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Observing phase jumps of solitons in Bose-Einstein condensates
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The phase difference of the macroscopic wave function is a unique structure of the soliton in an atomic
Bose-Einstein condensate (BEC). However, experiments on ultracold atoms so far have observed the valley of
the density profile to study the dynamics of solitons. We propose a method to observe the phase difference of
a soliton in a BEC by using an interference technique with Raman and rf pulses. We introduce a phase jump
factor, which is an indicator to measure the phase difference between two points. It is demonstrated by using the
projected Gross-Pitaevskii equation that an interference density ratio, the density ratio of two-component BECs
after the Raman and rf pulses, reproduces the phase jump factor well. This technique will become an alternative
method to study the decay and breakdown of a phase-imprinted soliton in atomic BECs.
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I. INTRODUCTION

Solitons are ubiquitous and are seen in fluids, polyacety-
lene [1], plasma [2], the Jovian atmosphere [3], as well as
Bose-Einstein condensates (BECs) in ultracold atoms [4–6].
One of the interesting properties of solitons in BECs is the
existence of the phase of macroscopic wave functions, which
is completely different from other classical systems, where the
dark soliton in a BEC shows the π -phase jump. Thanks to this
degree of freedom, the soliton is indeed created by using the
phase-imprinting method [5].

The decay and breakdown of solitons in BECs have
been studied extensively and intensively [4,7–13], where the
soliton is disrupted through the snake instability [4,7–9],
through scattering of Bogoliubov quasiparticles and thermal
atoms [12], or through externally imposed impurities [13].
The decay of a dark soliton at finite temperature in the
highly elongated geometry was studied by using the Zaremba-
Nikuni-Griffin (ZNG) theory [14]. This study included the
finite-temperature effect by using the Boltzmann equation for
the thermal cloud. These studies on the disruption of solitons
focused on the time dependence of the density profiles.

In the earlier study [15], the decay of the phase-imprinted
dark soliton in two-dimensional geometry at nonzero tem-
peratures has been studied by focusing on the fidelity of the
classical fields. However, it was later found that the fidelity
cannot characterize the decay of solitons [16]. The scaling
of the decay rate of the fidelity is actually the same with
and without the dark soliton. Therefore, another measure of
the decay and breakdown of the soliton is needed. Another
problem in the earlier study [15] is that the decay of the
soliton was discussed in terms of the system energy rather than
the temperature. This is due to the projected Gross-Pitaevskii
equation (PGPE) [17–24] for an isolated system, which is
inconvenient for experiments.

Although the phase, which is a complement of the number
of particles (density) of the macroscopic quantum systems,

is an important quantity of the soliton in BECs, a method to
observe the phase jump of the soliton has been lacking. If we
could observe the phase jump of solitons, it would provide an
alternative way to study the decay and breakdown of solitons
in BECs. In this study, we propose a method to observe the
phase difference of a soliton in a BEC based on the technique
to observe the supercurrent decay in an annular BEC [25]. We
introduce a phase jump factor to measure the phase difference
between two points in a BEC. Using the (stochastic) PGPE,
we demonstrate that the phase jump factor is well reproduced
by the interference density ratio of a two-component BEC af-
ter applying Raman and rf pulses. This method will become an
alternative tool to study the decay and breakdown of solitons
in atomic BECs.

II. PROJECTED GROSS-PITAEVSKII EQUATION
AND STOCHASTIC PROJECTED
GROSS-PITAEVSKII EQUATION

Our simulation for soliton dynamics is based on the PGPE
[17–24] in the two-dimensional system, where the bosonic
field operator ψ̂ is projected onto the coherent region C as
ψ̂C = PC[ψ̂] by using the projection operator PC[ · ] and then
replaced with the classical field ψC. The dynamics of the clas-
sical field ψC is described by the following equation [17,23]:

ih̄
∂ψC(r, t )

∂t
= PC[ĤCψC(r, t )], (1)

where ĤC ≡ Ĥ0 + g|ψC(r, t )|2 with the single-particle
Hamiltonian Ĥ0 = − h̄2

2m ∇2 + U (r) with atomic mass m
and g = 4π h̄2a/m is a coupling constant with the s-wave
scattering length [26]. In this paper, we assume an ultracold
Bose gas in a harmonic trap potential U (r) = m(ω2

x x2 +
ω2

y y2 + ω2
z z2)/2 where the z-axis degree of freedom is frozen

out with ωz � ωx,y. This system is effectively described by
a two-dimensional Bose gas with a two-dimensional (2D)
harmonic trap and a dimensionless effective 2D coupling
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constant g̃ = g/(
√

2πaz ) with az = √
h̄/mωz [27]. The critical

temperature of the ideal Bose gas in the two-dimensional
harmonic trap is given by kBTc = (6h̄2ωxωyNtot/π

2)1/2,
where Ntot is the total number of particles.

The projection operator onto the coherent region can be
described in terms of the eigenfunction uν (r) of the single-
particle Hamiltonian Ĥ0, which satisfy Ĥ0uν (r) = ενuν (r).
Here, uν (r) are orthonormal eigenfunctions of the harmonic
potential system and εν is its eigenvalue given by εν =
h̄ωx(nx + 1/2) + h̄ωy(ny + 1/2) with a set of quantum num-
bers ν = (nx, ny). The classical field in the coherent region C
is then given by

ψC(r, t ) =
∑
ν∈C

cν (t )uν (r), (2)

where the number of particles in the coherent region is NC =∑
ν∈C

|cν |2. By applying the form (2) to Eq. (1), the PGPE

reduces to the equation of motion for coefficients

ih̄
dcν (t )

dt
= Aν (t ), (3)

where Aν (t ) ≡ ενcν (t ) + gFν (t ) with Fν (t ) ≡ ∫
dru∗

ν (r)
|ψC(r, t )|2ψC(r, t ).

The PGPE describes the equation of the motion for the
classical field in the coherent region. The system described
by this equation can be regarded as an isolated system for the
coherent region, where the interaction between the coherent
and incoherent regions is neglected. Because of this isolation,
controlling the temperature in the PGPE is not feasible in the
simulation [28]. The stochastic PGPE (SPGPE) overcomes
this problem, where the interaction between the particles in
the coherent region and the incoherent region (heat bath) is
effectively included [23]:

dψC(r, t ) = 1

h̄
PC[−iĤCψC(r, t )dt + γ (μ − ĤC)ψC(r, t )dt

+ dW (r, t )], (4)

where μ is the chemical potential of the heat bath. The con-
stant γ gives the thermal damping, given by

γ ≡γ0

∞∑
k=1

eβμ(k+1)

e2βεcutk

[eβ(μ−εcut ), 1, k]2, (5)

where γ0 = 4mkBTa2/(π h̄2), and 
 is the Lerch transcendent.
Here, kB is the Boltzmann constant, T the temperature of
the heat bath, and β = 1/kBT the inverse temperature. The
first term in (4) is the same as the PGPE, and the second
and third terms describe the effects of the interaction between
particles in the coherent and incoherent regions. In particular,
the second term in (4) brings the system into thermal equi-
librium with the chemical potential μ, where the damping
rate associated with the equilibration is given by γ . The third
term in (4) gives the noise from the thermal bath, where dW
satisfies the relations,

〈dW (r, t )〉 =0, (6)

〈dW ∗(r, t )dW (r′, t )〉 =2γ kBT h̄δC(r, r′)dt, (7)

〈dW (r, t )dW (r′, t )〉 =〈dW ∗(r, t )dW ∗(r′, t )〉 = 0. (8)

Here, δC(r, r′) is the δ function in the coherent region defined
by δC(r, r′) = ∑

ν∈C
φν (r)φ∗

ν (r).

The SPGPE in (4) can also be reduced into the equation of
motion for coefficients, given by

dcν (t ) =1

h̄
{−iAν (t )dt + γ [μcν (t ) − Aν (t )]dt + dWν (t )},

(9)

where dWν (t ) is the noise for the state ν given by

dWν (t ) ≡
∫

dru∗
ν (r)dW (r, t ), (10)

which satisfies the relations

〈dWν (t )〉 =0, (11)

〈dW ∗
ν (t )dWν ′ (t ′)〉 =2γ kBT h̄δν,ν ′ , (12)

〈dWν (t )dWν ′ (t ′)〉 =〈dW ∗
ν (t )dW ∗

ν ′ (t ′)〉 = 0. (13)

In contrast with the PGPE, the SPGPE involves the chemi-
cal potential and the temperature as control parameters. The
system after the long-time evolution in the SPGPE reaches
the thermal equilibrium state with a given chemical potential
and temperature. This fact is useful for controlling the initial
condition of BECs at thermal equilibrium before imprinting
the soliton. See also Appendix A.

III. PHASE JUMP FACTOR

We apply the phase imprinting method [5] to the nonzero
temperature BEC to create dark solitons. Based on this
method, we modify the phase θ (x, y) of the classical field in
the stationary state to θ (x, y) + π for x < 0 at t = 0. SPGPE
provides this stationary state with a specified value of the
chemical potential μ and temperature T . This phase imprint-
ing generates the phase jump at x = 0, and the dark soliton
emerges at the same position (Fig. 1). (See also Appendix B.)
After the soliton emerges, we simulate the breakdown of the
soliton at nonzero temperature by using the PGPE. In contrast
to the absolute-zero case, the density distribution of the clas-
sical field at nonzero temperatures is significantly disturbed
with time evolution due to thermal excitations.

In this paper, we introduce a metric for studying the com-
plement of the density, the phase jump factor S(x, y), which
characterizes the phase difference of the soliton in BECs:

S(x, y) ≡ 1
2 {1 − cos[�θ (x, y)]}, (14)

where �θ (x, y) = θ (x + d/2, y) − θ (x − d/2, y). Here,
θ (x, y) is the phase of the classical field. This gives the phase
difference between two points at a distance d . It is reasonable
to take the healing length d = ξ of BECs to study the soliton.
The minimal phase difference �θ = 0, which means no phase
difference, gives the minimal phase jump factor S(x, y) = 0.
The maximal phase difference �θ = ±π , which indicates the
existence of the soliton, gives the maximal phase jump factor
S(x, y) = 1 (Fig. 1). This phase jump factor clearly shows the
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FIG. 1. Spatial profiles of (a)–(c) the density n, (d)–(f) the phase jump factor S, and (g)–(i) the interference density ratio R↑. In panels
(d)–(f), yellow (red) dots are the quantum vortices with (counter)clockwise rotation, and the green line represents the soliton path lS . In panels
(g)–(i), the green line represents the soliton path lR↑ . We used ωy/ωx = 5, T = 0.8Tc, g = 0.1h̄2/m, and Ntot = 3000.

existence of the phase jump, as well as the breakdown of the
soliton into the vortex pairs.

An interesting property of the soliton breakdown can be
shown in the time dependence of the phase difference. The
key is the pair of the vortex and antivortex as in Ref. [29].
First, immediately after the phase is imprinted, ghost vor-
tices and antivortices are trapped alternately in the soliton

[Fig. 2(a)]. We can find the region where the phase jump
becomes small, when the nearest-neighbor ghost vortex and
antivortex move away [Fig. 2(c)]. This can become the break
point of the soliton. We then call a string with a large phase
difference a chopped soliton. A ghost vortex pair is trapped in
the chopped soliton [Fig. 2(d)], and when a ghost antivortex
moves away from a paired ghost vortex, the ghost antivortex
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FIG. 2. Time-evolution of the phase difference cos(�θ (x, y)) at T = 0.7Tc. We used the same parameters as in Fig. 1. Green and red dots
represent the (ghost) vortex and antivortex, respectively.
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turns into a real antivortex [Fig. 2(e)]. Interestingly, because of
the strong fluctuation, the reconnection happened among this
real antivortex, the remaining ghost vortex, and another ghost
vortex pair, which makes a longer chopped soliton [Fig. 2(f)].
The disconnection and connection are repeated [Figs. 2(g),
2(h), and 2(i)]. The ghost vortex pair can be annihilated in
the chopped soliton [Figs. 2(i), 2(j), and 2(k)].

The phase difference �θ is not observed directly in exper-
iments; however, this can be extracted from the interference
experiment. Our proposal for measuring the phase jump factor
is to use the interference of BECs with internal degrees of
freedom with Raman pulse and rf pulse, based on the study to
observe the supercurrent decay in an annular BEC [25].

We consider atoms with two internal states |↑〉 and |↓〉
(Fig. 5). First, prepare a BEC with the state |↑〉 and create
a soliton with the phase-imprinting method [5]. Then, by
applying the Raman π/2 pulse with a kick, half of the pop-
ulation of |↑〉 is transferred into the state |↓〉. After the kicked
BEC with |↓〉 moves with the distance d , then apply rf π/2
pulse, where half of the populations in states |↑〉 and |↓〉 are
converted into |↓〉 and |↑〉, respectively. Then, measure the
density profiles with the interference between BECs with and
without displacement.

The condensate wave functions after the Raman and rf
pulses are given by

ψ↑(x, y) = 1
2 [ψC(x + d/2, y) − ψC(x − d/2, y)], (15)

ψ↓(x, y) = 1
2 [ψC(x + d/2, y) + ψC(x − d/2, y)], (16)

where we have shifted the x axis with d/2 just for the
consistency of the representation of the phase jump factor
S(x, y) in (14). We then introduce the interference density
ratio R↑(x, y) ≡ n↑(x, y)/[n↑(x, y) + n↓(x, y)]. By using the
relation ni(x, y) = |ψi(x, y)|2 for i =↑,↓, we can reduce the
interference density ratio as

R↑(x, y) = 1
2 [1 − χ (x, y) cos(�θ )]. (17)

Here, the factor χ can be expressed by the ratio of the arith-
metic and geometric means of density, given by

χ (x, y) ≡ 2|ψC(x + d/2, y)||ψC(x − d/2, y)|
|ψC(x + d/2, y)|2 + |ψC(x − d/2, y)|2 . (18)

Because of the inequality of arithmetic and geometric means,
the mean ratio ranges as 0 � χ (x, y) � 1.

From Eq. (17), the interference density ratio ranges as

1 − χ (x, y)

2
� R↑(x, y) � 1 + χ (x, y)

2
. (19)

In particular, if a soliton exists along the line with (xs, ys),
it is plausible that |ψC(xs + d/2, ys)| = |ψC(xs − d/2, ys)|
holds, if we take the distance d as an appropriate value, such
as a healing length d = ξ . This situation gives results such
that χ (xs, ys) = 1, 0 � R↑(xs, ys) � 1, as well as R↑(xs, ys) =
S(xs, ys) = [1 − cos(�θ )]/2, which implies that the interfer-
ence density ratio R↑ possibly reproduces the phase jump
factor S. The large value of the phase jump factor S(x, y)
and the interference density ratio R↑(x, y) is due to the large
phase difference �θ and the large mean ratio χ (x, y), i.e.,
|ψC(x + d/2, y)| � |ψC(x − d/2, y)|.

Interestingly, the mean ratio χ does not significantly con-
tribute to the interference density ratio, and the profile of
R↑(x, y) can indeed reproduce the profile of the phase jump
factor S(x, y) very well even outside the region very close
to the soliton (Fig. 1). Although the density profile of BECs
itself is useful for detecting the valley of the density in the
soliton, the interference density ratio R↑ is also useful because
it allows us to see the phase jump characteristic of the soliton
of BECs, and the breakdown of the soliton into the vortices.

We can also confirm this fact through the mean values of
the interference density ratio R↑ and the phase jump factor S
along the soliton path (Fig. 3). The concept of the soliton path
is defined as follows: If a dark soliton exists, the phase jump
factor S(x, y) can be maximum along the x axis. If we accu-
mulate the data of the position (arg max

x∈X
[S(x, y)], y) within a

certain region X for x (see Appendix C), we can estimate the
soliton path lS from the phase jump factor S, where the soliton
path lS gives the structure of the dark soliton. Once the soliton
path lS is determined, the path-averaged phase jump factor S̄
is obtained as

S̄ = 1

LS

∫
lS

S(x, y)dl, (20)

where LS is the length of the path lS . So is the path-averaged
interference density ratio, given by

R̄↑ = 1

LR↑

∫
lR↑

R↑(x, y)dl, (21)

where LR↑ is the path length of lR↑ . The distribution and
the mean value of R↑ can reproduce the profile of S very
well (Figs. 1 and 3). In Fig. 3, the variances of S̄ and R̄↑
become large and saturate with the time evolution. This does
not mean that the density interference ratio R↑ cannot suf-
ficiently capture the phase jump factor S. As in Fig. 4, the
time dependence of R̄↑ can also reproduce well that of S̄ in
a single run simulation. The large variance rather originates
from the stochastically prepared initial state for the SPGPE.
We start the simulation of the soliton dynamics from the
equilibrium state, where the equilibrium is judged from the
time dependence of the number of particles in the coherent
region NC and the condensate N0 in the SPGPE simulation as
discussed in Appendix A. This initial state has randomness
in the classical field, and the time evolution of the phase jump
factor S and the interference density ratio R↑ strongly depends
on the initial state. Therefore, the interference density ratio is
essentially useful for studying the phase jump of the soliton
and the breakdown of the soliton into vortices.

The present study focuses on the dark soliton with the
phase difference π . It will be interesting to study the fate
of the gray soliton. In the case of the gray soliton, the
density (the amplitude of the condensate wave function) is
symmetric along the center of the soliton [30], and thus our
method using the interference density ratio R↑ will work to
reproduce the phase jump factor S because of the relations
(17) and (18). However, searching the soliton path should be
improved. In the dark soliton case, we have used the range
given by the healing length ξ for searching the soliton path
as in Appendix C. In the gray soliton case, the search range
should become wider at least given by the soliton width ξs ≡
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FIG. 3. The time dependence of the soliton-path-averaged phase jump factor S̄ (dashed line) and the soliton-path-averaged interference
density ratio R̄↑ (solid line) with the 100 sample average. The translucent regions show their variances. We used the same parameters as in
Fig. 1.

ξ/[1 − (vs/c)2]1/2[13,30], where vs and c is the speed of the
soliton and Bogoliubov phonon, respectively.

As seen in Fig. 3, R̄↑ and S̄ decay more slowly in the lower
temperature case, where the order of the decay time is 1/ωx.
However, these values do not decay in the long-time regime
and remain finite. This long-time behavior is an artifact due to
our method of tracing the soliton path in Appendix C; this
method always creates a line where the phase jump factor
or the interference density ratio is maximum within a certain
region, even if the soliton is no longer present. This difficulty
could be removed by using machine-learning techniques to
trace the structure of solitons [31,32]. It will be interesting and
useful to apply the machine-learning technique to analyze the
density and interference density ratio profile for understand-
ing the soliton dynamics in BESs breakdown into vortices at
nonzero temperatures.

IV. CONCLUSIONS

We propose a method to study the decay and breakdown
of a phase-imprinted soliton in an atomic Bose-Einstein con-
densate (BEC). First, we introduce the phase jump factor
that measures the phase difference between two points. Using
the (stochastic) projected Gross-Pitaevskii equation, we then
demonstrate that the interference density ratio, which is the
density ratio of two-component BECs after Raman and rf
pulses are applied, can reproduce the phase jump factor very
well. Our method will become an alternative method to study
the soliton dynamics in BECs. The method used in this study
to trace the soliton structure could be replaced with machine-
learning techniques.
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0 1 2 3
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FIG. 4. The time dependence of the soliton-path-averaged phase
jump factor S̄ (square) and the soliton-path-averaged interference
density ratio R̄↑ (circle) in a single simulation. We used the same
parameters as in Fig. 1.
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APPENDIX A: METHOD OF SIMULATION

The stationary state of the BEC before applying the phase
imprinting method is prepared as follows: Basically, the
SPGPE provides the thermal equilibrium state at a given
chemical potential and temperatures for an arbitrary initial
state. However, to save the numerical simulation time and
avoid accidentally reaching an unwanted state, we start the
simulation with a state obtained from the mean-field approxi-
mation, which is close to the thermal equilibrium state for the
SPGPE.

In the mean-field approximation, we first suppose that
the number density in the coherent region can be given by
the Thomas-Fermi (TF) approximation, given by nTF

C (x, y) =
[μ − m(ω2

x x2 + ω2
y y2)/2]/g for μ � m(ω2

x x2 + ω2
y y2)/2 and

nTF
C (x, y) = 0 for otherwise. The number of particles in the

coherent region C and in the incoherent region IC in the TF
approximation are then given by

NTF
C = πμ2

mgωxωy
, (A1)

NTF
IC =

∫ ∞

εcut

dε
ρHF(ε)

eβ(ε−μ) − 1
. (A2)

Here, ρHF is the density of states in the semiclassical Hartree-
Fock approximation given by

ρHF(ε) =
∫

drdp
(2π h̄)2

δ

(
ε −

[
p2

2m

+ m

2

(
ω2

x x2 + ω2
y y2

) + 2gnTF
C (x, y)

])
, (A3)

where we assumed that the particle density in the incoherent
region is much lower than that in the coherent region: nIC �
nC. The density of states in the two-dimensional harmonic trap
system is given by

ρHF(ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(ε − μ)

h̄2ωxωy
, μ � ε < 2μ

ε

h̄2ωxωy
, 2μ � ε.

(A4)
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FIG. 5. Method for measuring the interference density ratio to study the phase jump factor. We used two-component BECs with two internal
states |↑〉 and |↓〉. We first prepare the BEC and apply the phase imprinting to create soliton in the state |↑〉. Then apply the Raman π/2 pulse
to generate the kicked BEC in the state |↓〉. After the kicked BEC has moved by the healing length, apply the rf π/2 pulse. Measuring the
density profiles of BECs in both |↑〉 and |↓〉 states provides the interference density ratio R↑, which well reproduces the phase jump factor S.

The energy cutoff εcut for separating the coherent and inco-
herent regions is determined by using the occupation number
with the Bose-Einstein distribution function for an ideal Bose
gas, where the cutoff occupation number Ncut is given by
Ncut = 1/[eβ(εcut−μ) − 1]. The energy cutoff is then given in
the form

εcut = μ + kBT ln

(
1 + 1

Ncut

)
. (A5)

In this study, the cutoff occupation number is set as Ncut =
3, where the Planck law is well approximated by the
Rayleigh-Jeans law for the blackbody radiation [22]. Given

100 200 3000
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FIG. 6. Time evolution of the number of particles in the coherent
region NC and the condensate N0 simulated by SPGPE, scaled by the
number of particles in the coherent region NTF

C in the Thomas-Fermi
and Hartree-Fock approximations. We used ωy/ωx = 5 and 100 sam-
ple averages. For evaluating the condensate number of particles N0,
we take the time average with a period of 20ωxt . At all temperatures
in the simulation, the behavior of NC,0 indicates that the system
reaches equilibrium at ωxt ≈ 100. To highlight the thermal equili-
bration process in SPGPE, we replace cν (t = 0) in Eq. (A7) with
cν (t = 0)/4, where the initial condition of the number of particles in
the coherent region is set to NTF

C /4.

the temperature and chemical potential, then the energy cutoff
is determined.

As a preprocessing of the simulation for the SPGPE, we
first set the number of particles Ntot and the temperature T .
Then the chemical potential μ is determined from the relation
Ntot = NTF

C + NTF
IC within the Thomas-Fermi approximation

and semiclassical Hartree-Fock approximation, which pro-
vides the number of particles in the coherent region NC as well
as εcut. We can also evaluate the healing length ξ = h̄/

√
2mμ

and the sound velocity v = h̄/(
√

2mξ ). Once the number of
particles in the coherent region is determined, we consider the
relation

∑
ν∈C

1

eβ(εν−μ′ ) − 1
= NTF

C , (A6)

where εν = h̄ωx(nx + 1/2) + h̄ωy(ny + 1/2) with ν =
(nx, ny) and μ′ is the artificial chemical potential introduced
to fix the number of particles in the coherent region to be
NTF

C . After determining μ′ to satisfy the above condition, we

0 0 0

0

0

y
(a

.u
.)

x(a.u.)x(a.u.)x(a.u.)

y
(a

.u
.)

FIG. 7. Method to determine the soliton path at t = 0. (a) Search
for the maximum value of S or R↑ with the range X = (−ξ, +ξ )
at y = 0. The bar shows the search range of the maximum value.
(b) Mark the maximum value position (red point). Suppose this point
is (xmax(y = 0), y = 0). (c) Search for the maximum value of S
or R↑ at y = ±�y with the range X = (xmax(0) − ξ, xmax(0) + ξ ),
which is represented by bars. (d) Mark the maximum value posi-
tion (red point). Suppose this point is xmax(±�y). (e) Search for
the maximum value of S or R↑ at y = ±2�y in the range X =
(xmax(±�y) − ξ, xmax(±�y) + ξ ). (f) Mark the maximum value po-
sition (red point). Suppose this point is xmax(±2�y).
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0

y
(a

.u
.)

x(a.u.) x(a.u.)
0

0

0

y
(a

.u
.)

t + Δt

t

FIG. 8. Method to determine the soliton path at the time t + �t
based on the data at the time t . (a) Prepare the soliton path at t , which
is constructed by the data (xmax(t ; y), y) (blue points). (b) Search
for the maximum value of S or R↑ in the range X = (xmax(t ; y) −
v�, xmax(t ; y) + v�t ) at y, where v is the sound velocity, which
gives the upper limit of the speed of the soliton at T = 0. Bars
represent the region X to search for the maximum value. (c) Mark
the maximum value position, which gives (xmax(t + �t ; y), y) (red
points). (d) This data set gives the soliton path at t + �t .

take the initial condition of the coefficient in Eq. (2) as

cν (t = 0) = 1√
eβ(εν−μ′ ) − 1

eθν , (A7)

where θν is the phase randomly generated in the range
[−π, π ).

To check the stationary state, we monitor the time de-
pendence of the number of particles in the coherent region
NC, and the condensate number of particles N0. According
to the criterion provided by Penrose and Onsager [33,34],

x(a.u.)

0

y
(a

.u
.)

y
(a

.u
.)

x(a.u.)
00

0

(

FIG. 9. Method to correct the disconnected soliton path. Dis-
connection is determined by the criteria |xmax(y + �y) − xmax(y)| >

ξ . (a) Find the maximum value of S or R↑ in the soliton path
(xmax(t ; y), y), which becomes a start point (xmax(t ; y0 ), y0) for cor-
recting the soliton path (a highlighted point). (b) Search for the
endpoints of a part of the soliton line starting from (xmax(t ; y0 ), y0 ),
where, for example, the upper end position is supposed to be
(xmax(y′), y′) that satisfies |xmax(y′ + �y) − xmax(y′)| > ξ . (c) Search
for the maximum value of S or R↑ in the range X = (xmax(y′) −
ξ, xmax(y′) + ξ ) at y′ + �y, and mark the position (red points).
(d) Continue the same search process as shown in Fig. 7 for t = 0.

the condensate number of particles is given by the maximum
eigenvalue of the one-body density matrix

ρ1(r1, r2) ≡〈ψ̂†
C(r1)ψ̂C(r2)〉 (A8)

=
∑

ν,ν ′∈C

nν,ν ′u∗
ν (r1)uν ′ (r2), (A9)

where we have used ψ̂C(r) = ∑
ν∈C

uν (r)âν and nν,ν ′ ≡ 〈â†
ν â′

ν〉.
To consider the stationary state in the single-run simulation,
we assume the Ergodic hypothesis where the statistical aver-
age is replaced with the long time average, i.e., nν,ν ′ = c∗

νcν ′ .
We then diagonalize the matrix nν,ν ′ , whose maximum eigen-
value gives the condensate number of particles N0. (See Fig.
6.)

APPENDIX B: ANALYTIC RELATION IN PHASE
IMPRINTING

We label t = 0− and t = 0+ as the time just before and
after applying the phase imprinting method to the steady-state
BEC. The field is given by

ψ̃±
C (X,Y ) ≡ψ̃C(X,Y, τ = 0±) (B1)

=
∑
n,l

c±
n,l φ̃n(X )φ̃l (Y ), (B2)

which are related as

ψ̃+
C (X,Y ) =

{
ψ̃−

C (X,Y ), X > 0

eiθiψ̃−
C (X,Y ), X < 0.

(B3)

Here we assumed the imprinted phase jump is θi and
used the normalized notation such as τ ≡ ωxt , ψ̃C ≡
ψC/(NC/a2

ho,x )1/2, X ≡ x/aho,x, and Y ≡ y/aho,x with aho,x ≡√
h̄/(mωx ).
The coefficient c+

n,l after the phase imprinting is re-
lated to the coefficient c−

n,l just before the phase imprinting
through

c+
n,l =

∑
n′∈C

c−
n′,l [I

(+)
nn′ + eiθi I (−)

nn′ ], (B4)

where

I (±)
n,n′ ≡ ±

∫ ±∞

0
dX φ̃∗

n (X )φ̃n′ (X ). (B5)

Using the properties of the Hermite polynomials, we can give
the analytic expressions of I (±)

n,n′ as
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I (±)
n,n′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/2, n = n′

± 1√
π2n+n′n!n′!

Hn(0)Hn′+1(0)

2(n − n′)
, (n, n′) = (even, odd)

± 1√
π2n+n′n!n′!

Hn+1(0)Hn′ (0)

2(n′ − n)
, (n, n′) = (odd, even)

0, otherwise.

(B6)

APPENDIX C: METHOD TO DETERMINE
THE SOLITON PATH

This Appendix explains the method to determine the
soliton path used in this paper. A basic strategy is to
connect the points with large values of the phase jump
factor or the interference density along the y axis. In de-
tail, the method is slightly different when the soliton is
created and after starting the time evolution of the soliton
dynamics.

Just after the phase jump of π is imprinted at x = 0, i.e.,
at t = 0+, we search for the position where S or R↑ has the
maximum value near x = 0 in the region X , which will be
explained below. In the numerical simulation, we actually take
the mesh in the coordinate space (such as with a grid spacing
�y in the y direction). If the maximum value of S or R↑ is

found at (xmax(y), y), then we search for the soliton position at
y + �y in the range X = (xmax(y) − ξ, xmax(y) + ξ ). We start
the search of the maximum value of S or R↑ at x = y = 0.
(See Fig. 7.)

For the time-evolving soliton, the soliton position at the
time t + �t is searched based on the preceding soliton path
data at the time t . If the soliton path is given by the function
x(t ; y), we search for the maximum value of S or R↑ within the
region X = (x(t ; y) − v�t, x(t ; y) + v�t ) to find the soliton
path at t + �t , where v is the sound velocity, which gives
the upper limit of the speed of the soliton at T = 0. In this
method, it sometimes happens that the path is disconnected,
as shown in Figs. 8 and 9. In this case, we reconstruct the
path starting from the disconnected point by using the healing
length, such as X = (x(t ; y) − ξ, x(t ; y) + ξ ) for the soliton
path at t + �t (see Fig. 9).
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