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Active optical frequency standards provide interesting alternatives to their passive counterparts. Particularly,
such a clock alone continuously generates highly stable narrow-line laser radiation. Thus, a local oscillator is
not required to keep the optical phase during a dead time between interrogations as in passive clocks, but only to
boost the active clock’s low output power to practically usable levels with the current state of technology. Here we
investigate the spectral properties and the stability of active clocks, including homogeneous and inhomogeneous
broadening effects. We find that for short averaging times the stability is limited by photon shot noise from
the limited emitted laser power and at long averaging times by phase diffusion of the laser output. Operational
parameters for best long-term stability were identified. Using realistic numbers for an active clock with 87Sr, we
find that optimized stability of σy(τ ) ≈ 4 × 10−18/

√
τ [s] is achievable.
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I. INTRODUCTION

Modern-day optical clocks are passive frequency stan-
dards [1], where the frequency of a laser prestabilized to an
ultrastable optical cavity is periodically compared with the
frequency of a narrow and robust clock transition in a sam-
ple of trapped atoms (or ions). The measurement sequence
includes an interrogation time, during which the phase of the
laser is imprinted to the atomic sample, and a dead time, when
the laser prestabilized to an ultrastable macroscopic cavity
keeps the frequency, playing the role of a flywheel. Such
a clock has demonstrated excellent stability at the level of
6.6 × 10−19 after 1 h of averaging [2]; however, on a shorter
timescale this stability is limited by thermal and mechani-
cal fluctuations of the length of this ultrastable cavity. This
problem may be overcome with the help of an active optical
frequency standard based on a laser operating deep in the
bad-cavity regime [3,4], where the linewidth of the cavity is
much broader than the linewidth of the gain. The gain of such
a laser can be formed by forbidden transitions in alkaline-earth
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atoms, the same as are used for passive optical lattice clocks.
Similar to a hydrogen maser, the frequency of such a laser
is determined by the frequency of lasing transition and is
robust to fluctuations of the cavity length, which improves the
stability on shorter timescales.

In the present paper we study the stability that can be
attained with such a laser and compare it with that of a passive
optical clock based on an atomic ensemble with similar char-
acteristics. For the sake of definiteness, we consider the model
of a two-level laser with continuous incoherent repumping
[3]. Bad-cavity lasers based on other schemes, such as atomic
beam lasers [4], optical conveyor lasers [5], and lasers with
sequential coupling of atomic ensembles [6], should have
similar characteristics, up to some numerical factors. In Sec. II
we present general expressions for the short-term stability of
a secondary laser phase locked to a low-power narrow-line
continuous-wave bad-cavity laser. In Sec. III we calculate the
linewidth of the bad-cavity laser’s Lorentzian spectrum and
discuss how this linewidth depends on the natural linewidth of
the lasing transition in the employed gain atoms, on inhomo-
geneous broadening and dephasing of the atomic transition,
on the number of atoms providing the gain, and on parameters
of the cavity. We optimize the cooperativity as well as the
rate of incoherent pumping to attain a minimum linewidth
at a given atomic number and cavity finesse. We express
these optimized parameters as well as the linewidth and the
respective number of intracavity photons via characteristic
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properties of the atomic ensemble. In Sec. IV we estimate the
achievable performance for ensembles of atoms trapped in an
optical lattice potential and compare the respective frequency
stabilities that can be obtained with the help of active and
passive frequency standards based on such ensembles.

II. ACTIVE OPTICAL FREQUENCY STANDARD
AND ITS STABILITY

The spectral characteristics of a bad-cavity laser’s output
field E can be described by its power spectral density SE ( f ). It
can be obtained from the two-time correlation function R(τ )
with the help of the well-known Wiener-Khinchin theorem,
see Eq. (21) in Sec. III C and Ref. [7]. In first approximation
R(τ ) may be described by an exponentially decaying function
that corresponds to a Lorentzian lineshape of SE ( f ) centered
at an ordinary frequency f0 = ω0/(2π ) with half-width � f =
�ω/(2π ). Such a signal has white frequency noise with a
single-sided spectral power density Sy( f ) of fractional fre-
quency fluctuations y = �ω/ω0 equal to

Sy( f ) = � f

π f 2
0

= 2�ω

ω2
0

, (1)

corresponding to a spectral power density Sφ ( f ) of phase
fluctuations,

Sφ ( f ) = � f

π f 2
= 2�ω f 2, (2)

and Allan deviation,

σ ′
y(τ ) =

√
�ω

ω2
0τ

. (3)

In addition, due to the finite rate of emitted photons, the
field of power P shows quantum fluctuations, leading to a lim-
ited signal-to-noise ratio expressed as the ratio of signal power
to power of the noise per unit bandwidth SNR = P/(h̄ω0)
[8]. These fluctuations appear as white amplitude and phase
noise of the signal. When the active-laser output is hetero-
dyned with an ideal powerful and perfectly stable cw laser, the
amplitude noise is usually of no importance to the frequency
stability, and the power spectral density of white phase noise
Sφ amounts to

Sφ ( f ) = SNR−1 = h̄ω0

P
, (4)

with the corresponding Allan deviation [9,10]

σ ′′
y (τ ) = 1

τ

√
3h̄ fh

ω0P
. (5)

As the Allan deviation would diverge for white phase noise
with unlimited bandwidth, the noise is set to zero for frequen-
cies above a cutoff frequency fh (in ordinary frequency units)
to obtain a finite value. In practice this low-pass behavior can
appear from the bandwidth of a phase-locked loop using the
heterodyne signal.

To avoid dependence on the arbitrary cutoff frequency, in
this case the modified Allan deviation is often used:

mod σ ′′
y (τ ) = 1

τ 3/2

√
3h̄

2ω0P
. (6)

Adding the random walk noise of the phase associated with
damping of two-time correlation of the cavity field and the
white phase noise associated with shot noise in the number of
emitted photons results in the overall Allan deviation

σy(τ ) =
√

[σ ′
y(τ )]2 + [σ ′′

y (τ )]2 =
√

�ω

ω2
0τ

+ 3h̄ fh

ω0Pτ 2
(7)

and the overall modified Allan deviation

mod σy(τ ) =
√

mod σ ′
y(τ )2 + mod σ ′′

y (τ )2

=
√

�ω

2ω2
0τ

+ 3h̄

2ω0Pτ 3
. (8)

At short averaging times τ it is determined by the bad-
cavity laser’s output power P and at long times by its linewidth
�ω.

The contribution σ ′′
y (τ ) [Eq. (5)] to the total instability

σy(τ ) is associated with the photon shot noise. Its influence
depends on the bandwidth of the feedback loop to phase lock
a secondary laser with good short-term stability to the bad-
cavity laser (see discussion in Sec. IV). The contribution σ ′

y(τ )
[Eq. (3)] is more fundamental in the sense that it does not
depend on the properties of the secondary laser and it limits
the stability on a longer timescale.

In the next section we consider a generic model of a
two-level bad-cavity laser with incoherent pumping and find
general expressions for the minimum linewidth �ω and the
necessary set of optimized parameters.

III. LINEWIDTH OF A BAD-CAVITY LASER

In this section we overview the dependence of the
linewidth on the characteristics of the bad-cavity laser with
continuous incoherent repumping and estimate the minimum
linewidth which can be achieved in such a laser. First we con-
sider a two-level model of a bad-cavity laser with incoherent
pumping, as studied in Ref. [3]. Such a laser has two lasing
thresholds Rmin and Rmax; below the lower threshold Rmin the
pumping is not enough to create the necessary inversion for
the lasing, and above the upper threshold Rmax the pump-
ing destroys the coherence, thus also preventing the coherent
emission. In the homogeneous case (i.e., when all atoms con-
tributing to the gain have exactly the same parameters, such as
coupling strength with the cavity field, transition frequency,
dephasing rate, etc.), and when the laser operates far from the
lower and the upper lasing thresholds, the linewidth �ωmin of
such a laser can be estimated [3] as

�ωmin ≈ Cγs = 4g2/κ. (9)

Here κ is the decay rate of the energy of the cavity field,
g is the coupling strength between the laser field and the
atomic transition [the Hamiltonian is presented in expression
(11)], γs is the spontaneous rate of the lasing transition, and
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C = 4g2/(κγs) is the cooperativity parameter. It may seem
that one should just make the cooperativity C as small as
possible to minimize the linewidth. However, expression (9)
is valid only if the pumping rate R is much bigger than the
lower and much smaller than the upper lasing thresholds Rmin

and Rmax, respectively. Accurate expressions for these thresh-
olds in the homogeneous case will be derived in Sec. III B.
One may see from expressions (32) and (33) that both lasing
thresholds approach each other when the cooperativity C de-
creases at a given number N of atoms. Therefore, a minimum
linewidth is attained in such a range of parameters where
the condition Rmin � R � Rmax is not fulfilled anymore and
where the estimate in Eq. (9) is not valid. Thus, we need to
find a more accurate estimate for �ωmin.

The spectral properties of a continuous-wave laser can be
derived from the two-time correlation function of its out-
put field R(τ ) = 〈â†(t0 + τ )â(t0)〉, which in the bad-cavity
regime is directly proportional to the correlation of the atomic
coherence [3]. In the present paper we limit our consideration
to a model where the laser gain is formed by N two-level
atoms subjected to incoherent pumping and coupled to the
cavity field. Such a two-level model can correctly represent
the dynamic of a real multilevel superradiant laser with con-
tinuous repumping and single lasing transition, if the lifetimes
of the intermediate levels are much shorter than any other
timescale in the system except, maybe, the decay rate of the
cavity field [11]. Because the Hilbert space describing such
a system grows exponentially with atom number N , one has
to use some approximation to reduce the problem size. We
restrict our consideration to a second-order cumulant approxi-
mation, following Refs. [3] and [12], which allows calculating
both output power and spectrum of the superradiant laser. In
Sec. III A we briefly overview the model and explain the most
important details of the calculation. In Sec. III B we consider
the particular case of a homogeneous system, where all the
atoms are equally coupled to the cavity field and share the
same transition frequency and all other parameters. We obtain
analytical expressions for the output power and the linewidth
in this simplest case and perform a qualitative analysis of their
dependencies. In Sec. III C we study the linewidth quantita-
tively, both for the simple homogeneous model and for a more
realistic model with inhomogeneous coupling of the atoms to
the cavity field and inhomogeneous broadening of the lasing
transition.

A. Inhomogeneous system: Description
of the model and equations

We consider an ensemble of N two-level atoms confined
in space (for example, with the help of an optical lattice
potential) and interacting with a single cavity mode, see Fig. 1.
We neglect dipole-dipole interactions between different atoms
as well as collective coupling of the atoms to the bath. The
averaged value of an operator Ô describing such a system can
be written as

〈dÔ〉
dt

= i

h̄
〈[Ĥ, Ô]〉 + 〈 ˆ̂L[Ô]〉. (10)

FIG. 1. Level diagram of a two-level atom coupled to the cavity
field. Here δ′

k is the shift between the cavity and the atomic transition
frequency, R is the incoherent pumping rate, γs is the spontaneous
decay rate, γ ′ is the dephasing rate of the atom, κ is the energy decay
rate of the cavity field, and ξ is the cavity dephasing rate.

The Hamiltonian Ĥ in the rotating frame can be written as

Ĥ = h̄

[
δcâ†â +

N∑
j=1

g j
(
σ̂ j

egâ + â†σ̂ j
ge

)+∑
j

� j σ̂
j

ee

]
, (11)

where â† and â are field creation and annihilation opera-
tors, index j runs over the atoms, σ̂

j
αβ = |α j〉〈β j |⊗k �= j 1̂

k

are single-atom transition operators, |α j〉 and |β j〉 run over
ground |gj〉 and excited |e j〉 states of the jth atom, g j is a
coupling coefficient between the jth atom and the field, � j

is the shift of the transition in the jth atom caused by some
nonhomogeneous effects, and δc is the shift of the cavity
resonance frequency from the frequency of our rotating frame.

The Liouvillian term describing the dissipative process is
equal to

ˆ̂L[Ô] = κ ˆ̂D[â]Ô + ξ ˆ̂D[â†â]Ô +
N∑

j=1

[
γs

ˆ̂D
[
σ̂ j

ge

]
Ô

+ Rj
ˆ̂D
[
σ̂ j

eg

]
Ô + γ ′

j
ˆ̂D
[
σ̂ j

ee

]
Ô
]
, (12)

where ˆ̂D[ p̂]Ô = p̂†Ôp̂ − 1
2 ( p̂† p̂Ô + Ôp̂† p̂) is a Lindbladian

superoperator. Here κ is the decay rate of the energy of the
cavity mode, γs is the spontaneous decay rate of the upper
lasing state, ξ is the dephasing rate of the cavity field, and Rj

and γ ′
j are the rates of incoherent pumping and dephasing of

the jth atom.
The closed set of differential equations for the stochastic

means of system operators can be written with the help of
a cumulant expansion up to the second order and the phase
invariance as in [12]

d

dt
〈â†â〉 = −κ〈â†â〉 + i

N∑
j=1

g j
(〈
σ̂ j

egâ
〉− 〈â†σ̂ j

ge

〉)
, (13)

d

dt

〈
σ̂ k

egâ
〉 = −

[
κ ′

k

2
+ iδ′

k

]
σ̂ k

eg + igk
[〈â†â〉(1 − 2

〈
σ̂ k

ee

〉)− 〈σ̂ k
ee

〉]
− i
∑
j �=k

g j
〈
σ̂ k

egσ̂
j

ge

〉
, (14)
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d

dt

〈
σ̂ k

ee

〉 = igk
[〈

â†σ̂ k
ge

〉− 〈σ̂ k
egâ
〉]− (γs + Rk )

〈
σ̂ k

ee

〉+ Rk, (15)

d

dt

〈
σ̂ k

egσ̂
l
ge

〉 = −[�′
kl + i�lk]

〈
σ̂ k

egσ̂
l
ge

〉− igk
〈
â†σ̂ l

ge

〉(
2
〈
σ̂ k

ee

〉− 1
)

+ igl
〈
σ̂ k

egâ
〉(

2
〈
σ̂ l

ee

〉− 1
)
, (16)

where κ ′
k = κ + ξ + Rk + γ ′

k + γs, δ′
k = δc − �k , �′

kl =
γs + (Rk + Rl + γ ′

k + γ ′
l )/2, and �lk = �l − �k . These

equations can, in principle, be solved numerically. However,
the number of equations scales quadratically with the number
of atoms. For practical simulations of ensembles with tens
of thousands of atoms, one needs to group the atoms into M
clusters, where all Nj atoms of a jth cluster are considered
as identical. Also, if the rate κ is much larger than all the
evolution rates of atomic polarizabilities, it is convenient to
perform an adiabatic elimination of the fast variables 〈â†â〉,
〈â†σ̂ge〉, 〈σ̂egâ〉. Then one may express

〈â†â〉 =
{

κ −
∑

k

4Nkg2
kκ

′
k

κ ′2
k + 4δ′2

k

[
2
〈
σ̂ k

ee

〉− 1
]}−1∑

k

4gkNk

κ ′2
k + 4δ′2

k

{
κ ′

k

[
gk
〈
σ̂ k

ee

〉+∑
j

N ′
j,kg j	

(〈
σ̂ k

egσ̂
j

ge

〉)]

+ 2δ′
k

[∑
j

N ′
j,kg j


(〈
σ̂ k

egσ̂
j

ge

〉)]}
(17)

and

〈
σ̂ k

egâ
〉 = 2

κ ′
k + 2iδ′

k

{
igk
[〈â†â〉(1 − 2

〈
σ̂ k

ee

〉)− 〈σ̂ k
ee

〉]− i
∑

j

N ′
j,kg j
〈
σ̂ k

egσ̂
j

ge

〉}
. (18)

Here the sums are taken over clusters instead of atoms, Nk is the number of atoms in the cluster, and

N ′
j,k =

{
Nj, j �= k
max(0, Nk − 1), j = k

. (19)

Substituting expressions (17) and (18) into Eqs. (15) and (16), and solving them numerically, one can find the steady-state values
of 〈σ̂ j

egâ〉 and 〈σ̂ j
ee〉, if only the atomic dipoles get synchronized. Then one may express the steady-state values of 〈â†â〉, 〈σ̂ j

egâ〉,
and 〈â†σ̂

j
ge〉 with the help of Eqs. (17) and (18). The output power P of the laser is equal to

P = ηh̄ω0κ〈â†â〉, (20)

where η is the relative transmission of the outcoupling mirror, and ω0 is the angular frequency of the laser radiation.
Finally, let us discuss how to calculate the spectrum of the superradiant laser. According to the Wiener-Khinchin theorem,

the spectral density SE ( f ) of the signal can be obtained as a real part of Fourier transform of the two-time correlation function
R(τ ) = 〈â†(t0 + τ )â(t0)〉:

SE ( f ) ∝ Re
∫ ∞

0
R(τ )e−2π i f τ dτ. (21)

In an established steady-state regime 〈â†(t0 + τ )â(t0)〉 = 〈â†(τ )â(0)〉 ≡ 〈â†â0〉, where â† = â†(t ) and â0 = â(0). To find this
function, one needs to solve the set of equations obtained with the help of the quantum regression theorem,

d

dt
〈â†â0〉 = −

[
κ + ξ

2
− iδc

]
〈â†â0〉 + i

∑
k

Nkgk
〈
σ̂ k

egâ0
〉
, (22)

d

dt

〈
σ̂ k

egâ0
〉 = −

[
γs + Rk + γ ′

k

2
− i�k

]〈
σ̂ k

egâ0
〉− igk

〈
σ̂ k

z

〉〈
â†â0
〉
, (23)

where 〈σ̂ k
z 〉 = 〈σ̂ k

ee〉 − 〈σ̂ k
gg〉. Substituting here the established time-independent values of 〈σ̂ k

z 〉 into Eqs. (22) and (23) and
performing the Laplace transform, one obtains a set of linear equations of the form (A + I s) · X = B, where I is identity
matrix,

A =

⎡
⎢⎢⎢⎢⎢⎣

κ+ξ

2 − iδc −iN1g1 · · · · · · −iNMgM

ig1
〈
σ 1

z

〉 γ+R1+γ ′
1

2 − i�1 · · · 0 · · · 0
...

...
. . .

...

igM
〈
σ M

z

〉
0 · · · 0 · · · γ+RM+γ ′

M
2 − i�M

⎤
⎥⎥⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎢⎣

〈â†â〉s〈
σ̂ 1

egâ
〉
s

...〈
σ̂ M

eg â
〉
s

⎤
⎥⎥⎥⎥⎦, X =

⎡
⎢⎢⎢⎢⎣
L{〈â†â0〉}(s)

L
{〈

σ̂ 1
egâ0
〉}

(s)
...

L
{〈

σ̂ M
eg â0
〉}

(s)

⎤
⎥⎥⎥⎥⎦, (24)
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where L{ f }(s) = ∫∞
0 f (t )e−st dt is the Laplace transform and

the subscript s denotes steady state. Using the connection
between Laplace and Fourier transforms, one can calculate the
power spectral density of the bad-cavity laser output,

SE ( f ) ∝ Re
[
L{〈â†â0〉}(2π i f )

]
. (25)

From the power spectral density obtained with the help of
Eqs. (24) and (25), one obtains the laser’s full linewidth at half
maximum � f = �ω/(2π ).

B. Homogeneous case: Analytic expressions and
qualitative considerations

In this section we consider the simplest case of a bad-cavity
laser with homogeneous gain, i.e., the situation when all the
atoms have the same transition frequency ωa, pumping and
dephasing rate R and γ ′, and coupling strength g to the cavity

field. The steady-state solution and the linewidth for such a
simple system in second-order cumulant approximation can
be found analytically or semianalytically. This analysis has
been partially performed, for example, in Ref. [3], and here
we overview the main results and derive a few useful relations.
The correspondence between our notation and the notation
used there is the following: R = w, γs = γ , γ ′ = 2/T2, and
g = �/2.

First, from Eqs. (13)–(15) one may easily express that in
the homogeneous case

〈â†â〉s = N (γs + R)

2κ

(
R − γs

R + γs
− 〈σ̂z〉s

)
(26)

〈
σ̂ 1

egσ̂
2
ge

〉
s = 〈σ̂z〉s(γs + R)

2�′

(
R − γs

R + γs
− 〈σ̂z〉s

)
, (27)

where �′ = γs + R + γ ′, κ ′ = κ + ξ + �′. Substituting these
expressions into Eq. (17), one may obtain, after some algebra,
the following quadratic equation for 〈σ̂z〉s:

〈σ̂z〉2
s

(
N (γs + R)

2κ
+ (N − 1)(γs + R)

2�′

)
+ (R − γs)(κ ′2 + 4(δc − �)2)

8g2κ ′ − 1

2

−〈σ̂z〉s

[
(R + γs)(κ ′2 + 4(δc − �)2)

8g2κ ′ + 1

2
+ (R − γs)

2

(
N

κ
+ N − 1

�′

)]
= 0. (28)

Solving this equation, we obtain the steady-state values 〈σ̂z〉s as well as 〈â†â〉s and 〈σ̂ 1
egσ̂

2
ge〉s with the help of Eqs. (26) and (27).

Further, in this section we suppose, for the sake of simplicity, that all the atoms are in resonance with the cavity (δc = � = 0),
and that the cavity dephasing rate ξ is negligible (ξ = 0). Then Eq. (28) simplifies to

〈σ̂z〉2
s

(
N (γs + R)

2κ
+ (N − 1)(γs + R)

2�′

)
+ (R − γs)κ ′

8g2
− 1

2
− 〈σ̂z〉s

[
(R + γs)κ ′

8g2
+ 1

2
+ (R − γs)

2

(
N

κ
+ N − 1

�′

)]
= 0. (29)

Consider Eq. (29). First, taking N ≈ N − 1 and neglecting
γs, R, and g in comparison with κ , one may express its approx-
imate solutions as

〈σ̂z〉s,1 ≈ κ�′

4g2N
, 〈σ̂z〉s,2 ≈ R − γs

R + γs
, (30)

and only the first solution gives 〈â†â〉s �= 0. This solution al-
lows us to estimate the lasing thresholds. Substituting Eq. (30)
into Eq. (26), one may find that lasing is possible, i.e.,
〈â†â〉s > 0, only if

R − γs

R + γs
>

κ (γs + R + γ ′)
4g2N

= γs + R + γ ′

NCγs
, (31)

where we have introduced the cooperativity parameter C =
4g2/(κγs), in order to find limits of the pumping rate R:

Rmin = NCγs − γ ′ −√(NCγs − γ ′)2 − 8γ 2
s NC

2
− γs,

Rmax = NCγs − γ ′ +√(NCγs − γ ′)2 − 8γ 2
s NC

2
− γs.

(32)
With γs, γ

′ � NCγs it gives

Rmin ≈ γs
NCγs + γ ′

NCγs − γ ′ , Rmax ≈ NCγs − γ ′, (33)

in correspondence with Ref. [13].

The spectrum for the homogeneous case can be found
from the set of linear Eqs. (22) and (23) where, instead of
performing the Laplace transform of the solution, we can just
calculate �ω as �ω = 2|λ|. Here λ is the eigenvalue with the
smallest absolute value of the matrix of this system (which
can be easily proven by the Fourier transform of exponentially
decaying term in 〈â†â0〉). Taking κ � |λ|, one may express

�ω = �′ − 4g2N〈σ̂z〉s

κ
. (34)

One may see that to calculate the linewidth one has to go
beyond the semiclassical approximation: indeed, an attempt
to substitute 〈σ̂z〉s,1 from Eq. (30) into Eq. (34) gives �ω =
0. The straightforward way to calculate �ω is to solve the
quadratic Eq. (29) exactly; however, the result is too bulky for
simple qualitative analysis. Instead, we calculate a correction
to the approximate solution (30), expanding the coefficients of
Eq. (29) into Fourier series. After some algebra we get

�ω ≈ �′(�′ + NCγs)

2〈â†â〉sκ
− �′

N
. (35)

In the limit γs, γ
′ � R � NCγs it gives �ω ≈ Cγs. This re-

sult has been reported in Ref. [3] as a minimum attainable
linewidth at a given cooperativity C. We cannot, however, take
C as arbitrarily small, otherwise we get into a situation where
Rmin > Rmax, and lasing becomes impossible. The minimum

053114-5



GEORGY A. KAZAKOV et al. PHYSICAL REVIEW A 106, 053114 (2022)

FIG. 2. Dependency of linewidth �ω on repumping rate R for a homogeneous system at different values of CN for different values of
number N of atoms and finesse F of the cavity: (a) N = 104, F = 104; (b) N = 105, F = 105. In both cases the atomic dephasing rate is
γ ′ = 0.1 s−1 and the cavity length is lcav = 10 cm, which corresponds to κ = πc/(F lcav ) ≈ 9.4 × 105 s−1 and κ ≈ 9.4 × 104 s−1, respectively

value of C, above which the lasing is still possible, can be
found from equalizing Rmin and Rmax in Eq. (32), which gives

(NCminγs − γ ′)2 = 8NCminγ
2
s . (36)

At γ ′ = 0 this minimum value is Cmin = 8/N . Moreover, at
very small C the condition γs, γ

′ � R � NCγs also cannot
be fulfilled, and the optimal value of C, where the minimum
linewidth is attained, is larger than (but proportional to) Cmin.

We can conclude that the minimum attainable linewidth
�ωmin is proportional to γs/N . Therefore, it is convenient to
express �ω in units of γs/N as a function of the collective co-
operativity CN . Also, from expressions (26) and (30) we note
that the dimensionless value 〈â†â〉κ/(Nγs) does not depends
on κ and N at given values of CN , R/γs, and γ ′/γs.

C. Minimized linewidth

In this subsection we investigate in more detail the de-
pendence of the optimized spectral linewidth �ω on various
parameters of the superradiant laser. First, we consider the
homogeneous case. In Fig. 2 we present the linewidth �ω

for different values of CN as function of incoherent repump-
ing rate R, calculated according to the method described in
Sec. III B. One may see that, being expressed in units of γs/N ,
all the linewidths show a quite similar behavior, except near
the lower and the upper lasing thresholds.

For any of the curves, similar to the ones presented in
Fig. 3, we can find the minimum linewidth �ωmin, obtained
at some optimal repumping rate Ropt. In Fig. 3 we present the
dependency of these minimized linewidths on CN for different
values of the atomic dephasing rate γ ′, number N of atoms,
and cavity finesse F . Note that the value �ωmin expressed
in units of γs/N as well as the optimal repumping rate Ropt

does not depend on N (i.e., the optimized linewidth �ωmin is
inversely proportional to N at a given value of CN). Similarly,
the ratio of 〈â†â〉κ to Nγs corresponding to the minimized
linewidth as well as the optimal repumping rate Ropt depend
on the atomic dephasing rate γ ′ but not on F or N . In this
example the cavity length lcav has been taken as lcav = 10 cm,
although the results are not sensitive to variations of the cavity
length as long as the laser operates in the bad-cavity regime,
as discussed in Sec. IV.

We should also note that the value 〈â†â〉κ/(Nγs) has a
simple physical interpretation: it is the ratio of number of
photons emitted from the cavity mode (in the case of the per-
fect outcoupling mirror η = 1) to the single-atom spontaneous
emission rate γs multiplied by the number of atoms. Near the
maximum of the output power this ratio is proportional to N ;
however, near the minimum of the linewidth it is independent
of N . In the absence of atomic dephasing, the minimum at-
tainable linewidth (optimized by both the repumping rate R
and the cooperativity C) is about �ωopt ≈ 64 γs/N .

Up to now we calculated the linewidths in the frame of a
fully homogeneous model. However, in real systems different
atoms may expect different level shifts, different dephasings
due to interaction with environment, and different pumping
rates. Last but not least, different atoms can be coupled
differently with the superradiant cavity field. This happens
particularly when the atoms trapped within the magic optical
lattice created inside the superradiant cavity are coupled to
the standing-wave mode of the same cavity, because of the
mismatch of the magic wavelength trapping the atoms and the
wavelength of the superradiant mode, see expression (43) in
Sec. IV. The spectral linewidth of the superradiant radiation
can be calculated using the method described in Sec. III A. In
Fig. 4 we present the dependencies of the minimum attainable
linewidth �ωmin and the intracavity photon number 〈â†â〉 on
collective cooperativity CN , calculated for repumping rates
Ropt which minimize the linewidth. We grouped the atoms
into M = 21 clusters containing equal numbers of atoms.
Coupling coefficients g j for the jth cluster were taken pro-
portional to cos( π ( j−0.5)

2M ); all the other parameters are the
same for all the clusters, also � j = δc = ξ = 0. The collective
cooperativity CN in this case is defined according to

CN =
∑

j

4g2
j

κγs
. (37)

For comparison, we present the dependencies of �ωmin and
〈â†â〉opt calculated according to the homogeneous model. One
can see that the homogeneous model slightly underestimates
the attainable linewidth and overestimates the intracavity pho-
ton number, both by a factor of about 1.4 near the optimally
chosen CN . Particularly, at γ ′ = 12γs the minimum linewidth
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FIG. 3. (a and b) Dependency of minimum attainable linewidth �ωmin, (c and d) the optimal repumping rate Ropt in units of γs, and (e and
f) the respective intracavity photon number 〈â†â〉opt multiplied by κ/(Nγs) on the collective cooperativity CN for different values of atomic
dephasing γ ′. The graphs are for different values of number N of atoms and finesse F of the cavity: for (a), (c), and (e), N = 104, F = 104;
for (b), (d), and (f), N = 105, F = 105. In (a) and (b) the asymptotic CN behavior is indicated by a black line.

FIG. 4. (a) Dependency of minimum attainable linewidth �ωmin in units of γs/N and (b) the respective intracavity photon number 〈â†â〉opt

multiplied by κ/(Nγs) on the collective cooperativity CN for a system with inhomogeneous cosine-modulated coupling (thick curves) for
different values of atomic dephasing rate γ ′ at N = 105, F = 105. The cavity length is lcav = 10 cm. Thin curves represent the linewidths and
the intracavity photon numbers calculated according to the homogeneous model; the same color and style corresponds to the same value of γ ′.
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FIG. 5. (a) Dependency of minimum attainable linewidth �ωmin in units of γs/N and (b) the respective intracavity photon number 〈â†â〉opt

multiplied by κ/(Nγs ) on the collective cooperativity CN for a system with inhomogeneous cosine-modulated coupling for different values of
broadening �0 at N = 105, F = 105. The atomic dephasing rate is γ ′ = 0 (thick curves) and γ ′ = 12γs (thin curves; only for �0 = 12γs and
�0 = 120γs, the same color-style encoding corresponds to the same values of �0). The cavity length is lcav = 10 cm.

s �ω ≈ 4.3 × 102 γs/N for inhomogeneous coupling, and
�ω ≈ 3.1 × 102 γs/N for homogeneous coupling.

Figure 5 shows the minimized linewidth �ωmin for a sys-
tem where not only the coupling of the atoms to the cavity
mode is inhomogeneous, but also the lasing transitions in
different atoms have different shifts � j . Such shifts can be
caused by variations of environmental parameters over the
atomic ensemble. Here we considered the simplest case where
the atomic detunings � j are evenly distributed over 11 clus-
ters between ±�0, and the couplings are also distributed
over seven clusters; therefore we have 77 clusters in total. At
γ ′ = �0 = 12γs the minimum attainable linewidth �ωmin ≈
7 × 102 γs/N , whereas increasing �0 to 120 γs would increase
the linewidth to about �ωmin ≈ 4.65 × 103 γs/N .

Finally, it is useful to consider the dependence of the
linewidth �ωopt, doubly minimized both in R and CN , on the
dephasing rate γ ′ and on the inhomogeneous broadening �0.
By fitting the result of the simulations we obtain the estimated
linewidth in the form

�ωopt ≈ (90γs + 30γ ′ + 35�0)/N. (38)

Expressing the linewidth via the more useful dispersion of the
shifts �′

0 = �0/
√

3 for the flat distribution assumed in the
simulations gives approximately

�ωopt ≈ (90γs + 30γ ′ + 60�′
0)/N. (39)

Similarly, one can find approximate expressions for the
optimal pumping rate Ropt, for the collective cooperativity
(CN )opt, and for the intracavity photon number, where the
smallest linewidth �ωopt is achieved:

Ropt ≈ 5γs + 1.13γ ′ + 1.5�′
0, (40)

(CN )opt ≈ 25 + 5.5
γ ′

γs
+ 20

�′
0

γs
, (41)

〈â†â〉opt ≈ N

κ
(0.9γs + 0.25γ ′ + 1.45�′

0). (42)

IV. ESTIMATION OF ATTAINABLE STABILITY

To perform quantitative estimations, we need to consider
realistic parameters of the atomic ensemble. The double for-
bidden 1S0 ↔ 3P0 transition (clock transition) in fermionic
isotopes of alkaline-earth-like atoms (Be, Mg, Ca, Sr, Zn, Cd,
Hg, and Yb) seems to be a good choice for optical clocks
with neutral atoms. This transition is totally forbidden in
bosonic isotopes and becomes slightly allowed in fermionic
isotopes by hyperfine mixing. These atoms can be trapped
in the magic-wavelength optical lattice potential and pumped
into the upper 3P0 lasing state. In an active optical clock the
clock transition should be coupled to a high-finesse cavity in
the strong cooperative coupling regime, which is problematic
for wavelengths of about 458 nm (corresponding to clock
transition in Mg) and shorter. Therefore, Ca, Sr, and Yb with
wavelengths of the clock transition λ equal to 660, 698, and
578 nm, respectively, are the most feasible candidates for the
role of gain atoms in active optical clocks. In the present
paper we will primarily perform our estimations for the 87Sr
isotope, because, first, this element is the most used one in
modern optical clocks with neutral atoms and its relevant
characteristics are the most studied among all the alkaline-
earth-like atoms. Second, the natural linewidth of the clock
transition in 87Sr (γs = 8.48 × 10−3 s−1 [14]) lies between the
linewidths of 43Ca (2.2 × 10−3 s−1) and Yb (43.5 × 10−3 s−1

and 38.5 × 10−3 s−1 for 171Yb and 173Yb, respectively) [15].
The finesse F of the best cavities at a wavelength of

698 nm can reach values of up to 106; however, it is quite
difficult to build such a cavity. More feasible finesse values
would range from tens to hundreds of thousands. For the sake
of definiteness, we take F = 105 as a typical parameter.

The coupling strengths g j between the lasing transition in
the jth atom and the cavity field can be estimated as

g j ≈ 1

wc

√
6c3γs

lcavω
2
0

cos(k0z j ), (43)

where k0 = ω0/c is the wave number of the cavity mode, wc

is the cavity waist radius, and z j is the z coordinate of the jth
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atom along the cavity axis [16]. For the sake of simplicity,
here we neglect the dependency of the coupling strength g on
the distance from the atom to the cavity axis proportional to
exp[−(x2

j + y2
j )/w

2
c ] [which can be relevant for atoms trapped

in two-dimensional (2D) or three-dimensional (3D) optical
lattices as well as for relatively hot atomic ensembles in
shallow one-dimensional (1D) optical lattice]. Note that the
cooperativity C = 4

∑
j g2

j/(Nκγs) does not depend on the
length of the cavity lcav but only on the cavity finesse F and
the cavity mode waist wc, because both g2

j and κ are inversely
proportional to lcav. Therefore, the cavity length lcav is not a
very important parameter, as long as the energy decay rate
κ = πc/(lcavF ) of the cavity mode is much larger than the
linewidth of the laser gain. For the calculations performed in
Sec. III we take lcav = 10 cm, which corresponds to a decay
rate κ = 9.42 × 104 s−1 ≈ 2π × 15 Hz at F = 105.

Let us first compare the ultimate stability of an in-
coherently pumped active optical frequency standard with
the stability of a quantum projection noise (QPN) limited
passive frequency standard, assuming the same number of
trapped atoms in both standards and no inhomogeneous
broadening or decoherence. The fundamental limit of the
superradiant laser linewidth is then �ω ≈ 90 γs/N , as fol-
lows from expression (39). This corresponds to a short-term
stability,

σy,lim(τ ) ≈ 1

ω

√
90γs

Nτ
≈ 9.5

ω

√
γs

Nτ
. (44)

For passive optical clocks the quantum projection noise lim-
ited stability σy,QPN,Rams and σy,QPN,Rabi for Ramsey and Rabi
interrogation schemes, respectively, can be estimated as [1,2]

σy,QPN,Rams(τ ) = 1

ω
√

NTpτ
, (45)

σy,QPN,Rabi(τ ) ≈ 1.69

ω
√

NTpτ
, (46)

if the total Rabi or Ramsey interrogation time Tp is much
longer than all the other durations required for state prepa-
ration and measurement, and if it is much shorter than the
excited state lifetime 1/γs. Comparing Eq. (44) with Eqs. (45)
and (46), one may see that at the same atom number the ulti-
mate stability [Eq. (44)] attainable with an active optical clock
with incoherent pumping can be matched by the QPN limited
stability of a passive clock, at interrogation times of Tp =
1/(90 γs) ≈ 0.011/γs for Ramsey and Tp = 1.692/(90 γs) ≈
0.032/γs for Rabi interrogation. For clocks using 87Sr these
times are Tp = 1.31 s for Ramsey and Tp = 3.74 s for Rabi
interrogation. For the 1S0 ↔ 3P0 transition in 173Yb, the cor-
responding times are 0.25 s and 0.72 s, respectively, and for
43Ca they are 5.05 s and 14.4 s.

A more realistic comparison between the achievable stabil-
ity of the active and passive optical frequency standards must
include additional dephasing of the atomic transition, as well
as imperfections of the local oscillator in a passive clock. The
transverse dephasing rate γ ′ = 2/T2 of the atomic transition

is limited by Raman scattering of photons from the optical
lattice potential [17], and by site-to-site tunneling of the atoms
[18]. In a shallow cubic 3D optical lattice with 87Sr [19] an
optimized coherence time T2 ≈ 10 s was achieved, which cor-
responds to γ ′ ≈ 0.2 s−1. This decoherence time may be even
further reduced with the help of technically more challenging
setups, such as using optical lattices with increased lattice
constants formed, for example, by interfering laser beams at
different angles or by optical tweezer arrays [19]. Moreover,
collisions with residual background gas also destroy the co-
herence and reduce the trap lifetime. From this point of view,
γ ′ = 0.2 s−1 seems to be a good estimate for the minimum
atomic decoherence rate that can be achieved without extraor-
dinary efforts. Assuming an inhomogeneous broadening �0 of
the atomic ensemble of �0 ≈ 2π × 15 mHz ≈ 0.09 s−1, one
may estimate the optimized linewidth �ωopt of the superradi-
ant laser as �ωopt ≈ 10/N s−1, corresponding to a stability of
the 87Sr active clock of

σ ′
y(τ ) = 1

ω

√
�ω

τ
≈ 1.17 × 10−15

√
N τ

. (47)

For N = 104 it results in an instability of 10−17 at 1 s of
averaging, and of 10−18 after 100 s, whereas a bad-cavity
laser with N = 105 atoms would provide an instability of
σ ′

y(τ ) ≈ 3.7 × 10−18/
√

τ [s].
Let us now compare this stability with the one that can be

attained in a passive clock with the same number of atoms.
An ideal quantum projection noise limited, zero dead time,
passive 87Sr optical clock can attain such a stability at inter-
rogation times of Tp = 0.1 s for Ramsey and Tp = 0.29 s for
Rabi interrogation, as follows from Eqs. (45) and (46). These
interrogation times are short compared to the inverse inho-
mogeneous broadening and to the decoherence time of the
atomic ensemble as estimated above; thus, these effects would
not yet limit the passive clock. However, in a passive optical
clock based on the sequential discontinuous interrogation of
the clock transition in single atomic ensembles, the frequency
fluctuations of the local oscillator contribute substantially to
the instability due to the Dick effect [20].

For example, in Ref. [2] the contribution to instability
σy,Dick from this Dick effect was on the level of σy,Dick ≈
3.8 × 10−17/

√
τ [s] (see Fig. 7). Such a level of stability has

been obtained with a local oscillator laser prestabilized to an
elaborate 21 cm cryogenic silicon resonator at 124 K. The
bad-cavity laser can provide similar stability at a linewidth
�ω ≈ 0.01 s−1 that can be attained with N = 104 atoms and
a dephasing rate γ ′ ≈ 1.5 s−1, or with N = 105, γ ′ ≈ 5 s−1

(T2 = 2/γ ′ = 0.4 s), if the inhomogeneous broadening �′
0 is

much less than the dephasing rate. Therefore, the short-term
stability of an active optical frequency standard may match
and even significantly exceed the stability of passive clocks
limited to the noise of a local oscillator via the Dick effect. On
the other hand, the quantum projection noise limited stability
of a passive clock based on a similar atomic ensemble can still
be better than the one of the passive standard.

We should note that the Dick effect in passive optical
clocks can be avoided (or at least significantly suppressed
down to contributions of finite-length π/2 pulses) by an in-
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FIG. 6. Spectral power density of phase fluctuations Sφ for an
active clock with 104 atoms (blue line) and 105 atoms (dashed red
line) and for a commercial cavity stabilized laser (green dash-dotted
line).

terleaved, zero dead time operation of two clocks [21]. When
comparing two clocks using the same atomic transition, the
Dick effect can also be eliminated and the interrogation time
extended to beyond the coherence time of the laser by us-
ing synchronous interrogation [2,21,22] of the two atomic
ensembles. In the extreme case, comparing different parts
of the same cloud, a fractional instability of σy ≈ 4 ×
10−18/

√
τ [s] could been achieved [23]. Similarly, comparing

clocks operating on different atomic transitions, differential
spectroscopy [24] or dynamical decoupling methods [25] can
be employed.

At the optimum stability the output power P of the bad-
cavity laser amounts to a photon flux of P/h̄ω0 = ηκ〈â†â〉 ≈
ηN (0.9γs + 0.25γ ′ + 1.45�′

0), see expressions (20) and (42).
Taking η = 0.5 and parameters of the atomic ensemble
listed above (γs = 8.48 × 10−3 s=1, γ ′ = 0.2 s=1 and �′

0 =
�0/

√
3 ≈ 0.054 s−1), the photon flux at the optimized coop-

erativity and pumping rate will be about 680 s−1 for N = 104

and 6800 s−1 for N = 105.
This output power of the active clock is usually too small

for practical application, thus a suitable secondary laser needs
to be phase locked to the weak output to boost the available
power. The bandwidth of this phase lock depends on the
stability of the (shot noise limited) active clock and the sta-
bility of the free running secondary laser. In Fig. 6 the phase
noise of the superradiant laser output for 104 and 105 atoms
is shown in comparison to the phase noise of a commercial
laser system, based on a 5 cm long cubic cavity (Menlo Sys-
tems ORS-Cubic FS-XTAL [26]) with fractional frequency
instability mod σ ≈ 10−15. For best overall performance, the
bandwidth should extend up to the crossing between the phase
noise curves of the secondary laser and of the superradiant
laser. In the example shown here this crossing is around 10 Hz,
in agreement with our previous choice of a 10 Hz cutoff
frequency fh for the white phase noise contribution to the
Allan deviation.

The Allan deviations for the superradiant laser output are
shown in Fig. 7. Including the phase-locked laser would only
cap the strong increase of the stability towards short averaging
times and limit the instability to values of 10−15 below 0.1 s.

FIG. 7. Stability of the 87Sr active clock output expressed as
Allan deviation σy with fh = 10 Hz for N = 104 (blue solid line) and
N = 105 (red dash-dotted line). The corresponding modified Allan
deviation mod σy is shown by the cyan dotted line and the yellow
dotted line. The different slopes are due to contributions from photon
shot noise and atomic phase diffusion. For comparison, the stability
of a Dick effect limited passive clock as discussed in the text is shown
as a green dash-dot-dot line.

Besides the fundamental limit to the stability from the
superradiant laser’s linewidth, the stability of the active
clock may also degrade due to a drift or fluctuations of
the environmental parameters, such as the bias magnetic
field. For example, the Zeeman shift of the π transition
| 3P0, mF 〉 → | 1S0, mF 〉 in 87Sr amounts to about �ω/B =
mF 2π × 1.10 Hz/μT [27], which results in a shift of about
2π × 4.95 Hz/μT for transition between the two stretched
states | 3P0, mF = 9/2〉 and | 1S0, mF = 9/2〉. For example,
to attain a 10−18 level of relative uncertainty of the clock
transition frequency, one has to decrease the uncertainty of
the bias magnetic field to below 87 pT. In passive clocks the
linear Zeeman effect is usually canceled by taking the average
between Zeeman transitions with opposite shifts alternating
from one interrogation cycle to the other. This method elim-
inates drifts and slow fluctuations of the bias magnetic field
but cannot cancel fluctuations on timescale below a single
interrogation cycle duration. In contrast, active clocks may
operate on two Zeeman transitions simultaneously, generating
two-frequency laser radiation from both π transitions between
pairs of stretched states | 3P0, mF = 9/2〉 → | 1S0, mF = 9/2〉
and | 3P0, mF = −9/2〉 → | 1S0, mF = −9/2〉. The arithmetic
mean of both these frequencies will be robust to fluctuations of
the first-order Zeeman shift, as well as of a vector Stark shift
from the lattice field. Both transitions can contribute indepen-
dently to lasing, if they both interact with the same mode of
the cavity and if they are detuned from each other far enough
for neither to get synchronized nor significantly affect each
other. This condition can be easily attained under realistic con-
ditions: for example, a bias magnetic field B = 1 G = 0.1 mT
splits these two transitions by about 2π × 1 kHz. This split-
ting is less than the linewidth κ of the cavity (estimated above
as κ ≈ 2π × 15 kHz at lcav = 10 cm and F = 105), but it is
much larger than the optimized pumping rate Ropt ≈ 0.35 s−1

[13,28], as estimated from Eq. (40).
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V. CONCLUSION

In this paper we studied the ultimate frequency stability
that can be obtained with active optical frequency stan-
dards. We investigated the dependence of the linewidth of a
bad-cavity laser with incoherent pumping on its parameters
and obtained an estimated minimum linewidth [Eq. (38)]
under optimized conditions. We showed that the instability
σy,Dick ≈ 3.8 × 10−17/

√
τ [s] of a passive optical frequency

standard associated with the Dick effect for one of the best
local oscillators prestabilized to a cryogenic Si cavity [2] can
be matched by a bad-cavity laser with N = 105 87Sr atoms
with coherence time T2 ≈ 0.4 s. As active optical frequency
standards are not degraded by the Dick effect associated
with dead time and noises of the local oscillator, they can
outperform traditional passive optical frequency standards in
stability. Also, active optical frequency standards may play a
role as local oscillators in future passive optical clocks. Even
if their short-term stability is poorer by a small factor than the
quantum projection noise limited stability of a passive optical
clock with a similar number of clock atoms, the stability can
still be significantly better than that of a good-cavity laser

prestabilized to an ultrastable cavity, as used in modern pas-
sive optical clocks.

Programs to simulate physical models are available at Zen-
odo repository, see Ref. [29].
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