed state prepared after a quasi-
adiabatic ramp is of the form

|�〉 = α|gg〉 + β|ge〉. (18)

Paskauskas and You [55] discussed criterions to decide
whether a two-particle bosonic state shows quantum
correlations, or equivalently, is not separable. The state (18)
exhibits quantum correlations in the sense of Paskauskas and
You unless either α or β vanishes. It is instructive to consider
how the initially “polarized” (and separable) state |gg〉 can be
mapped to the state (18) using Landau-Zener ramps. Let us for
a moment neglect interactions and dissipation. The three-state
system Hamiltonian Ĥ0 + Ŵ then reduces to a spin-1
Hamiltonian involving only generators of SU(2).
Consequently, the associated evolution operator
exp(−i

∫ t
0 Ĥ (t ′)dt ′/h̄) is a rotation R transforming each

spin − 1/2 particle as |g〉 → |Rg〉. The final two-particle
state retains a product form |Rg〉 ⊗ |Rg〉 and there are no
quantum correlations [55]. The same conclusion holds for an
interacting system with Uee + Ugg = 2Ueg, i.e., q = 0 with our
notations.

For nonsymmetric interactions leading to q �= 0, the evo-
lution operator is no longer a mere rotation and can create
correlations. For instance, if Uee 
 Ueg,Ugg, an adiabatic fre-
quency ramp that stops well after crossing the gg-eg resonance
but well before crossing any other would generate a state of
the form (18). Entanglement results in this situation from an
interaction blockade phenomenon.

It is remarkable that a purely dissipative evolution can
accomplish the same thing. One may speak of a “dissi-
pative blockade” to highlight the analogy with the unitary
evolution described above. The ideal case would corre-
spond to an interaction-symmetric situation with q = 0 but
�ee �= 0, a situation close to the experimental one where
h̄�ee 
 |q|. In that sense, one can consider the experi-
ments reported here as a minimal instance demonstrating
dissipation-assisted engineering of nontrivial quantum states,
a topic of farther-reaching significance when applied to more
complex many-body systems [12,13,56,57]. A related theoret-
ical study on a related system of lossy fermions predicts, for
instance, the possibility to create Dicke-like states [58]. An
extension of the present work to a Hubbard-regime quantum
gas, with nonnegligible tunneling between neighboring wells,
would bring further progress in this direction.

To conclude this discussion, let us stress that the final state
is actually an incoherent mixture of the two-particle entangled
state (18) and of the vacuum state (as in [58]). In the present
work, we only perform ensemble measurements, and there-
fore, only probe statistical mixtures. The entanglement could,
however, be revealed in quantum gas microscope experi-
ments [59], where the spin-resolved population of each site is
accessible and where postselecting the doubly occupied sites
could make the entangled state experimentally detectable.
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