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Probing phonon-driven symmetry alterations in graphene via high-order-harmonic spectroscopy
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High-order-harmonic spectroscopy has become an essential ingredient in probing various ultrafast electronic
processes in solids with subcycle temporal resolution. Despite its immense importance, the sensitivity of
high-order-harmonic spectroscopy to phonon dynamics in solids is not well known. This work addresses this
critical question and demonstrates the potential of high-order-harmonic spectroscopy to probe the impact of
coherent phonons on electron dynamics in solids. A pump pulse excites in-plane optical phonon modes in
monolayer graphene, and a circularly polarized pulse is employed to probe the excited phonon dynamics that
generates higher-order harmonics. We show that the coherent phonon dynamics alters the dynamical symmetry
of graphene with the probe pulse and leads to the generation of symmetry-forbidden harmonics. Moreover,
sidebands associated with the prominent harmonic peaks are generated as a result of the coherent dynamics. It is
found that the symmetries and the characteristic timescale of the excited phonon mode determine the polarization
and positions of these sidebands. This paper opens an avenue in time-resolved probing of phonon-driven
dynamical symmetries in solids with subcycle temporal resolution.
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I. INTRODUCTION

Vibrations of atoms within molecules and solids are funda-
mental processes that regulate several physical, optical, and
chemical properties of matter. When light triggers atomic
vibrations, atoms exhibit periodic oscillations in a particular
fashion, and these light-induced vibrations could potentially
lead to the modifications in various symmetries of solids.
These modifications are dynamic in nature and result in
several transient phenomena, such as light-induced supercon-
ductivity [1,2], vibrationally induced magnetism [3,4], and
switching of electrical polarization [5], to name but a few.
Thus time-resolved mapping of the interplay of lattice vi-
bration with electronic motion on an electronic timescale
is essential to comprehend several ubiquitous phenomena
in solids, such as structural phase transition [6,7] and ther-
mal [8,9] and optical properties [10–12], and to predict
new concepts in solids. Several spectroscopy and imaging-
based methods are employed to probe lattice vibrations in
solids [13–22]. However, probing transiently evolving lattice-
electronic dynamics and dynamical symmetries of solids in
the presence of light in a single experimental setup is chal-
lenging. This paper addresses this crucial problem.

High-order-harmonic generation (HHG) is a nonpertur-
bative nonlinear frequency up-conversion process and is
sensitive to the subcycle electron dynamics driven by an
intense laser. Over the last decade, high-order-harmonic spec-
troscopy became an emerging method to interrogate various
equilibrium and nonequilibrium properties of solids by in-
vestigating the emitted spectrum during HHG [23–37]. In
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spite of the tremendous applications of high-order-harmonic
spectroscopy, the impact of lattice vibration on HHG from
solids remains uncharted territory, except in recent work
[38,39]. This paper focuses on highlighting the abilities
of high-order-harmonic spectroscopy in the time-resolved
mapping of the interplay of coherent lattice vibrations and
electronic motions and the time-resolved mapping of tran-
siently evolving symmetries of solids during the dynamics.

In the following, we will demonstrate that the coherent
lattice dynamics leads to the dynamical-symmetry alterations,
which results in the generation of symmetry-forbidden har-
monics. Moreover, coherent lattice dynamics leads to the
generation of the higher-order sidebands along with the main
harmonic peaks in the high-order-harmonic spectrum. The
frequency and symmetry of the coherently excited phonon
mode are imprinted in the position and polarization of the
sidebands, respectively. The essence of our findings is pre-
sented in Fig. 1.

To illustrate the sensitivity of the coherent phonon dynam-
ics to high-order-harmonic spectroscopy, two-dimensional
graphene with D6h point group symmetry is chosen. The
phonon spectrum of graphene consists of three acoustic and
three optical phonon branches. Out of the three optical phonon
modes, one phonon mode is an out-of-plane mode, where
the vibrations are out of the two-dimensional plane of the
graphene, and the other two are in-plane modes in which
lattice vibrations are confined within the plane of the graphene
[40]. In-plane optical phonon modes are considered in this
paper. At the � point, there are two degenerate in-plane optical
modes with phonon frequency of 194 meV, which corresponds
to a phonon oscillation period of �21 fs [40]. These phonon
modes are represented as E2g or G modes and are Raman
active. It is known that light can couple to a phonon mode at
the Brillouin zone center and therefore the E2g Raman-active
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FIG. 1. Main findings of our work on the impact of coherent lattice dynamics in the high-order-harmonic spectrum of monolayer graphene.

mode can be excited by stimulated Raman excitation either
via a broad pulse that covers a bandwidth of 194 meV or
via two laser pulses with a difference of 194 meV in photon
energy [41].

II. COMPUTATIONAL METHODS

To incorporate coherent phonon dynamics, the nearest-
neighbor tight-binding Hamiltonian is extended from static to
time domain as

Ĥk(t ) = −
∑
i∈nn

γi(t )eik·di (t )â†
kb̂k + H.c. (1)

Here, γi(t ) = γ0 e−(|di (t )|−a)/δ is the time-dependent nearest-
neighbor hopping energy, which is modeled to capture the
temporal variations in the relative distance between nearest-
neighbor atoms [di(0) = a = 1.42 Å] [42,43]. γ0 = 2.7 eV is
the nearest-neighbor hopping energy, and δ = 0.184a0 is the
width of the decay function with a0 = 2.46 Å as the lattice
parameter of the equilibrium structure [44].

Semiconductor-Bloch equations corresponding to the time-
dependent Hamiltonian given in Eq. (1) are solved as

d

dt
ρk

cv =
[
−iεcv (kt , t ) + 1

T2

]
ρk

cv

+iE(t ) · dcv (kt , t )
[
ρk

vv − ρk
cc

]
, (2a)

d

dt
ρk

vv = iE(t ) · dvc(kt , t )ρk
cv + c.c. (2b)

Here, the vector potential and the electric field correspond-
ing to the driving laser field are represented as A(t ) and
E(t ), respectively, and are related as E(t ) = −dA(t )/dt .
dcv (k) and εcv (k) are the dipole matrix elements and the
band-gap energy between conduction and valence bands at
given k with dcv (k) = i〈c, k|∇k|v, k〉, respectively. The time-
dependent Hamiltonian in Eq. (1) is diagonalized, and dipole
matrix elements are calculated during the lattice dynamics at
each time step with the updated eigenstates. dcv (k) becomes
time dependent due to coherent phonon dynamics. The dipole
matrix elements and the eigenenergies are smoothly updated

in the semiconductor-Bloch equations at each consecutive
time step as the displacements of the atoms and time steps are
small enough [45]. To account for the interband decoherence,
a phenomenological term with a constant dephasing time T2 is
introduced. Here, kt = k + A(t ).

The high-order-harmonic spectrum is calculated as

I (ω) =
∣∣∣∣FT

(
d

dt
J(t )

)∣∣∣∣
2

, (3)

where FT stands for the Fourier transform. The total current
J(t) is calculated by integrating J(k, t ) over the entire Bril-
louin zone as

J(k, t ) =
∑

m,n∈{c,v}
ρk

mn(t )pnm(kt , t ), (4)

where pnm(k) = 〈n, k|∇kĤk|m, k〉 is the momentum matrix
element. The ellipticity and the phases of harmonics are esti-
mated by following the recipe given in Ref. [46].

It is assumed that a pump-pulse initiates the coherent exci-
tation of an in-plane Raman-active phonon mode in graphene.
The excited phonon mode is probed by the high-order-
harmonic generating pulse. The excitation of the phonon
mode is approximated by direct initiation of the coherent
vibrations of carbon atoms. Due to coherent lattice dynamics,
the lattice configuration changes as a function of time. We
have adopted the same methodology for HHG from a solid
with phonon dynamics as given in our earlier work [45]. In the
present approach, electron-phonon coupling is not included
explicitly.

A circularly polarized pulse with a wavelength of 2.0 μm
and peak intensity of 1×1011 W/cm2 is used to generate
high-order harmonics in graphene with and without coherent
phonon dynamics. The pulse duration is 100 fs, which is much
longer than an oscillation period of in-plane phonon dynamics
�21 fs. Moreover, the lifetime of these phonon modes is
around 1 ps [47]. The parameters of the harmonic-generating
laser are similar to the ones used earlier for probing electron
dynamics in graphene [48].
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FIG. 2. High-order-harmonic spectra, generated by a left-handed circularly polarized laser pulse, of monolayer graphene with and without
coherent phonon dynamics. (a) The spectra of the graphene without phonon dynamics. (b) and (c) The spectra of graphene with the coherent
in-plane longitudinal optical (M1x) phonon mode (b) and transverse optical (M2y) phonon mode (c). In all the spectra, sidebands corresponding
to the prominent harmonic peaks are identified at frequencies (ω0 ± nωph), where ωph is the phonon frequency, ω0 is the frequency of the
probe laser pulse, and n is an integer. The unit cell of the graphene with the eigenvector of a particular phonon mode and polarization of the
harmonic-generating probe pulse is shown in the respective insets. Results are presented for T2 = 10 fs and a maximum 0.03a0 displacement
of atoms from their equilibrium positions during coherent phonon dynamics, where a0 is the lattice parameter of the equilibrium structure.

III. RESULTS AND DISCUSSION

The high-order-harmonic spectrum corresponding to
monolayer graphene without phonon dynamics is presented
in Fig. 2(a). We have employed a left-handed circularly po-
larized laser pulse for HHG in graphene with and without
phonon dynamics. As dictated by the symmetry constraints
and selection rules, it is expected that the circularly polarized
pulse yields (6m ± 1) orders of harmonics from inversion-
symmetric graphene with sixfold symmetry [49–51]. Here,
m = 0, 1, 2, . . . is a positive integer. In this case, the third
harmonic is symmetry forbidden. On the other hand, a linearly
polarized laser pulse leads to (2m + 1) orders of harmonics
as shown earlier [52]. Our results shown in Fig. 2(a) are
consistent with the selection rules and earlier reports [49,50].
Graphene is not chiral in nature, so left- and right-handed
circular laser pulses yield the same harmonic spectra.

After discussing HHG from graphene without phonon dy-
namics, let us investigate how the in-plane phonon modes
affect the harmonic spectrum shown in Fig. 2(a). For this pur-

pose, we coherently excite one of the two degenerate in-plane
phonon modes and assume that the excitation is done prior to
the probe harmonic pulse. Figure 2(b) presents the harmonic
spectrum corresponding to coherently excited phonon mode
1 (M1x), in which atoms are vibrating along the X direction.
The spectrum in Fig. 2(b) is drastically different from the
one without phonon dynamics [see Fig. 2(a)]. There are only
odd harmonics in the spectrum as the M1x phonon mode
preserves the inversion symmetry in graphene [45]. Moreover,
the spectrum exhibits multiple sidebands along with the main
odd harmonics as evident from Fig. 2(b). Our findings remain
qualitatively the same for the amplitude of the lattice dis-
placement ranging from 0.01a0 to 0.05a0 with respect to the
equilibrium positions as evident from Fig. 3(a). As expected,
the intensity of the sidebands increases as the amplitude of
vibration increases. Moreover, the dephasing time T2 does not
impact our findings significantly as the spectra are qualita-
tively the same for T2 ranging from 5 to 30 fs [see Fig. 3(b)].
The appearance of the phonon sidebands in the angle-resolved
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FIG. 3. High-order-harmonic spectra of graphene with the M1x phonon mode for different (a) amplitudes of the atomic displacement and
(b) dephasing time T2.

photoemission spectrum of monolayer graphene within the
Floquet formalism was discussed in Ref. [53].

The coherent excitation of in-plane phonon mode 2 (M2y),
in which atoms are vibrating along the Y direction, also leads
to multiple sidebands along with the odd harmonics as visible
from Fig. 2(c). In both cases, the energy separation between
the successive sidebands is equal to the energy of the excited
phonon (M1x or M2y) mode, i.e., 194 meV. Therefore the
energy of the excited phonon mode is encoded in the spectra.
Apparently, it seems that the spectra are insensitive to the
symmetry of the excited phonon mode as both M1x and M2y

phonon modes yield similar harmonic spectra [see Figs. 2(b)
and 2(c)]. In the following, we will show that this is not the
case and the symmetry of the excited phonon mode is encoded
in the polarization properties of the spectra.

Not only does the coherent phonon dynamics lead to the
generation of multiple sidebands, but also the forbidden har-
monics become allowed. As stated earlier, the third harmonic
is absent for the circular-laser-driven HHG from graphene
without phonon dynamics [see Fig. 2(a)]. However, the dy-

namics of the coherent E2g phonon mode reduces graphene’s
sixfold symmetry into twofold dynamically, which allows the
generation of (2m ± 1) harmonic orders. The presence of the
third harmonic in both cases, graphene with the M1x phonon
mode or graphene with the M2y phonon mode, is a signature of
the dynamical symmetry reduction as evident from Figs. 2(b)
and 2(c). At a glance, it seems that the criteria for HHG is the
same for the linearly polarized laser pulse [(2m + 1) orders
and third harmonic] and the combination of the phonon-driven
symmetry reduction with the circularly polarized laser pulse
[(2m ± 1) orders and third harmonic]. To distinguish the two
situations, let us analyze the polarization properties of the
emitted harmonics.

Figure 4 displays the projection of the x and y compo-
nents, in the time domain, corresponding to the first and fifth
harmonics of the spectrum in Fig. 2(a). It is known that the
polarization of a given harmonic for a material with l-fold
symmetry is determined by lm + σ , where σ = +1 (σ = −1)
represents the mth harmonic’s polarization, which is the same
as (opposite to) the helicity of the driving laser pulse [49]. It
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FIG. 4. The projection of the x and y components, in the time domain, of the first and the fifth harmonics corresponding to the spectrum of
graphene without phonon dynamics as shown in Fig. 2(a).

is straightforward to see that the (lm − 1)th and (lm + 1)th
harmonics are circularly polarized with σ = −1 and σ = 1,
respectively. In the present case, the first and fifth harmonics
are circularly polarized with opposite helicity, which is con-
sistent with earlier findings [50,54].

As stated above, (2m ± 1) harmonic orders are allowed
due to phonon-driven dynamical symmetry reduction from
sixfold to twofold, which leads to the generation of the third
harmonic. Moreover, this dynamical symmetry reduction also
alters the polarization properties of the emitted harmonics.
The projected x and y components of the first, third, and fifth
harmonics for graphene with M1x and M2y phonon modes
are presented in Figs. 5(a) and 5(b), respectively. As evident
from the figure, the ellipticity of the first harmonic reduces
drastically from 1 for graphene without phonon dynamics
to 0.63 for graphene with phonon dynamics. The change in
the ellipticity can be understood as follows: When the M1x

phonon mode is excited, carbon atoms vibrate along the X
direction, which increases the velocity of the electrons in the
X direction. It is known that the intraband current is propor-
tional to the velocity, and low-order harmonics in graphene are
dominated by the intraband current [52,55]. Thus the major
axis of the ellipse is along the X direction in the case of the
first harmonic, which reduces the ellipticity from 1 to 0.63.

Similarly, the excitation of the M2y mode leads the vibra-
tions of the atoms along the Y direction. This provides an
additional velocity component to electrons in the Y direction,
which translates to the major axis of the ellipse along the Y
direction. The ellipticity of the fifth harmonic, corresponding
to graphene without phonon dynamics to graphene with the
M1x (M2y) phonon mode, changes significantly, i.e., from 1
to 0.93 (0.96). The phonon dynamics not only modifies the
ellipticity of the harmonics significantly but also changes the
phase between the x and y components of the harmonics. In
the case of the M1x (M2y) mode, the phase differences between

the components for the first and fifth harmonics are 90◦ (90◦)
and 125◦ (45◦), respectively (see Fig. 5). The ellipticity and
the phase difference of the third harmonic for graphene with
the M1x (M2y) mode are 0.77 (0.79) and 40◦ (35◦), respec-
tively. Thus the changes in the ellipticity and phase indicate
that the harmonics are sensitive to the symmetry of the excited
phonon mode as reflected in Fig. 5.

After demonstrating how the information of the excited
phonon mode and its symmetry is imprinted in the main
harmonics and their polarization properties, let us analyze
what information is encoded in the sidebands associated with
prominent harmonics. The projection of the x and y compo-
nents of the first, second, and third sidebands corresponding
to the first main harmonic corresponding to graphene with the
M1x phonon mode is shown in Fig. 6(a). All three sidebands
have nonzero x and y components as evident from the figure.
The same is true for the sidebands associated with the M2y

phonon excitation as reflected from Fig. 6(b). Moreover, the
ellipticities of the first, second, and third sidebands of the
first harmonic corresponding to graphene with the M1x (M2y)
phonon mode read as 0.98 (0.56), 0.72 (0.95), and 0.59 (0.67),
respectively. Also, the phases between the x and y components
of the first, second, and third sidebands of the M1x (M2y)
mode are 85◦ (90◦), 70◦ (135◦), and 60◦ (75◦), respectively.
Thus the analysis of Fig. 6 establishes that the polarization
and the phase properties of the sidebands are different for
different phonon modes. However, it is not obvious why the
sidebands have nonzero x and y components, whereas a par-
ticular phonon mode (M1x or M2y) induces atomic vibrations
along a particular direction (X or Y ).

To know the origin of the nonzero x and y components of
the sidebands, we applied the Floquet formalism to graphene
with a coherently excited phonon mode and circularly
polarized probe pulse. The Floquet formalism determines dy-
namical (spatiotemporal) symmetries (DSs) of the system,
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FIG. 5. Same as Fig. 4 for the first, third, and fifth harmonics for graphene with (a) M1x and (b) M2y phonon modes. In the case of the M1x

(M2y) phonon mode, the ellipticities of the first, third, and fifth harmonics are 0.63 (0.62), 0.77 (0.79), and 0.93 (0.96), respectively. Also, the
phase differences between the x and y components of the first, third, and fifth harmonics are 90◦ (90◦), 40◦ (35◦), and 125◦ (45◦), respectively.

which dictate selection rules for the sidebands. The nth-order
sideband obeys the symmetry constraint X̂ t Es,n(t )[X̂ t E(t )]† =
Es,nE(t )† with the condition that the spatial symmetries of X̂ t

and the probe pulse are the same [56]. Here, X̂ t is a DS, and
the electric fields associated with the nth-order sideband and
the probe laser are represented by Es,n(t ) and E(t ), respec-
tively. The Raman tensor, denoted as Rn(t ) = Es,n(t )E(t )†,
has to be invariant under the operation of the DSs [56]. In
the following, we will follow the same treatment as given in
Refs. [45,56] to investigate the properties of the sidebands
using DSs within the Floquet formalism.

In the present case, D̂1 = σ̂y · T̂ is the DS, which leaves the
system with the M1x phonon mode invariant. Here, σ̂y is the
reflection with respect to the y axis, and T̂ is the time-reversal
operator. Thus the condition associated with the sidebands is
determined as D̂1Rn(t ) = Rn(t ) with

Rn(t ) = Es,n(t )E(t )† =
[

Es,nx E
∗
x Es,nx E

∗
y

Es,ny E
∗
x Es,ny E

∗
y

]
. (5)

Let us substitute the expression of E(t )† =
[cos(ω0t )E†

x sin(ω0t )E†
y ], where ω0 is the frequency of

the probe pulse in the above equation; the expression of the

Raman tensor reads as

Rn(t ) = sin[(nωph + ω0)t]

[
cos(ω0t )Es,nx

sin(ω0t )Es,ny

]
. (6)

Here, ωph is the frequency of the phonon mode. Operating D̂1

on Rn(t ) leads to the following expression of the invariant
Rn(t ):

sin[(mωph + ω0)t]

[
cos(ω0t )Es,nx

sin(ω0t )Es,ny

]

= sin[−(nωph + ω0)t]

[− cos(ω0t )Es,nx

− sin(ω0t )Es,ny

]
. (7)

Now it is straightforward to notice that all the sidebands
exhibit nonzero x and y components. The ellipticity and the
phase difference are estimated from the nonzero components,
and our numerical results shown in Fig. 6 are consistent with
the present analysis. If a linearly polarized probe pulse is
used instead of the circularly polarized pulse, the odd- and
even-order sidebands are polarized perpendicular and parallel,
respectively, to the polarization of probe pulse in the case of
graphene with a M1x phonon mode. On the other hand, the M2y

phonon mode leads to all sidebands being polarized along the
direction of the probe pulse [45].
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FIG. 6. Same as Fig. 4 for the first, second, and third sidebands associated with the first harmonic for graphene with (a) the M1x phonon
mode corresponding to Fig. 2(b) and (b) the M2y phonon mode corresponding to Fig. 2(c). The ellipticities of the first, second, and third
sidebands corresponding to the in-plane longitudinal optical (iLO) [in-plane transverse optical (iTO)] phonon mode are 0.98 (0.56), 0.72
(0.95), and 0.59 (0.67), respectively. The phase differences between x and y components of the first, second, and third sidebands corresponding
to the M1x (M2y) phonon mode are 85◦ (90◦), 70◦ (135◦), and 60◦ (75◦), respectively.

IV. CONCLUSION

In conclusion, we have explored the potential of high-
order-harmonic spectroscopy in probing the effect of coherent
phonon dynamics on electron dynamics in solids. To this
end, coherent excitation of both in-plane M1x and in-plane
M2y Raman-active phonon modes in graphene are considered.
The sixfold symmetry of the graphene reduces to twofold
dynamically due to the coherent phonon excitation. As a re-
sult of this symmetry alteration, the symmetry-forbidden third
harmonic of the circularly polarized probe pulse is generated.
Moreover, coherent phonon dynamics leads to the generation
of the sidebands corresponding to the prominent harmonic
peaks. The Floquet formalism of the dynamical symmetries
of the system is applied to understand the properties of the
sidebands. It is found that the positions of the sidebands are
determined by the energy of the excited phonon modes. More-

over, the dynamical symmetries of the system, which consists
of graphene with an excited phonon mode and probe pulse,
determine the polarization of the sidebands. Thus polariza-
tion properties of the sidebands are a sensitive probe of the
dynamical symmetries. The present study could be extended
to bilayer graphene, where infrared-active phonon modes can
be expressed in terms of double-degenerate in-plane Raman-
active phonon modes of monolayer graphene [41,57].
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