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Photoionization is one of the most fundamental processes in laser-matter interaction. It plays a crucial role
also from the practical point of view since the electron-density dynamics in a gaseous medium is a process
that affects the field propagation. Photoionization has been addressed in different regimes: linear, multiphoton,
and tunneling. The ideal tool that allows for the description of ionization, in all aforementioned regimes,
is the numerical evaluation of the time-dependent Schrödinger equation. The determination of the electron
density needs the computation of the time-dependent ionization probability which unfortunately is an ambiguous
quantity due to the gauge dependence of the latter. In this paper, we show how to overcome this difficulty by
properly defining the time-dependent ionization probability in the context of the resolvent operator method. We
show in particular that the velocity gauge allows for a definition of adiabatic states that is suitable to define
an ionization threshold at all times during the interaction to compute ionization probability. Applications to
linear, multiphoton, and tunneling regimes are presented for the one-dimensional problem. The extension to
the nondipole case is discussed and we show that time-dependent ionization probability cannot be defined
unambiguously due to the introduction of the magnetic-field component. We also discuss the case of gauge
invariance in a subspace of the eigenbasis defined by the Hamiltonian.
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I. INTRODUCTION

Photoionization is an ideal tool to investigate the funda-
mental properties of laser-matter interaction. In particular,
historically it revealed the quantum nature of light (i.e., exis-
tence of photons) and matter. Over the years different regimes
of photoionization have been investigated. The linear regime,
for which one photon is absorbed leading to ionization, has
been thoroughly studied in atoms, molecules, and solids. In
the case of photoemission from solids it allows for the study
of band structure [1] and in the case of atoms and molecules
the target wave function can be extracted [2]. Ionization in
the multiphoton regime has been an important step for the
study of nonlinear physics [3] up to the strong-field ion-
ization regime. The latter was a real breakthrough with the
emergence of high-order harmonic generation [4], and the
field of attoscience is one of the outcomes [5]. The study of
the photoionization in a pump-probe scheme also allows the
determination of the Wigner delay in atomic systems [6–9].
More recently, photoionization by strong Extreme ultraviolet
(XUV) field reveals the contribution of the nondipole effects
in the photoionization spectra in both the linear [10] and
nonlinear regimes [11,12].
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From the theoretical point of view, the computation of
photoelectron spectra (PES) can be obtained with high ac-
curacy and fidelity when compared to experimental results.
Nevertheless, the fundamental aspect of the time evolution of
the ionization process remains out of reach because of the lack
of a proper observable which, as usually defined, becomes
gauge dependent. This is understood from the fundamental
point of view and is not stemming from an inaccuracy inherent
to solving the Schrödinger equation unlike for the strong-field
approximation [13,14].

From the experimental point of view, the pump-probe
scheme can be employed in order to study the dynamics of
the ionization process [15]. It consists in using a first pulse
in order to trigger the process and after some time to use
another laser field to study the perturbation of the system
induced by the first one. The physical mechanism that is used
as a probe is for instance the second ionization which will
probe the single ionization dynamics. From this point of view,
one obtains the ionization probability as a function of time
referring to the delay between the two pulses. Although the
delay has a dimension of time, it is only a parameter of
the Hamiltonian and not its variable. In this sense, the delay
does not play the same role as the time related to the proper
evolution of the system being excited by the pump pulse. As
a matter of fact, computing the ionization probability as a
function of the pump-probe delay is a gauge invariant quantity.
Retrieving the probability of ionization as a function of time is
of prime interest when one wants to investigate the dynamics
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of single ionization. Moreover, from the practical point of
view the determination of ionization probability allows one
to infer the electron density created in the medium which can
be used for other purposes such as light propagation for ins-
tance when it is coupled with the Maxwell equation [16], and
more generally for further classical analysis [17]. In most of
the numerical studies where time-dependent electron density
is needed, a rate equation is used [18,19]. These equations rely
on a large number of hypotheses, and in particular incoherence
of the ionization process as well as adiabaticity [20]. The
purpose of this paper is to provide a theoretical framework
which will allow expressing the time-dependent ionization
probability in a physically meaningful form when analyzing
the energy distribution defined by the wave-packet solution of
the time-dependent Schrödinger equation (TDSE). This study
will be performed by means of the resolvent operator [21–23].
The paper is organized as follows.

(i) First we describe our standpoint in order to provide
insights of what is the proper procedure to extract the time-
dependent ionization probability.

(ii) Then we apply this procedure in the case of one-photon
ionization, multiphoton ionization, and tunneling regimes.

(iii) Finally, we discuss its applicability in the case of
nondipole description of the field and in the case of Hamil-
tonian subspace propagation.

Single active electron approximation (SAEA), as well as
atomic units, will be used unless otherwise stated.

II. CONSTRUCTION OF THE TIME-DEPENDENT
IONIZATION PROBABILITY

The Hamiltonian describing the interaction of an electro-
magnetic field in the frame of the SAEA is written

Hg(t ) = 1
2 [P − qA(r, t )]2 + qφ(r, t ) + V (r)

= H0 + VI,g(t ). (1)

Here q is the charge of the electron (q = −1) interacting
with the local effective potential V (r) describing the system
composed of the other N − 1 electrons. H0 is the field-free
Hamiltonian (set by A = 0 and φ = 0) and VI,g(t ) is the
interaction potential provided in the gauge g. The interaction
provided in gauge g is described by the vector potential A(r, t )
and the scalar potential φ(r, t ). The magnetic and electric
fields, in this frame, are written

B(r, t ) = ∇ × A(r, t ),

E(r, t ) = −∂A(r, t )

∂t
− ∇φ(r, t ). (2)

As it is well known, one can transform the vector and scalar
potentials keeping the electric and magnetic fields unchanged.
The relation between transformed and original potentials is
expressed as

A′(r, t ) = A(r, t ) + ∇χ (r, t ),

φ′(r, t ) = φ(r, t ) − ∂χ (r, t )

∂t
, (3)

where χ (r, t ) is an arbitrary function of r and t . From the
vector and scalar potentials expressed in the new gauge g′, the

corresponding Hamiltonian is provided by

Hg′ = 1
2 [P − qA′(r, t )]2 + qφ′(r, t ) + V (r). (4)

One can also express the gauge transformation of the
Hamiltonian as

Hg′ = UHgU
† − q

∂χ (r, t )

∂t
, (5)

with U being the unitary transformation given by U =
eiqχ (r,t ). In particular, local potentials remain unchanged under
the gauge transformation. Correspondingly, the transforma-
tion of the ket solution of the TDSE satisfies

|�g′ (t )〉 = U |�g(t )〉. (6)

|�g(t )〉 and |�g′ (t )〉 are solutions of the TDSE for the Hamil-
tonian expressed in the g and g′ gauges, respectively.

There are physical quantities that are gauge invariant,
meaning that they are the same irrespective of the choice of
gauge in which the wave function is expressed. We can recall
a few of them: the position operator, the kinetic momentum,
and also the current defined as j = 1

2 [�∗�� + ��∗�∗] with
� = −i∇ − qA. In the length gauge and dipole regimes, �

reduces to −i∇. This means, in particular, that the harmonic
spectrum, defined as the Fourier transform of the current, is
gauge invariant as is the electron density in accordance with
the continuity equation. Actually, the electron density is some-
times used to define the time-dependent ionization probability
[24]. The density is then integrated in a given volume, large
enough to include all the wave function at time t = 0, and
plotted as a function of time. While this quantity is indeed
gauge invariant, it depends on the parameters defining the
volume of integration and thus cannot be used as a reference
quantity to compute the time-dependent ionization probabil-
ity. A different procedure must then be defined.

Generally speaking, the PES are calculated by projecting
the wave function obtained at the end of the interaction with
an electromagnetic field on the states |ϕ−(k)〉. The latter states
correspond to the field-free eigenstates of the field-free Hamil-
tonian H0 having an eigenenergy E defined in the continuum
(E > 0) and characterized by the momentum k so that E = k2

2 .
These states also have the proper incoming properties as indi-
cated by the minus sign and being normalized in momentum
[25,26]. Having defined these states, one can construct the
ionization probability operator as P̂I = |ϕ−(k)〉〈ϕ−(k)|. The
differential in energy and angle PES is then

dPg
dk

= 〈�g(Tf )|P̂I |�g(Tf )〉, (7)

with �g(Tf ) being the wave function obtained at the end of
the pulse (t = Tf ) when solving the TDSE in the gauge g. The
probability of ionization at the end of the pulse is then simply
provided by

PI,g =
∫

dk
dPg
dk

. (8)

If the TDSE is solved in another gauge g′, due to the
fact that χ (r, t > Tf ) = 0, the quantities defined by Eqs. (7)
and (8) are identical under the gauge transformation. Using
the closure relation, it is clear that ionization probability
can also be expressed as PI,g = 1 − Pbound,g with Pbound,g =
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∑
n |〈n|�g(Tf )〉|2 being the probability of remaining in the

bound states noted |n〉, ground state included.
How can one extend this definition of ionization that

would apply for any time? One would be tempted to sim-
ply generalize the above formula by defining PI,g(t ) =∫

dk〈�g(t )|P̂I |�g(t )〉. Unfortunately, this quantity is not
gauge invariant at any time since PI,g(t ) �= PI,g′ (t ) in general
even though there is equality for t � Tf as mentioned in the
previous paragraph. The physical reason of this inequality
stems from the definition of the ionization operator using a
projection on states defined for the field-free Hamiltonian.
Nevertheless, one can infer the probability of ionization from
one gauge to another at any time. By transforming the op-
erator P̂I,g, used to calculate the ionization probability in
a gauge g, into P̂I,g′ = UP̂I,gU † then the same probability
is obtained at any time when the projection is performed
on the transformed wave function. Despite the fact that one
can link the observables expressed in different gauges, it
remains that the results are not identical at any time in
the two gauges. In order to define unambiguously the time-
dependent ionization probability, we rely on the properties
of the transformed Hamiltonian. In the field-free case, the
ionization threshold is clearly attributed to E = 0, but when
the interaction with the electromagnetic field is turned on,
this definition of ionization threshold is no longer true in
general.

In order to solve this dilemma, we use the resolvent opera-
tor defined as

RH0 (E ) = Nε

ε2

(E − H0)2 + ε2
. (9)

This operator is the one defined in [21,22] where the field-free
Hamiltonian H0 is detailed in Eq. (1). Nε is a coefficient used
to define the probability density in energy for a fixed given
value of ε. In Appendix A we recall the main properties of
the resolvent. Briefly, it is an operator projecting onto the
continuum eigenstates of energy E defined by H0. Here the
resolvent is described by the second-order expression since
only the low-energy distribution will be studied in this paper,
but there is no limitation to extend it to higher order. The ε

parameter is numerically set to a finite value but the limit
ε → 0 transforms the operator into a distribution that is the
consequence of the residue theorem [27]. More practically,
there exists a range of epsilon for which Eq. (9) does not
depend on the latter parameter (see for instance [21,22]).
According to this definition, the calculation of∫

E>0
dE〈�g(Tf )|RH0 (E )|�g(Tf )〉 (10)

provides the ionization probability PI,g defined by Eq. (8) and
is gauge independent as demonstrated earlier.

The novel aspect of our formulation is to extend this
approach by using a time-dependent Hamiltonian. We then
define the time-dependent resolvent operator as

RHg(t )(E ) = Nε

ε2

[E − Hg(t )]2 + ε2
, (11)

where Hg(t ) is the time-dependent Hamiltonian as defined
by Eq. (1) in a given gauge g. From this definition, the

integration over E > 0 then would provide the ionization
probability. Nevertheless, the energy E = 0 has to correspond
to a physically meaningful quantity, namely, the threshold
energy defined for field-free electron energy in the continuum
as detailed earlier. Unfortunately the latter property relies
on the definition of the field-free Hamiltonian and spec-
trum. The fundament of our approach is then to cope with a
transformation of the time-dependent Hamiltonian that keeps
the spectrum identical to the field-free Hamiltonian one. We
start with the theorem stating that an eigenstate |�E 〉 of the
Hamiltonian H associated with the eigenenergy E defines
the same eigenvalue equation for the new eigenstate T |�E 〉,
referred to as the adiabatic state, with the new Hamiltonian
T HT † and the same energy E (see Appendix B for more
details and demonstration). T is a unitary operator defined
as ei f (r,t ) with f a real function of r and t . Note that the
aforementioned transformation is not an operation transform-
ing the Hamiltonian from one gauge to another as defined in
Eq. (5). Starting from this theorem, one just needs to find a
Hamiltonian written as T H0T † corresponding to the actual
Hamiltonian when the field is on. If we restrict our paper to
the case of dipole approximation, such a Hamiltonian exists
and it is provided by the so-called velocity gauge. Indeed,
in that gauge the Hamiltonian is written HV (t ) = [P+A(t )]2

2 +
V (r) = T H0T † with T = e−iA(t )·r. Note that the operator T
acts as a translation of the states by A(t ) in the momentum
space. From this statement, we can now use the velocity
gauge in the resolvent frame in order to define the resolvent
operator as

RHV (t )(E ) = Nε

ε2

[E − HV (t )]2 + ε2
. (12)

The time-dependent ionization probability density is then

PI (E , t ) = 〈�V (t )|RHV (t )(E )|�V (t )〉 (13)

with |�V (t )〉 the ket solution of the TDSE in the velocity
gauge. The time-dependent ionization probability is given by

PI (t ) =
∫

E>0
dE〈�V (t )|RHV (t )(E )|�V (t )〉. (14)

The property HV (t ) = T H0T † can now be used to rewrite
Eq. (14) into

PI (t ) =
∫

E>0
dE〈�V (t )|Nε

ε2

(E − T H0T †)2 + ε2
|�V (t )〉.

(15)
Taking the T operator out of the denominator we get

PI (t ) =
∫

E>0
dE〈�V (t )|T †RH0 (E )T |�V (t )〉. (16)

Since T |�V (t )〉 = |�L(t )〉 by virtue of the Goeppert-Mayer
transform [28], where |�L(t )〉 is the ket solution of the TDSE
in the length gauge, we get

PI (t ) =
∫

E>0
dE〈�L(t )|RH0 (E )|�L(t )〉. (17)

This means that the ionization probability can be obtained
by projecting on the states defined in the length gauge. In
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particular we have

PI (t ) =
∫

E>0
dE〈�L(t )|RH0 (E )|�L(t )〉

= 1 −
∑

n

|〈n|�L(t )〉|2, (18)

which allows one to define the ionization probability only
by projecting on the bound states (|n〉). This procedure will
be referred to as the bound-state projection (BSP) in the
following.

In conclusion of this section, the time-dependent ionization
probability can be obtained with an unambiguous physical
meaning. In particular, we have shown that the velocity gauge
defined in the dipole approximation characterizes a Hamilto-
nian having a spectrum which is the same as the one defined
for the field-free Hamiltonian. Using the resolvent operator
method (ROM) it is then easy to retrieve the energy resolved
ionization probability. We also have shown by means of the
ROM that the wave function expressed in the length gauge
is physically meaningful and thus can be projected on the
field-free states in order to define the time-dependent ioniza-
tion probability. This analysis has been done in the frame of
the ROM since it helps in getting an easier physical sense.
However, the same results would have been obtained by pro-
jecting onto the adiabatic states defined by the exact incoming
wave functions on which the operator T has been applied (see
Appendix B). The use of the ROM avoids this step which can
be cumbersome.

In the next sections, we will apply the general approach
previously presented in cases corresponding to physical
conditions of interest: one-photon ionization, multiphoton
ionization, and finally tunneling regimes. All calculations will
be done using the SAEA and in one dimension since extend-
ing the application in full dimension, much more involved
from the computational point of view, will not bring any
further information for our purposes.

III. NUMERICAL STUDY IN DIFFERENT REGIMES

The Hamiltonian is modeled by using the one-dimensional
soft-core potential [V (x) = − 1√

a2+x2 ] with parameter a = 1
a.u. providing a ground state with energy E0 = −0.671 a.u
(i.e., −18.25 eV). The TDSE is solved using the Crank-
Nicolson propagator. The wave function is described by the
grid-method using a sixth-order finite difference element us-
ing the Numerov description with dx = 0.4 a.u. in a box of
dimension xmax = 100 a.u. The TDSE is solved in the velocity
gauge and the vector potential is given by

A(t ) = A0 cos(ω0t ) sin2

(
π

t

Tf

)
, (19)

so that A(t = 0) = A(t = Tf ) = 0 imposing χ (r, t = Tf ) = 0
and Tf = N 2π

ω0
is the total pulse duration with N the number

of cycles of the laser pulse. We defined A0 = E0
ω0

with E0

being the amplitude of the electric-field envelope. The electric
field is provided by E(t ) = − ∂A(t )

∂t . The transformation from
velocity to length gauge is straightforward in one dimension
and is provided by Eq. (6).

FIG. 1. Plot of the time-dependent probability density resolved
in energy as defined by Eq. (13) (linear scale). The field is set with
an amplitude of E0 = 0.01 a.u., a central frequency of ω0 = 1 a.u.,
and a pulse duration of eight cycles.

The previous model will be applied in three different
regimes: (i) one-photon ionization, (ii) two-photon ionization
by decreasing the photon energy, and (iii) the tunneling regime
by decreasing the photon energy and increasing the field inten-
sity.

A. Linear regime

In this section we set the frequency of the fundamental field
to ω0 = 1.0 a.u. (λ = 45.61 nm) and a field amplitude E0 =
A0 × ω0 = 1.0 × 10−2 a.u. (i.e., I0 = 3.5 × 1012 W/cm2).

The ponderomotive energy (Up = A2
0

4 ) is 2.5 × 10−5 a.u. and

the Keldysh parameter (γ =
√

−E0
2Up

) is γ = 115 	 1 in this

regime. Such a low peak amplitude of the electric field leads
to a linear response of the ionization process. We can com-
pute the ionization probability as defined by Eq. (13) as a
function of time and energy. The total pulse duration is set to
eight optical cycles. The resolvent, expressed in the velocity
gauge which is the gauge used for the TDSE propagation, is
computed for the order 2 and a resolution ε = 3 × 10−2 a.u.
These parameters of the resolvent are kept the same here-
after unless otherwise stated. The results are presented in
Fig. 1.

We checked numerically that the probability of ionization
expressed by Eq. (13), using the wave function and the re-
solvent in the velocity gauge, provides the same results as
using the wave function in the length gauge expressed by the
integrant of Eq. (17) using the field-free Hamiltonian in the
ROM. From the first-order perturbation theory, one expects
to obtain an energy distribution presenting a peak centered at
E = 0.328 a.u. at the end of the interaction and the peak width
inversely proportional to the pulse duration.

From the results of Fig. 1, we observe the evolution of
the energy distribution which appears as a peak centered at
0.2 a.u. at the beginning of the pulse and then deviates to
larger energy and finally reaches the value of 0.328 a.u. at
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FIG. 2. Plot of the ionization probability as a function of time.
This is the result of the integration over energy of the probability
density obtained in Fig. 1 and as defined by Eq. (14). The results
are presented by the dotted blue line. The black dashed line is the
time evolution of the electric field. The full orange curve is the result
obtained by removing the bound states [BSP; see Eq. (18)] when the
wave function is expressed in the length gauge as detailed in the text.

the end of the interaction. It is also interesting to notice that
the distribution is composed of stripes as the time evolves.
These stripes appear at the time values in the vicinity of the
zero of the electric field. In order to better visualize the time
evolution, the results obtained in Fig. 1 have been integrated
over energy from 0 to 1.0 a.u. The result is then the ionization
probability [see Eq. (14)] as a function of time and is plotted
in Fig. 2 in blue.

From this figure, we observe a regular increase of the
ionization probability as well as oscillations at twice the fre-
quency of the driving field. The result obtained by the ROM is
confirmed by using the definition based on the BSP applied on
the wave function expressed in the length gauge as explained
in the previous section. The BSP result is presented by the
orange curve and almost perfectly fits the one obtained by
the ROM technique. The slight difference observed (less than
0.1%) is due to the well-known Lorentzian tail contribution
inherent to the use of the ROM (see [22] and Appendix A
for more details). The oscillations are due to the well-known
phenomenon of a sharp increase of the ionization probability
when the amplitude of the field is maximal. There is still a
puzzling feature which appears in the temporal evolution of
the ionization probability, namely, the small decrease after
each maximum. If one describes the ionization probability as
the solution of a rate equation, having a rate that is always pos-
itive, such a decrease should not be obtained and “ladderlike”
steps would have been the obtained result. From the physical
point of view the fact that the rate is always positive implies
that the ionization process is described by an irreversible
process. In particular, the coherent aspect of the photoion-
ization process is not included in rate equations. In order to
further study these issues, we have performed the computa-
tion of the ionization probability in the frame of the first-
order time-dependent theory in the length gauge for the reason
already mentioned in the first section. The expression of the

FIG. 3. Plot of the ionization probability as a function of time ob-
tained by the first-order time-dependent theory defined by Eq. (20).
The results are presented in full orange line. The dashed green
distribution is obtained only considering the rotating wave approx-
imation (E−) while the dot-dashed red curve corresponds to the case
of the antirotation wave approximation (E+) which is expected to
have a small contribution. For comparison, we have added the result
obtained from the TDSE and the ROM (as in Fig. 2) in dotted blue
curve. It shows a good agreement.

energy resolved ionization probability is

P(E , t ) =
∣∣∣∣
∫ t

0
eiEτ 〈E |E(τ ) · r|ϕ0〉e−iE0τ dτ

∣∣∣∣
2

, (20)

with |ϕ0〉 and |E〉 being the ket of the initial state and in the
continuum, respectively.

The state |E〉 has been obtained by diagonalization of
the field-free Hamiltonian and normalized to energy so that
〈E |E ′〉 = δ(E − E ′). The resulting dipole 〈E |E(τ ) · r|ϕ0〉 has
then been fitted to the sum of two exponential decay func-
tions. The results obtained after integration over energy are
presented in Fig. 3. First, one can notice the very good agree-
ment with the results obtained by the TDSE presented in
Fig. 2. In particular, we reproduce the oscillations observed
in the results obtained by the TDSE, showing that even this
simple model is far from the results that would have been
obtained with solving a rate equation. In order to understand
the physical origin of these oscillations, we have computed
the first-order perturbation theory in the rotating wave approx-
imation. The field is decomposed into E(t ) = E+(t ) + E−(t )
where E+(t ) is composed of the envelope times eiω0t and E−(t )
is the complex conjugate. We then define two amplitudes of
transitions, associated with either the E+(t ) or E−(t ) oper-
ator that sum up coherently. The results, when only E+ or
E− is considered, are presented in green and orange lines in
Fig. 3, respectively. The oscillations completely vanish and
the distribution exhibits a monotonic evolution. The distribu-
tion related to the field E− is the closest one as expected since
this corresponds to the absorption process. The oscillation
observed in the time-dependent ionization signal is then due
to the interference between the amplitudes associated with
the fields E+ and E−. This shows that removing the coherent
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FIG. 4. Same as Fig. 1 but for the field defined by an amplitude
of E0 = 3.3 × 10−3 a.u., a central frequency of ω0 = 0.33 a.u., and a
pulse duration of four cycles.

properties of the ionization process leads to inaccurate de-
scription of the dynamics.

As an illustration we also provide in the Supple-
mental Material [29] the plot showing the gauge de-
pendence of the ionization probability as provided by∫

E>0 dE〈�g(t )|RH0 (E )|�g(t )〉. According to Sec. II the re-
sults are expected to be different except for the time for which
the vector potential is zero (see also for instance [30,31]).
This is in particular true at the beginning and at the end of
the interaction in accordance with the fact that there is gauge
invariance of the photoionization probability. According to
our analysis, only the distribution related to the projection on
the wave function expressed in the length gauge [see Eq. (17)]
is meaningful and corresponds to the actual time-dependent
ionization probability that can be used for further analysis as
explained in the introduction. We show also in the Supple-
mental Material [29] the results obtained for the multiphoton
and tunneling cases as detailed below. The results lead to the
same conclusion as for the linear case but show a more drastic
difference between the two gauges.

B. Multiphoton regime

In this section, we study the nonlinear regime and set the
central frequency of the laser to ω0 = 0.33 a.u. (λ = 138 nm)
and an amplitude of the vector potential to 0.01 a.u. as in
the linear case (the corresponding electric field is E0 = 3.3 ×
10−3 a.u. and laser intensity is I0 = 3.8 × 1011 W/cm2). The
total number of cycles describing the field is set to 4. The
ionization probability resolved in energy and time is provided
in Fig. 4.

The obtained distribution is very different than the one
presented in the linear regime. It exhibits stripes almost in-
dependent of energy. These stripes oscillate at twice the
frequency of the laser with a very strong contrast (almost
80%). By integrating over energy the distribution obtained by
the ROM, one gets the ionization probability as a function of
time that is plotted in Fig. 5.

FIG. 5. Same as Fig. 2 but for the field defined by an amplitude
of E0 = 3.3 × 10−3 a.u., a central frequency of ω0 = 0.33 a.u., and a
pulse duration of four cycles.

Comparing the time evolution of the ionization probability
with the evolution of the electric field (dashed black curve
of Fig. 5) we remark that the maximum of the ionization
probability is reached at each extremum of the electric field.
This evolution is in contrast to the linear case, and also differs
drastically to what is expected from the solution that would
have been obtained by solving a rate equation.

C. Tunneling regime

The last configuration corresponds to the tunneling regime.
In that case, the field has a central frequency ω0 = 0.07
a.u. (λ = 655 nm), a field amplitude of E0 = 0.14 a.u. (I0 =
6.9 × 1014 W/cm2), and a pulse duration of four cycles. The
box size is set to xmax = 500 a.u., dx = 0.5 a.u., and ε =
5 × 10−3 a.u. The ponderomotive energy is then Up = 1 a.u.
and the Keldysh parameter is γ = 0.57 < 1 defining condi-
tions corresponding to the tunneling regime. The plot of the
time and energy-dependent ionization spectra is provided in
Fig. 6. The integration over energy is compared to the ion-
ization probability resulting from the bound-state subtraction
in Fig. 7. An excellent agreement is obtained showing the
confidence in the ROM analysis. In particular, it does not show
the expected ladderlike distribution that would have been ob-
tained from solving a rate equation. The rate equation was
expected to be in a better agreement as compared to linear and
multiphoton cases since we are in the tunneling regime where
the photon frequency should play a less important role.

The results differential in energy depicted in Fig. 6 show
a rich and complex structure. The interference pattern is due
to the above threshold ionization peaks that build up as the
number of cycles increases [32]. The first release of the wave
packet corresponds to an evolution in the range of time from
120 to 150 a.u. This wave packet is born at 120 a.u. of time,
so at the maximum of the electric field with an energy spread
localized near 0 eV. This is the usual image evoked in the tun-
neling regime. Then the wave packet evolves and comes back
in the vicinity of the ion. Unfortunately, this space-dependent
aspect of the dynamics is out of reach. This first feature,
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FIG. 6. Same as Fig. 1 but for the field defined by an amplitude
of E0 = 0.14 a.u., a central frequency of ω0 = 0.07 a.u., and a pulse
duration of four cycles. The green dashed curve corresponds to the
time evolution of the energy of the classical trajectory associated with
a birth time of 190 a.u. and zero momentum as discussed in the text.

representing the dynamics of the first released wave packet,
does not contain any stripes and shows an energy cutoff of
about 0.5 to 1 a.u. Then the field releases a second wave packet
at time 150 a.u. which interferes with the first wave packet
leading to the complex interference pattern observed at the
second oscillation. The wave packet then continues to evolve
and shows a more and more complex structure as the number
of released wave packet increases. The dynamics of the wave
packet reaching the maximum energy at time 223 a.u. exhibits
an extent of the wave packet with an energy cutoff at 2 a.u.
and a slow amplitude decrease up to an energy of 5 a.u. At
this value of the field, the instantaneous Up is 1 a.u. While the
extension of the PES of the direct electron goes up to 2Up

[33] at the end of the pulse, we clearly observe an extent
of the PES up to 5Up during the interaction. This can be

FIG. 7. Same as Fig. 2 but for the field defined by an amplitude
of E0 = 0.14 a.u., a central frequency of ω0 = 0.07 a.u., and a pulse
duration of four cycles.

understood classically from momentum conservation giving
rise to p(t ) = A(t ) − A(t0) [assuming p(t0) = 0] with p(t ) the
classical momentum and t0 the time at which the wave packet
is released. The highest probability to release the wave packet
corresponds to times t0 close to maxima of the electric field
for which A(t0) is zero leading to a maximum energy of 2Up

as observed in our results at time 220 a.u.
We now focus on the part of the wave packet having an

energy extent up to 5Up. From the classical picture we are
then interested in the value of p(t ) so that p(t ) = √

2E =√
2 × 5Up = √

5/2A0. Since this energy is obtained at the
time t so that A(t ) = A0 then we seek for the time t0 for
which |A0 − A(t0)| = √

5/2A0. From this relation, we deduce
a contribution of the initial wave packet having a birth time
satisfying A(t0) ≈ −0.6A0 giving a time t0 of about 190 a.u.
This corresponds to an electric-field amplitude which is half
its maximal amplitude. Having defined this initial conditions,
from Newton’s laws of motion only including the interaction
with the laser field, we can retrace the classical trajectory and
plot the associated energy as a function of time. The result is
presented by the dashed green curve in Fig. 6 and shows good
agreement with the TDSE simulations. This wave-packet con-
tribution ends up at an energy of Up at the end of the pulse
as shown in our simulations. This plot does not present the
contribution of the recollision [33] leading to a high-energy
plateau since it is a linear scale and the plateau due to recolli-
sion located in the energy range from 2Up up to 10Up shows
up at a much lower probability. It can be studied also in detail
with our theory but it is going beyond the scope of this paper
and would require the use of the resolvent method of fourth
order as detailed in Appendix A.

IV. NONDIPOLE CASE

Up to now, we have considered the interaction of the laser
pulse with the system in the frame of the dipole approxi-
mation. Can the formalism presented in the first section be
extended to the case of nondipole description of the field? In
order to answer this question, we need a description of the
laser-matter interaction that is defined by a unitary transfor-
mation so that H (t ) = T H0T † with T = e−iχ (r,t ). This general
formulation of the Hamiltonian describing the interaction with
the field, as demonstrated in Sec. II, has a spectrum which
is the same as the one defined for the field-free case. The
Hamiltonian is then the one provided by setting φ = 0 [see
Eqs. (1) and (2)] and in its minimal coupling so only includ-
ing the transverse component of the vector potential so that
A(r, t ) = A⊥(r, t ). As a reminder, this choice of the potentials
also belongs to the Lorentz gauge. The corresponding relation
between the vector potential and χ is then ∇χ = A⊥(r, t ). If
there is such a solution, the magnetic component is provided
by B(r, t ) = ∇ × A⊥(r, t ) = ∇ × ∇χ = 0. In conclusion, by
virtue of reductio ad absurdum there is no solution for ∇χ =
A⊥(r, t ) except in the dipole approximation in which case
the vector potential is irrotational. This is coming from the
fact that the transverse component of the vector potential
remains unchanged by gauge transformation since it is the
one leading to the magnetic component which is a gauge
invariant quantity. Consequently, there is no possibility to
extract a meaningful time-dependent ionization probability in
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the nondipole description of the field, despite the fact that the
PES are gauge invariant at the end of the interaction.

V. GAUGE TRANSFORMATION WHEN SOLVING THE
TDSE IN A SUBSPACE

So far, calculations are performed using the full eigenbasis
defined by the Hamiltonian. This leads to the property of
closure relation for instance. In some situations, the use of
a restricted subspace of the Hamiltonian appears necessary.
This is the case when using the SAEA where the lowest ener-
getic states correspond to orbitals that are filled up and should
not be populated during the propagation. While removing
these states using the spectral method does not present any
difficulty, when using a propagation method in real space,
the so-called grid method, it requires special care. To do so,
we use the Feshbach [34,35] formalism so that the full space
represented by the eigenstate of the Hamiltonian is split into
two orthogonal subspaces denoted P and Q. The subspace
P contains the states of interest and Q contains the ones
that are disregarded. Of course P and Q are complementary
and satisfy 1 = P + Q and PQ = QP = 0. The propagation
using the grid method is then performed in the Hamiltonian
PHP. This is what is also performed formally speaking when
removing the states in the spectral method. The situation is
now to find the consequences of the gauge transformation
within this subspace. To that purpose, we define the new
Hamiltonian as H̃g = PHgP in the gauge g. We start from the
general transformation applied on H

Hg′ = UHgU
† + iU † ∂

∂t
U (21)

and we then project on the subspace P:

PHg′P = PUHgU
†P + iPU † ∂

∂t
UP. (22)

We seek for a gauge transform which keeps the Hamil-
tonian in the subspace defined by P, which means that U
commutes with P. It then leads to

PHg′P = UPHgPU † + iPU † ∂

∂t
UP. (23)

If we now write U = exp(−iχ ), then

PHg′P = UPHgPU † + P
∂χ

∂t
P. (24)

From this expression we clearly see that by replacing χ

by χ̃ = PχP, we retrieve a solution that satisfies all the
necessary conditions. In conclusion the gauge transformation
is acting through the operator U = exp(−iPχP). In partic-
ular, the transformation going from velocity to length form
is written exp(iA(t ) · PRP) in the dipole description of the
field. What is the consequence for the determination of time-
dependent ionization probability? As detailed in the previous
sections, we seek for a transformation of the form PHgP =
TPH0PT † in order to conserve an identical spectrum of
PHP and PH0P at all times. We start from the known trans-
formation in velocity gauge PHVP = PT0H0T †

0 P with T0 =
e−iA(t )·r. Since P and T0 do not commute in general, we cannot
obtain the transformation we seek for and all the conclusions
we have drawn so far fall down in the restricted subspace.

This conclusion is more general than the one affecting the
PES since there is not, in general, gauge invariance even for
the computation of the current—or dipole—in the subspace
defined in this section. This is due do the noncommutativity
of R and PχP.

There are three forms of the dipole response of the sys-
tem: (i) the length form provided by 〈�|R|�〉, (ii) the
velocity form written 〈�|�(t )|�〉 with �(t ) the general-
ized momentum (see Sec. II), and (iii) the acceleration form
〈�|∇V (r)|�〉. In standard quantum mechanics they are all re-
lated by time derivative in relation with the Ehrenfest theorem.
This is due to the properties [R, H] = −i� and [�, H] =
i∇V (r). From these formulas one can show the gauge invari-
ance of the latter quantities. Since we have to deal with the
Hamiltonian in a subspace, we have to replace H by PHP

and the corresponding gauge transformation. There is not a
general commutative property of the operator by the gauge
transform and in particular only the configuration involving
the linearly polarized field and computing the dipole in the
length form provides gauge invariance of the results.

VI. CONCLUSION

In this paper we have described the issue of gauge vari-
ance of the time-dependent ionization probability. We have
made use of the resolvent methodology to show (1) that the
spectrum defined by the field-free Hamiltonian is the same
as the one defined in the velocity form and (2) that from
this definition we can establish a procedure to obtain the
energy distribution as a function of time. From conclusion
1 we can define unambiguously the region of energy for
which ionization is meaningful. This energy definition can
be transformed into a projection on bound states when the
length form is used. This definition is particularly convenient
and can be used to compare with other methodologies in
order to discriminate the best ones. Clearly, from the three
configurations investigated in this paper, a usual rate equation,
despite a good formulation of the ionization probability at
the end of the pulse, is incapable of reproducing the proper
dynamics even in the simple cases. We have also determined
a formulation of the gauge transformation in case of the TDSE
resolved in a subspace. This formulation is quite different
from what one would infer using the simple Goepper-Mayer
transformation. Finally we concluded that an extension of this
study cannot be performed in the nondipole case. Most of the
study has been performed in one dimension, but its extension
to full dimension does not present any conceptual difficulties.
Special care has been made for multielectron extension. While
full ionization probability can be performed by means of the
resolvent as performed in this paper, the multichannel aspect
of the physical insight might bring some difficulties.
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APPENDIX A: PROPERTIES OF
THE RESOLVENT OPERATOR

In this Appendix we recall a few properties of the resolvent
operator that has been extensively described in [21,22].

The resolvent operator originally stems from the formal
definition of the scattering amplitude related to ionization.
Let us denote |�(Tf )〉 the wave function obtained at the
end of the pulse τ = Tf . In order to obtain the amplitude
of transition corresponding to ionization, one has to let
the wave function propagate in time up to infinity and
project onto plane waves leading to the amplitude of
transition: t (k) = limτ→∞〈k|�(Tf + τ )〉 where |k〉 is a
plane wave and |�(Tf + τ )〉 = U (τ )�(Tf ) with U (τ )
being the evolution operator associated with the field-free
Hamiltonian H0. Using the Møller operator [36], one
can show that this amplitude of transition is formally
provided by t (k) = 〈�−(k)|�(Tf )〉 where |�−(k)〉 is the
eigenstate of H0 having the proper incoming properties and
normalized in energy. One can also use the Gell-Mann and
Goldberger definition of limτ→∞ used in the amplitude
of transition so that t (k) = limε→0+〈k| iε

H0−E−iε |�(Tf )〉
with E = k2/2 [37]. The probability of ionization is then
Pion = ∫

dkt∗(k)t (k) = limε→0+〈�(Tf )|R(E , H0)|�(Tf )〉
where R(E , H0) = ε2

(H0−E )2+ε2 is the resolvent operator. While
this expression is formally correct, its use requires some care
since a finite box is employed to solve the TDSE as well as a
finite value of ε. In these conditions, the resolvent operator is
written R(E , H0) = Nε,n

ε2

(H0−E )2+ε2 .
One can note that the use of the resolvent allows for the

computation of the ionization probability without having to
compute explicitly the eigenstates. A generalization of the
resolvent operator is written

RH (E ) = Nε,n
ε2n

(E − H )2n + ε2n
, (A1)

where E is an energy (here a parameter of the resolvent), H
a time-independent Hamiltonian, ε is a parameter related to
the energy resolution of the resolvent, and Nε,n is a constant
coefficient allowing for converting probability into density
probability (see [22] for more details and the explicit expres-
sion of Nε,n). The last coefficient n is related to the order as
it will be detailed below. There is a range of ε for which the
latter quantity becomes independent of it; this is the range of
ε that should be employed and it is related to the density of
states defined in the numerical box [21,22].

If we assume that the Hamiltonian is described by the set of
eigenstates |En〉 associated with the energies En the resolvent
is written

RH (E ) =
∑

k

Nε,n,k
ε2n|Ek〉〈Ek|

(E − Ek )2n + ε2n
(A2)

in this basis. Nε,n,k = 1 if k refers to a bound state and it is
the k independent coefficient provided in [22] if k refers to
a continuum state. We observe that the resolvent acts as a
window function having an energy width depending on ε and
n. In particular since only a range of ε defines the density of
probability if one wants to increase the energy resolution then
n becomes the only parameter and has to be increased.

The probability of populating a state of energy E then
results from the contributions of states in its vicinity and the
one more distant. The contribution of a specific state i is then

P = |ci|2 ε2n

(E − Ei )2n + ε2n
, (A3)

for which we have omitted the normalization coefficient
(Nε,n,k) since we consider states in the continuum for which
this coefficient is the same. This probability presents a long
tail distribution provided by ε2n

(E−Ei )2n since |E − Ei| > ε. This
distribution can compete with the actual probability at the
energy E . In order to avoid this situation we need to sat-

isfy |ci|2 ε2n

(Ej−Ei )2n < |c j |2 so |c j |
|ci|

2
< ( ε

Ej−Ei
)2n where |c j | is the

probability at the energy E = Ej , the reference energy point
for the demonstration. Since ε is set within an energy range to
ensure the right properties of the resolvent, the remaining pa-
rameter that can be changed to increase the precision is n, and
the larger n the better. In practice n = 2 is usually enough to
describe most of the physics but increases the computational
time [33].

APPENDIX B: ON THE DEFINITION OF THE ADIABATIC
STATES FOR THE TIME-DEPENDENT HAMILTONIAN

In this Appendix we detail the concept of the adiabatic state
for the time-dependent Hamiltonian as used in this paper. It is
organized as follows: (i) we demonstrate how to define the
adiabatic state, (ii) we give a physical interpretation of the
latter state, and (iii) we illustrate the two previous points in
the case of the Volkov state. We start by questioning if there
exists a gauge leading to a time-dependent Hamiltonian hav-
ing the same spectrum as the one of the field-free Hamiltonian.

We begin with the eigenproblem H0|�E 〉 = E |�E 〉 with
|�E 〉 being the eigenstate of H0 associated with the eigenen-
ergy E . We now write the operator of gauge transformation as
T (t ) which is time dependent. We apply T (t ) on both sides
of the eigenequation and get T (t )H0|�E 〉 = ET (t )|�E 〉 =
T (t )H0T †(t )T (t )|�E 〉. So the state T (t )|�E 〉 is the eigenstate
of T (t )H0T †(t ) for the energy E , which is the eigenenergy
of the stationary state |�E 〉. This property is satisfied for
the whole spectrum of eigenenergies, bound and continuum
states, and is valid at all times. So the question is now to de-
termine if whether a Hamiltonian representing the interaction
with an electromagnetic field can be represented by a Hamil-
tonian of the form H (t ) = T (t )H0T †(t ). As described in the
paper there is such a Hamiltonian in the dipole approximation
which is the velocity gauge and T (t ) is provided by e−iA(t )·r.
From the latter theorem, we can define a state T (t )|�E 〉,
that is the eigenstate associated with a constant eigenenergy
E , for the time-dependent Hamiltonian T (t )H0T †(t ). That is
the reason why we call this state the adiabatic state. The
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time-dependent property is then completely transferred into
the wave function. To give an illustration of this prop-
erty, we will start from the Volkov state written in the
velocity gauge, corresponding to the solution of the time-
dependent Schrödinger equation for which the potential
V (r) [see Eq. (1)] is set to zero. The Volkov state
�VV (t ) = 1

(2π )3/2 ei
∫

dτ [k+A(τ )]2/2+ik·r is the solution of the

TDSE HV (t )|�VV (t )〉 = i ∂
∂t |�VV (t )〉 in the velocity gauge.

Starting from a plane-wave solution of the field-free Hamil-
tonian with the energy E = k2

2 noted |E〉 and using the
transformation defining the adiabatic state of the time-
dependent Hamiltonian, we get 1

(2π )3/2 ei[k−A(t )]·r. It is easy to

check that this state is the eigenstate of the operator [p+A(t )]2

2 ,
that is the Hamiltonian in the velocity gauge, for the constant
energy E = k2

2 . Last, we emphasize that, in contrast to the
Volkov state, the adiabatic state is not a solution of the TDSE.
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