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Topological invariants of Floquet topological phases under periodical driving
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Owing to the replication of Floquet bands and the presence of additional gaps in the quasienergy dimension,
the topological phases in a periodically driven system cannot be fully characterized by the conventional
topological invariants used in static systems. In particular, an anomalous strong topological phase can be a host in
driven systems, featured by nontrivial counterpropagating edge modes which cannot be characterized by the bulk
band structure. In this paper, we propose a scheme to obtain a complete characterization of Floquet topological
phases using only information about bulk dispersions under the condition that both the location and chirality of
Floquet band-touching points are not changed by the periodical driving. A set of topological invariants associated
with the band-touching points are formulated to establish a one-to-one correspondence to the number of edge
modes. Finally, we discuss the experimental realization and detection scheme using cold atomic gases.
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I. INTRODUCTION

The study of topological phases [1,2] has been one of
the most important frontiers of physics over the past sev-
eral decades since they not only surpass the conventional
quantum phase-transition paradigm of spontaneous symme-
try breaking but also have potential applications in quantum
transport [3-5] and quantum computation [6,7]. Of particu-
lar interest are symmetry-protected topological (SPT) phases,
which are gapped quantum phases protected by the symme-
tries of the system [8—11]. As a well-known example of SPT
phases, topological insulators feature short-range quantum
entanglement and a pair of counterpropagating helical bound-
ary modes which can flow without backscattering as long as
the time-reversal symmetry is preserved [12—14]. For general
cases, much effort has been devoted to the search for topo-
logical invariants which can distinguish various topological
phases under different symmetries [15,16] and to establish a
direct relation between topological invariants of the bulk spec-
trum and gapless edge modes known as the bulk-boundary
correspondence (BBC) [17,18].

Recently, topological phases and their characterization
in periodically driven systems have attracted a great deal
of attention both theoretically [19-25] and experimentally
[26-29]. One of the most intriguing motivations is to search
for novel topological states beyond the scope of static sys-
tems. Owing to the periodicity in the temporal dimension, one
can define a Floquet Brillouin zone (FBZ) in the frequency
domain, and the dispersion of the system is duplicated to
form quasienergy bands. When the quasienergy spectra with
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different band indices cross, a gap can be opened, and the
system may enter a new phase.

There are, in general, two types of driving schemes to
realize a Floquet system: (1) the driving sequence is com-
posed of various topologically trivial Hamiltonians, and the
effective Floquet Hamiltonian does not acquire any additional
symmetry other than spatial translation [19,26-29]; (2) the
periodic driving is realized by varying some parameters of
a specific static Hamiltonian with all symmetries preserved
[20,23,25,30,31]. For the first type of driving, previous studies
suggest the emergence of a new type of topological phase,
referred to as anomalous Floquet topological phases [19,24],
which cannot be described by topological invariants defined
for static systems. For example, robust edge modes can exist
in two-dimensional (2D) Floquet systems while the Chern
number of all bands are zero, clearly violating the conven-
tional BBC. In order to solve this issue, some proposals
have been made to describe the Floquet topological phases
with winding numbers [19], topological singularities of phase
bands [32] defined in the momentum-time space, or (d — 1)-
dimensional band inversion surfaces [30]. The second type of
driving protocol is more exotic as it can host nontrivial coun-
terpropagating edge states, which can originate from either
strong topology [25] or weak topology [20,31]. Notably, the
aforementioned frameworks of topological characterization
cannot fully identify the emergence and number of such edge
modes. Although a certain form of scattering matrix invariant
has been defined to meet this goal [31], a topological invariant
determined solely by the band structure in spatial dimensions
is still lacking.

Here, we propose a systematic protocol to construct topo-
logical invariants for Floquet systems under the condition
that the band-touching points of the Floquet bands have the
same position and chirality as in the static model at topolog-
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ical phase transitions. Such requirements are often naturally
satisfied [23,25,30] for the second type of driving with all
symmetries preserved and thus can work for exotic topolog-
ical phases presenting counterpropagating edge modes. This
method is based on the classification and characterization of
topological phases in a static system. By turning on peri-
odic driving and increasing the driving period, quasienergy
bands with different indices will cross to open new gaps.
Since the position and chirality of these band-touching points
remain the same, topological invariants can be defined by
generalizing the corresponding definition in static models for
these quasienergy gaps, and the Floquet topological phase is
completely characterized by the topological invariants of all
gaps. As an example, we study a Floquet system by driving
the quantum anomalous Hall effect (QAHE) model in a 2D
square lattice [33-35], where robust counterpropagating edge
modes can exist even when the Chern number and winding
numbers are all zero. This phase, referred to as the type-II
anomalous Floquet topological (AFT-II) phase in the follow-
ing discussion, is a strong topological phase and beyond the
characterization of the winding number [19] or topological
singularities of phase bands [32]. However, we show that such
an exotic phase can be characterized by the topological in-
variants proposed here. Finally, we discuss possible detection
methods in the context of cold atomic gases. We stress that
our scheme requires only information about the bulk Floquet
bands and not the time evolution in the temporal domain or
the scattering matrix invariants.

The remainder of this paper is organized as follows. In
Sec. II, we present the definition of topological invariants for
a general Floquet system satisfying the two requirements of
band-touching points. To demonstrate the validity of the char-
acterization scheme, we discuss in Sec. III its implementation
in a driving QAHE model, where an AFT-II phase is identified
and fully characterized. An exact bulk-boundary correspon-
dence can be obtained between these edge modes and the
newly defined topological invariants, such that the BBC is
reestablished. In Sec. IV, we introduce a realization of such a
2D QAHE model in cold atomic gases and propose a feasible
detection scheme based on existing techniques. Finally, we
summarize in Sec. V.

II. GENERALIZATION OF TOPOLOGICAL INVARIANTS
TO FLOQUET BANDS

For a time-periodic system H() =H(@ + T) with period
T, the energy is no longer conserved, and its symmetry group
is the time-shifted group 7 [36]. The irreducible representa-
tion of 7 defines a quasienergy ¢ which plays the same role
as energy in static systems. Similar to the quasimomentum
in spatial dimensions, the quasienergy is also regarded as a
periodic variable defined in the first FBZ (—n /T, = /T] and
has an infinite number of copies; that is, ¢ is equivalent to & +
2n7 /T for an arbitrary band index n. The Floquet quasienergy
spectra are characterized by the effective Hamiltonian Hr =
ilnU7 /T, where Uy = T e Jy B@4t 5 the evolution operator,
with T being the time-ordering operator. Floquet topological
phases can consequently be defined based on the quasienergy
spectra and will acquire characteristics without a static coun-
terpart because of the discrete translational symmetry in the

temporal domain. Specifically, an alternative type of gap re-
ferred to as the w-gap will emerge at the boundary of the first
FBZ at ¢ = & /T. Band crossing at the w-gap can lead to
the anomalous Floquet topological phase, which hosts robust
edge modes with the Chern numbers of all bands being zero
[19]. Thus, the Chern number can no longer describe the
number of edge states and has to be replaced or supplemented
by other topological invariants.

For the first type of driving, since there are no additional
symmetries, the Floquet topological phases spawned therein
can be fully described by the winding number w,,—o » of the
m-gap, which corresponds to the net number of edge modes
[19]. A detection method for these winding numbers has been
proposed [37] and successfully implemented in cold atomic
systems [29]. For the second type of driving, however, the
instantaneous Hamiltonian H (r) preserves the same symmetry
as the original static model, which makes the Floquet system
also inherit the full symmetries. In this case, counterpropa-
gating edge modes can be realized and protected by topology
[25], and the winding numbers can no longer identify the
emergence and number of edge modes. In this case, the BBC
needs to be further modified.

To fulfill this goal, we recall that a topological phase transi-
tion is related to the closing and reopening of energy bands. A
richer topological phase diagram can be expected in Floquet
systems since the periodicity of Floquet bands will lead to
additional band-touching points. In the limit of 7 — 0, the
periodicity of quasienergy bands tends to infinity, and the
Floquet band structure is equivalent to the static counterpart.
The topological properties of such a case can be characterized
by conventional topological invariants {v*} defined for static
models. By increasing T', the quasienergy bands with higher
band indices will extend into the first FBZ to induce new
band crossings. Since the Floquet Hamiltonian preserves all
symmetries of the static model, the two following conditions
are often satisfied, e.g., in a driven system with particle-hole
symmetry [23,25,30]:

(1) The momentum k° of band-touching points at topolog-
ical phase transitions is the same as those in the static system.

(2) Floquet engineering does not alter the chirality of these
band-touching points.

Under these conditions, new topological phases will
emerge, and the corresponding topology should be cap-
tured by some new topological invariants {v¢}. The complete
topological characterization of the Floquet bands is jointly
determined by {v*, v?}. Since the driving-induced topological
invariants {v¢} are directly caused by the replication and trans-
lation of quasienergy bands over different FBZs, one would
naturally expect that {v?} satisfy the same law as {v*} for
the static band structure. In other words, {v?} are just the
replication of {v*}, but for the crossing of bands of different
FBZs.

III. IMPLEMENTATION IN A DRIVING QAHE MODEL

In this section, we implement the general protocol outlined
in the previous section for a periodically driven QAHE model
in a 2D square lattice. To give a complete picture, we first
briefly review the topological invariants of a static model
and present the generalization to a driving system. Finally,
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FIG. 1. (a) Illustration of the QAHE model in a 2D square lattice.
The corresponding Bloch Hamiltonian is given in Eq. (2). (b) A two-
stage driving scheme in the form of a step function is considered to
give the analytic results of topological phase transitions.

we consider as an example a two-stage driving sequence and
discuss the resulting Floquet topological phases.

A. Topological invariants in a static QAHE model

The static 2D QAHE model, as illustrated in Fig. 1(a), has
been experimentally realized and thoroughly investigated in
cold atomic gases [33-35]. The Hamiltonian can be expressed
in Bloch form as

Hk) =hk) - o, ey

where h(k) = (215 sin ky, 2ty sink,, § — 2to(cos k, +
cosky)). The Hamiltonian has particle-hole symmetry
CHE)C' = —H(—=k), with C = 0,K and C? = +1, where
oy is the x Pauli matrix and K is the complex-conjugation
operator. This model belongs to the D class in the
Altland-Zirnbauer (AZ) classification [15], and the
topological characterization is described by a Z invariant
(first Chern number) [16,38,39],

Coy = — / Te[PdP, A dP)]. )
2w Jipz

Here, P;(k) = |y (k)) (y1(k)|, | (k)) is the eigenstate of the
[th band, and the summation runs over the first Brillouin zone
(1BZ) in quasimomentum space. A direct calculation gives the
Chern number of the lower band as C_ = sgn(§) when |§| <
4ty (assuming #p > 0 without loss of generality) and C_ =0
otherwise.

The QAHE model is invariant under inversion symmetry
defined by P =P ® R, where P =0, and R is the spa-

tial reflection operator which transforms the Bravais lattice
vector R — —R. By establishing a natural correspondence
between the time-reversal-invariant topological insulator and
the QAHE model, the topological phases of the QAHE model
can be revealed by a Z, invariant v defined as [40]

' =]]& . 3)

where £_(A;) = (u_(A;)| P |lu_(A;)) represents the equilib-
rium spin polarization of the lower-band Bloch states at
the four high-symmetry points A; = {I", M, X; »} in the 1BZ
and |u_(A;)) are the Bloch states of the lower band. The
phase with v = 0 corresponds to a trivial topology, and the
phase with v = 1 corresponds to a nontrivial topology. The
Chern number of the lower band can be further expressed as
[34,35,40]

v
C.o=-3 ;s_(Ao. 4)

Since H(X|) = H(X2), Eq. (3) has an equivalent form:
(=1)" = sgn[E;(T)Eqs(M)], (5)

where E,; represents the energy of the spin-down band and
takes values of E;(M) = —8 — 4ty and E;(I") = —6 + 41, at
the M and T" points, respectively. From this expression, one
can easily observe that the nontrivial topology is induced by
the inversion of spin bands, which is just the physical mecha-
nism of the quantum anomalous Hall effect. The inversion of
spin bands leads to a ring structure in Brillouin zones referred
to as a band inversion surface (BIS) [41], which is composed
of points satisfying &_ (k) = 0 and reflects the topological
properties of the system [35]. Within the topologically non-
trivial region with v = 1, one can still distinguish two phases
with different Chern numbers (C_ = +1 and C_ = —1) based
on the position of the BIS in momentum space. In fact, accord-
ing to Eq. (4), we can equivalently express the Chern number
as the difference between two Z, invariants as

C_ =y — M,
(=) = sgn[E4(T)E,(X)], (6)
(=" = sgn[Es(M)E4(X)],

where E;(X)=E;(X,) = E;(X;) = —6. The phase with
C_ = +1 corresponds to the choice of (VI =1,v" =0),
which indicates that the band crossing takes place between the
X and I" points and a BIS exists around I". On the other hand,
the phase with C_ = —1 corresponds to (v©' =0, v¥ = 1),
and the spin bands overlap between the X and M points with
a BIS surrounding M.

For the static QAHE model, the bands contact at energy
E =0, i.e., |h(k)| = 0. Thus, a topological phase transition
will occur when

Es(A;)=0. (7

The chirality of the band-touching points can be calculated as
(23]

Ch(k) = sgn[0, h(k) x 9 h(k)].. ®)
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It is not difficult to obtain Ch(I') = Ch(M) = —1 and
Ch(X;) = Ch(X;) = +1. Thus, when the band gap closes
and reopens at the I' (or M) point, the Chern number would
change by AC_(T") = Ch(I")éh,(6, +dé — 6. —db) = +1
[or AC_(M)= ChM)8h,(—6. —dé — —8, +d&) = —1],
with §, = 4y, and a pair of edge modes with positive
(negative) chirality will appear at k = 0 (k = ).

B. Topological invariants in a periodically driven QAHE model

With the analysis of static systems, next, we impose
periodic driving by varying the parameters of the 2D
QAHE model. For the convenience of experimental real-
ization, we consider a time-dependent Zeeman shift 6(¢) =
6(t + T), which can be implemented by varying the de-
tuning of the Raman process between the two pseudospin
spates in cold atomic gases [33-35]. Since §(¢) is a pe-
riodic function of T, it can always be expanded into a
superposition of trigonometric functions, i.e., §(t) = &y +
V(t), where g = fOT 8(1)dt/T and V(t) = ) ,[a sin (bot ) +
by cos (Lwt)], with a, = (2/T)fOT 8(t)sin (lwt)dt and by =
(2/T)fOT 8(t)cos (Lwt)dt. Here, we define w =27 /T. The
time-dependent Hamiltonian can then be written as

Hik,1) = H;(k) +V (1), €))

where the static component H(k) = hy(k) - o, with hy(k) =
(250 sin ky, 2t5, sin k., 8o — 2ty(cos ky + cos ky)), and V()=
V(t)o, is the driving term which changes periodically over
time.

First, we show this periodically driven system satisfies the
two conditions of band-touching points. For an arbitrary form
of periodic driving, we can choose a certain time ¢’ € (0, T)
to divide a full period into two parts labeled H,(k,t) for
t € [0,¢")and Hy(k, t) fort € [/, T'). According to Ref. [23],
if Hi(k,t)="H;(k) and H,(k,t) = H,(k) are both time-
independent, one can prove that the Zeeman fields in /; and
‘H, are parallel at the momenta k where two bands touch
at a topological phase-transition point, i.e., (k) || ho (k).
Considering the identity

(hy-0)(hy-0)=hy-hy +io - (h X hy), (10)

one can easily find that [H;(k°), H,(k°)] =0. In addi-
tion, since the effective Floquet Hamiltonian reads Hg (k) =

(i/T)In Te—idy Hkndr e get

(k) = Hi(k)' + HTz(kC)(T —1')

= hr(k°) - 0; an

hence, hi(k°) || ho(k®) || hp(k®) are all parallel, giving
[(Hrk), H =1 2(k)] = 0.

In general cases where H;(k,t) and H;(k,t) vary over
time, we can define their corresponding effective Floquet
Hamiltonians

i Y
,H/I,F(k) = ; In Te_’jo Hl(k,t)dt’
i

— In fre—iff Holle)dr (12)

H/Z,F (k) =

which by definition are time independent and can give the
same stroboscopic time evolution as H;(k,t) and Hy(k,t).
Thus, the effective Zeeman fields k' (k) and k) ;. (k) asso-
ciated with #H/ . and H} . also satisfy the relation k) . (k) ||
h’2 (&) || hp(K©). Since the division is arbitrarily made, for
another time 1" > t', we can also get kY (k%) || hy (k) ||
hp (k). Thus, we can conclude that k) (k) || A} (k) and
[H) k), H| (k)] = 0. Recalling the definition of H .,

oM _ e—if,’, H(k,t)dte—i?-l’lf(k)t” (13)

and taking the limit ¢” — ¢/, we obtain the relation
[H& 1), H| (k)] =0 and, consequently, h(k", 1) |
hr(k°) for afbitrary time ¢’. This leads to the conclusion
that [H(k, 1)), H(k,1,)] =0 for all #; # r,, which gives
[H,(k®), V(t)] = 0. Thus, the band-touching point k& € {A;}
at the topological phase transition is also a high-symmetry
point regardless of the specific form of V (¢), and condition 1
introduced in Sec. II is satisfied.

In addition, since fOT V(¢)dt = 0, an analysis similar to that
in Ref. [23] shows that a topological phase transition would
occur when the following condition is satisfied:

E3(A;) = n/T. (14)

Here, Ej is the eigenvalue of the spin-down band of the
steady-state Hamiltonian H,. We can see that when T — 0,
Eq. (14) reduces to its static counterpart, Eq. (7). This means
that in the high-frequency limit, the Floquet system behaves
as a static model. With increasing 7', more Floquet bands with
different n’s can fulfill the condition of Eq. (14), and multiple
topological phase transitions will take place. We then notice
that the time-dependent Hamiltonian #(¢) also preserves the
C4 symmetry (ky, ky; oy, 0y) — (ky, —ky; —0y, 0x). Thus, the
Floquet bands also have C4 symmetry, which protects the chi-
rality of the band-touching points and condition 2 in Sec. II is
satisfied. As a result, the chirality of the band-touching points
is related to only the high-symmetry points and is independent
of the value of n. Since both conditions 1 and 2 introduced
in Sec. II are satisfied, these emerging Floquet topological
phases can be characterized by generalizing the discussion of
static systems. We emphasize that the existence of C; symme-
try is sufficient, but not necessary, to validate condition 2. In
fact, by selecting an appropriate driving sequence, condition
2 can be satisfied even if H (t) has no C4 symmetry [25].

For illustration purposes, we consider as an example a two-
stage driving scheme in the form of a step function:

s = |® t € [(T, (T + Ty),
T1-8,  te[T +T,(+1DT),

with 77 € (0, T), as illustrated in Fig. 1(b). We stress that
this specific choice is made to simplify the derivation such
that an analytic solution can be obtained. The qualitative
conclusions, including the emergence and characterization
of novel topological phases, will not be changed if a more
general driving protocol is employed. This driving method
will not destroy the particle-hole symmetry of the static sys-
tem, and Floquet bands will inherit the symmetry. As pointed
in Ref. [25], a periodically driven system with particle-hole
symmetry would host counterpropagating edge modes with
positive and negative chiralities fixed, respectively, at k = 0

¢eN, (15)
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FIG. 2. Quasienergy spectra and topological invariants. (a) Quasienergy spectra in the first FBZ. The driving period T is 0.4 /E, in panel
(1), 0.7z /E, in panel (ii), 1.07r /E, in panel (iii), and 1.3 /E, in panel (iv), where E, is the recoil energy associated with the lattice. Notice that
in the phase shown in panel (iii), robust edge modes (red solid curves) are present when both the Chern number C_ and winder numbers wy
are zero. (b) The topological invariants Ull;,m (left panel) and vf';{m (right panel) for the four phases depicted in (a). The blue solid and red dashed
lines represent the cases of m = 0 and m = m, respectively. Other parameters used are #)/E, = 0.5, t,,/E, = 0.25,T;/T, = 3/2,and 8 /E, = 1

and k = m; hence, they are prevented from backscattering.
The emergence of such chiral edge modes makes the winding
number insufficient to fully characterize the topology of the
underlying system. As shown in Fig. 2(a), phases i, ii, and iv
have exactly the same Chern number and winding number, but
their associated edge state spectra are different. Of particular
interest is phase iii, which has both the Chern number of lower
band and winding numbers equal to zero but presents robust
edge states. To distinguish it from the anomalous Floquet
topological phase discussed in Refs. [19,24], we denote phase
iii as an AFT-II to emphasize that the edge states cannot be
described by winding numbers. It is worth noting that the
AFT-II phase discussed here is a strong topological phase
owing to the particle-hole symmetry [25].

Next, we show that the AFT-II phase can be characterized
by constructing new topological invariants via the method in-
troduced in Sec. II. We first need to find the contact conditions
of the Floquet bands. Thanks to the simplicity of the two-stage
driving scheme (15), an analytic expression for the topological
phase-transition point can be obtained [23]:

Ti6 —Thé
T

where T, =T — T} and «, B = {0, }. The contact points of
Floquet bands also locate at the high-symmetry points. The
chirality of the band-touching points can also be calculated
analytically, leading to Ch(I") = Ch(M) = —1 and Ch(X;) =
Ch(X,) = +1, which are identical to the static model. This
allows us to extend Eq. (6) to the nth Floquet band,

—219(e™® + €P) = g (16)

r M
V=V, —V,,

(1) = sgn[E}, (D)Es, (X)),
(=) = sgn[ES,(M)ES,(X)],

A7)

where EY, = Ej — nm /T . By comparing (17) with Eq. (6) of
the static system we can see that the influence of Floquet
engineering on the QAHE model is only to expand the energy

of band-touching points from the 0-gap to quasienergies of
nr/T.

To see this more clearly, we choose the parameters of phase
iii in Fig. 2(a) and show in Fig. 3(a) the Floquet band spectra
along the M-T"-M line of the 2D Brillouin zone, where the
nth spin-up (red) and spin-down (blue) bands are obtained
by copying and translating by ns /T from their corresponding
static bands (solid lines). Within the first FBZ (—x /T, 7w /T]
(shaded area), four band inversion points can be identified and
are labeled by circles. At point c, the band inversion occurs at
the 0-gap between the zeroth spin-down band (blue 0) and the
zeroth spin-up band (red 0), which is also present in static
systems. Point b (point d) represents a band crossing between
the blue 0 and red 1 (red —1) occurring at the w-gap. The
inversion of bands at point e labels the crossing of the blue 1
and red —1 bands, which can also be obtained by the crossing
of blue 0 and red —2 at point &, owing to the periodicity of the
Floquet bands.

With a finite f,,, the band inversion points b, ¢, d, and e will
open topological gaps as depicted respectively in Figs. 3(b)—
3(e). According to Eq. (17), we can get v| = vf ="
vM, = 1, while the other v)** are zero. By counting all gaps
within the first FBZ, we can reach a set of new topological
invariants for Floquet topological phases,

r M
VEm = Ve = VEm>

§ V2k+5m o

(18)

va

where m = {0, r}and A = {T", M}. The topological invariant
vF » (WM represents the number of edge modes with positive
(negatlve) chirality in the m-gap, while vg, gives the net
number of edge modes therein and is equivalent to the winding
number w,,. To this end, the chirality and number of edge
states of the Floquet system can be well captured by using
the topological invariants vﬁm, as illustrated in Figs. 2(b), and
a BBC is reestablished.
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(3)3 TT T T T T

ET/m

FIG. 3. (a) Quasienergy spectra along the cut of M-I'"-M with
ky = k, = k, which connects high-symmetry points with t,, = 0. The
blue and red lines represent spin-down and spin-up bands, respec-
tively, and the solid (dashed) lines label the static (driving-induced)
bands. Each band is labeled by its Floquet band index n, which
denotes the shift of quasienergy 2nm /T . Five band-touching points
are highlighted by gray circles. For each point, the 2D spectra of the
two intersecting bands are illustrated in the right column. Note that
the band-touching points e and & are identical due to the periodic-
ity of FBZ. Other parameters used are #,/E, = 0.5, t,,/E, = 0.25,
T/, =3/2,8/E, =1,and T = 7 /E,.

We emphasize that under conditions 1 and 2 introduced in
Sec. II, Floquet engineering does not affect the position and
chirality of band contact points at topological phase transi-
tions, and the Floquet topological invariants v{%m are just the
repetition of their static counterparts v® in the quasienergy
dimension. In particular, when the system has inversion sym-
metry as in the QAHE model, the characterization of Floquet
topological phases requires only information about the four
high-symmetry points. Compared to the winding number,
which needs to consider the time dimension [19], the topolog-
ical invariants proposed here are not only concise and clear in
theory but also more feasible for experimental detection.

IV. EXPERIMENTAL DETECTION

For a QAHE model realized in cold atomic gases, the topo-
logical phase can be characterized by the information about
BISs obtained via quench dynamics [35]. Depending on the
location in momentum space, there are two types of BISs. One
surrounds the I' point and corresponds to v!, while the other

0
ky/7r 4 A k/m

FIG. 4. Detection of topological invariants. (a) Equilibrium spin
polarization of the lower band in phase iii shown in Fig. 2(a).
(b) Stroboscopic time-averaged spin texture in the z direction for the
same phase. The red (blue) lines indicate the BISs around the I" (M)
point, while the solid (dashed) lines label 0-BISs (;r-BISs). (c) The
Floquet band structure in the first FBZ for phase iii. Parameters
used are t,/E, = 0.5, t,,/E, =0.3, §/E, =0.8, T/T, = 3/2, and
T =n/E,.

circles the M point and corresponds to v¥. In a periodically
driven system, the topological invariants are extended to four
parameters v{,"m, each corresponding to a distinctive type of
BIS, where A = {I", M} labels which high-symmetry point a
BIS surrounds and m = {0, 7} describes in which gap it lies.
Taking phase iii in Fig. 2(a) as an example, the spin polar-
ization £_ (k) of the lower Floquet band is shown in Fig. 4(a).
We can see that there are two BISs around the M point and two
around the I' point in the 1BZ. The information about BISs
can be determined by quench dynamics of a fully polarized
initial state |1) [41]. For the periodically driven system, we
need to detect the spin dynamics at the time of integer multiple
periods, and the location of BISs can be determined as the
location of zero stroboscopic time-averaged spin polarization
along the z direction; that is, BISs equal {k|(o,) = 0}, with

N

zlv > ok, t = €T)), (19)
£=0

as shown in Fig. 4(b). To distinguish which of the four BISs

are lying in the O-gap (denoted 0-BIS) and which are lying

in the w-gap (7-BIS), we note that the stroboscopic quantum

dynamics reads

i = Jim,

B (k) + hys(k)* cos (2|e(k)|€T)
e(k)? ’

(0:(k, £T)) = (20)

where Az and ki are the x-y and z components of the magnetic
field hr in the effective Floquet Hamiltonian H r, respectively.
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Thus, Floquet band structure (k) can be mapped out by fitting
the frequency of the dynamical evolution, and one can deter-
mine within which gap a given BIS resides. For the specific
example of phase iii depicted in Fig. 4, we can easily identify
one 0-BIS and one 7-BIS around the I" point, and one 0-BIS
and one 7-BIS around the M point. Therefore, the topological
invariants can be extracted as v}, = vgﬁ = = v%ﬂ =1,
as shown in Fig. 2(b). ’ 7

In addition to the method of fitting dynamical evolution,
which usually requires a very high quality of experimental
data, next, we propose another scheme to determine the topo-
logical invariants v}"m by monitoring the sequence of BIS
emergence with increasing driving period 7. From Egs. (17)
and (18), we can conclude that the condition for a nontrivial
topological invariant to emerge is E; — nm /T = 0 for some
integer n within the 1BZ. In the static limit of 7 — 0, the only
integer that may satisfy this condition is n = 0. Thus, in this
limit if a BIS exists, it must lie in the 0-gap. As the driving
period T is increased beyond a certain value, the choice of
n = 1 can also fulfill the condition, and another BIS emerges
in the w-gap. When T is further enhanced, more BISs with
higher values of n = 2, 3, ... will be present, where the ones
with odd (even) n reside in the 0-gap (7 -gap). If two adjacent
even numbers n and n + 2 can both satisfy the condition and
support two 0-BISs, the value of n 4 1 can also satisfy the
condition and lead to a 7-BIS lying in between. Thus, the
0- and 7-BISs must emerge one by one with increasing 7.
Specifically, in the experiment we start from the static limit
with T — 0. If a BIS already exists, it must lie in the 0-gap.
By slowly increase T, the next emerging BIS must be a 7-BIS,
and the following one is a 0-BIS and so forth. On the other
hand, if the static system is in a topologically trivial phase
with no BIS, the first emerging BIS within increasing 7 must
reside in the m-gap, and the following ones can be determined
accordingly. Thus, by recoding the emerging sequence of BISs
and their locations in momentum space, we can extract the full
information about BISs and their corresponding topological
invariants. Taking phase iii as an example, the four BISs
depicted in Fig. 4 are placed in the order of 7-0-7-0 from
the I' to M points.

Compared with other methods for detecting the topolog-
ical features of Floquet topological phases using information
about BISs [30], we stress that the two schemes proposed here
require only the stroboscopic measurement of the z polariza-
tion (o), not the entire spin texture, which also includes (o)
and (o) and usually requires more complicated procedures in
experiments [42].

V. SUMMARY

We studied in this paper the characterization of Floquet
topological phases in periodically driven systems, where the
instantaneous Hamiltonian in the driving sequence preserves
all symmetries of the static model such that the effective Flo-
quet system also inherits the same symmetries. In such cases,
a type-II anomalous Floquet topological (AFT-II) phase can
exist, featuring nontrivial counterpropagating edge modes,
which cannot be described by the Chern number or winding
number of the Floquet bands. By assuming that the Flo-
quet bands cross at the same location and acquire the same
chirality as in the static model, we introduced a framework
to obtain a complete characterization of Floquet topological
phases, including the AFT-II phase, by extending the defi-
nition of topological invariants in static systems. Since the
band-touching points are usually determined by symmetries,
we emphasize that the conditions to validate the proposed
framework are often naturally satisfied for the driving scheme
considered here.

To give an example, we considered a quantum anoma-
lous Hall effect (QAHE) model in a two-dimensional square
lattice. When subjected to periodic driving with all symme-
tries preserved, the system can host an AFT-II phase with
robust counterpropagating edge modes but a Chern number
and winding number equal to zero. Owing to the particle-hole
symmetry, this phase is a strong topological phase. Other
symmetries guarantee that the bands can cross only at high-
symmetry points with the same chirality. Using the scheme
proposed here, we showed that all topological phases, in-
cluding the strong topological AFT-II phase, can be well
characterized by a set of topological invariants associated
with these high-symmetry points. Finally, we suggested some
experimental proposals to detect these topological invariants
using quench dynamics in cold atomic gases in optical lattices.
Since the periodically driven QAHE model and the mea-
surement of quench dynamics have already been realized in
experiments, our proposed theory can be readily implemented.
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