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Photoelectron momentum distributions in the strong-field ionization
of atomic hydrogen by few-cycle elliptically polarized optical pulses
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We investigate the strong-field ionization of atomic hydrogen in a few-cycle elliptically polarized infrared
pulse by solving the time-dependent Schrödinger equation. The dependence of the photoelectron momentum
distribution on the pulse intensity, ellipticity, length, envelope, and carrier envelope phase is analyzed. In
particular, we explain the variation of the electron offset angle with asymptotic electron energy through the
combined action of the field and the Coulomb potential, and demonstrate that low-ellipticity pulses make it
possible to access the electron release time.
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I. INTRODUCTION

The strong-field ionization (SFI) of atoms and molecules
by intense femtosecond elliptically polarized infrared (IR)
pulses has attracted considerable interest in recent years.
Aside from leading to the generation of circularly polarized
biharmonics [1–6], elliptical pulses have improved our under-
standing of fundamental strong-field processes, e.g., frustrated
tunneling ionization [7] and multiphoton circular dichro-
ism [8,9]. In particular, the attoclock setups [10–17], using
either one-color or two-color elliptical pulses, have allowed
us to access the phase [15], tunneling time [14], Wigner time
delay [18], and the overall temporal evolution of an emitted
electron wave packet [15,19] in an intense IR field.

Attoclock setups, which have been used on several atoms,
such as hydrogen [14,17], helium [20,21], argon [13,21], and
krypton [13], and recently on the hydrogen molecule [22,23],
propose to correlate measurable observables in the photoelec-
tron momentum distribution (PMD) to the ultrafast dynamics
of the electron wave packet in an intense laser field. Of
critical importance is the so-called offset angle [11,14,17] of
the asymptotic photoelectron momentum with respect to the
asymptotic momentum of a classically free electron released
with zero velocity at the moment of maximum field strength.

The relation between the offset angle and the tunneling
time of the electron under a potential barrier remains a central
subject that has triggered vigorous debates and controver-
sies [10,13,14,24,25], while a complete understanding of its
dependence with the pulse characteristics is still the focus of
current efforts [17]. In neutral targets, a complication arises
from the effect of the Coulomb field, which ultimately induces
an additional deflection of the electron momentum. The effect
would, however, disappear in the strong-field ionization of a
negative ion such as F−, as we originally proposed in [26].
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This scenario was recently revisited in a fully correlated ap-
proach by Armstrong et al. [27] using the R matrix with
time dependence (RMT) method. As a final complication,
the offset angle in a Coulomb field actually depends on the
definition of this angle itself.

Experimentally, the PMD has been measured in atomic hy-
drogen [14] for a nearly circular (ellipticity ε = 0.87) 800-nm
pulse with a full width at half-maximum (FWHM) of ≈6 fs
for peak intensities varying from 1.65 to 3.9 × 1014 W/cm2.
The role of the elliptical field is to define a reference axis on
which the E field takes its maximum value. This reference
was necessary since the carrier-envelope phase (CEP) was not
stabilized in the latter experiment.

In the near future, it is reasonable to expect that even
shorter and better-defined pulses will be generated, which will
enable the exploration of the electron dynamics in more detail.
As one is able to tailor few-cycle pulses, our understanding
of the electron dynamics under different pulse conditions
becomes essential. Even for a system as simple as atomic
hydrogen, the interpretation of the PMD for different pulse
characteristics is far from being straightforward. The shape
of the pulse, characterized by the temporal positions of its
maxima, as well as the laser intensity, can result in drastic
changes in the electron dynamics, which are directly encoded
in the PMD.

As numerous theoretical and experimental studies have
been reported under various conditions, it is desirable to
systematically analyze the principal features of the PMD in
atomic hydrogen for different pulse parameters (envelope
shape, CEP, ellipticity, peak intensity, and pulse length) and
to elucidate the origin of these features when possible. Below,
we also emphasize particular choices of pulses that lead to
the most salient physical effects with the aim of motivating
future experimental and theoretical studies. In particular, we
explain the drift of the offset angle with electron energy [18]
and reveal its connection with the electron release time.

Although experiments on atomic hydrogen are challenging
(but certainly possible [14,18]), we use this target since this is
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the problem that can be solved numerically with high accuracy
and without multielectron effects. The latter generally need to
be approximated in some way, thereby potentially affecting
the conclusions.

This paper is organized as follows. In Sec. II, we describe
the theoretical approach and the framework of the performed
simulations. We then present and discuss the results for vari-
ous pulse parameters in Sec. III. We set the stage by describing
general features of the PMD before presenting our main result
in Sec. III E, namely, the possibility to effectively select the
release time of the electron by employing suitable short pulses
with low ellipticity. Section IV is devoted to our conclusions.

Unless indicated otherwise, atomic units are used through-
out the paper.

II. THEORETICAL APPROACH

A. Numerical simulations

The time-dependent Schrödinger equation (TDSE) for the
wave function �(r, t ), where r is the vector position of the
electron, takes the form

i
∂�(r, t )

∂t
= [H0 + HF (t )]�(r, t ). (1)

Here H0 is the field-free Hamiltonian of atomic hydrogen. The
electron-field interaction HF (t ) in the dipole approximation is
expressed, either in the length gauge (LG) or in the velocity
gauge (VG), as

HF (t ) =
{

E(t ) · r (LG);

A(t ) · p (VG).
(2)

The TDSE is solved by expanding the wave function in partial
waves as

�(r, t ) =
�max∑
�=0

m=�∑
m=−�

ξ�m(r, t )Y�m(θ, φ), (3)

where (r, θ, φ) are the electron spherical coordinates, � and m
are the electron angular momentum and its projection on the z
axis, respectively, while Y�m are spherical harmonics.

We then propagate the initial state by splitting the time-
evolution operator as

e−iH (t+ 	t
2 )	t = e−iH0

	t
2 e−iHF (t+ 	t

2 )	t e−iH0
	t
2 , (4)

where H (t ) = H0 + HF (t ) is the total Hamiltonian of the
system. The Crank-Nicolson propagation scheme is used to
expand the time-evolution operator. For the field-electron in-
teraction, for instance, we obtain

e−iHF (t+ 	t
2 )	t ≈ I − i 	t

2 HF
(
t + 	t

2

)
I + i 	t

2 HF
(
t + 	t

2

) , (5)

where I is the identity operator. We employ a radial grid
and a three-point formula to compute the electron kinetic
energy. The time evolution due to the field-free Hamiltonian
exp[−iH0	t/2] is computed by solving a tridiagonal system
of linear equations on the radial grid. We use a grid with radial
step 0.2 and a box of 2000. The time step is varied depending
on the intensity considered and we always assess that the final
norm of the wave function is unity to a precision of a least
10−8.

The time evolution of the field-electron interaction is ob-
tained by expanding the denominator in Eq. (5) in a Taylor
series. We obtained good efficiency using a fourth-order ex-
pansion and taking advantage of the sparsity of HF in both
gauges. At the end of the pulse, we project the wave function
onto momentum-normalized Coulomb functions φp(r), with
asymptotic momentum p, to obtain the asymptotic PMD as
P (p) = |〈φp(r)|�(r, t )〉|2. In the following discussion of el-
liptically polarized light, we restrict our study to the PMD in
the polarization plane, i.e., we fix pz = 0. All PMDs presented
in this study are expressed in a.u.−3.

B. Pulse characteristics

We consider N-cycle plane-polarized infrared pulses of
period T defined in a time interval ti � t � t f , with ti = 0 and
t f = NT , by a vector potential propagating along the z axis
and written as

A(t ) = −E0

ω

f (t )√
1 + ε2

[ε sin(ωt + φ)êx − cos(ωt + φ)êy].

(6)
In the above expression, êx and êy are unit vectors along
the x and y axes, respectively, ω is the central laser fre-
quency, ε is the field ellipticity, and φ is the CEP. The
pulse envelope f (t ), which has a maximum value of unity,
is chosen to be either f (t ) = sin2(ωt/2N ) (sin2 envelope),
f (t ) = sin4(ωt/2N ) (sin4 envelope), or a Gaussian enve-
lope f (t ) = exp[−4 ln 2(t − tm)2/t2

m], where tm = NT/2 is
the time of maximum value of the envelope f (tm) = 1. For
the latter, a small correction at the beginning and the end of
the pulse is applied to ensure a zero field at the same times as
for the sin2p envelopes.

The resulting electric field E(t ) = −dA(t )/dt has positive
helicity with a typical form shown in Fig. 1. For all nu-
merical simulations presented in this study, we fix the laser
frequency at ω = 0.057, corresponding to a central wave-
length of 800 nm. We define the cycle-averaged intensity I
around the peak of the envelope, such that I = 3.51 E2

0 ×
1016 W/cm2, with E0 expressed in atomic units. With this
definition, the intensity becomes independent on the ellipticity
ε.

Figure 1 depicts a pulse taking its maximum value along
the vertical axis (φ = 90◦) at the peak of the pulse envelope,
where one expects the tunneling rate to be the largest. Al-
ready for a four-cycle pulse, several extrema along each axis
contribute to the final electron signal, as they correspond to
instants at which the electron can be released with a signifi-
cant ionization rate, thereby leading to a complex ionization
mechanism reflected in the PMD.

The pulse shown in Fig. 1 fulfills two important crite-
ria [28]. First, by defining the vector potential A(t ) instead of
the electric field E(t ), we ensure that A(ti ) = 0 and A(t f ) = 0:
a sine qua non to produce a realistic pulse. Starting directly
from the definition of the electric field could lead to erro-
neous results in the velocity gauge for sufficiently short pulses
when, as is generally the case except in very special choices,∫ t f

ti
E(t ) �= 0 and thus A(t f ) �= 0.
In addition, the pulse depicted in Fig. 1 induces a

vanishing net displacement of the free electron in the
field, i.e., 	r = ∫ t f

ti
A(t ) = 0. Although a zero electron net
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FIG. 1. Example of an elliptical pulse employed in this study,
with ε = 0.87, N = 4, sin2 envelope, and φ = 90◦. The field compo-
nents are drawn (a) as a function of time, and (b) as a trajectory in
the polarization plane.

displacement is not a strict requirement of Maxwell’s equa-
tions (e.g., single-cycle THz pulses [29] have finite net
displacement), it can be shown [30] that the field created
by any laser cavity, i.e., such that A(ω) = 0 for ω � ωmin,
with ωmin denoting the minimum cutoff angular frequency
of a laser oscillator, leads to 	r = 0. In addition, fields with
	r �= 0 can lead to theoretical and experimental difficulties,
e.g., a strong asymmetry in the Kramers-Hennerberger gauge
or the fact that electrons do not remain in the laser focus. A
discussion of some of the issues can be found, for example,
in [31]. Nevertheless, pulses with nonzero displacement might
have interesting properties to control the spatial motion of
the electronic density in large biomolecules, and experimental
protocols to measure electron displacements have recently
been designed [32].

It is somewhat surprising that the net displacement of the
short elliptical pulses employed in many theoretical studies
has hardly been discussed. Hence we pause to briefly com-
ment on this specific point. First, a nonzero net displacement
is due to a combination of the field envelope and the CEP.
For light that is linearly polarized along the z axis, choos-
ing a CEP such that the pulse is antisymmetric (odd) with

respect to tm will ultimately result in 	z = 0. For elliptical
light, however, the pulse components of the form (6) can-
not be simultaneously antisymmetric along both the x and
y components. Consequently, the net displacement cannot
vanish by symmetry. In the case of a Gaussian pulse with
fixed peak intensity, the displacement decreases quickly as
a function of the FWHM of the pulse. For instance, at an
intensity of 2 × 1014 W/cm2 and φ = 90◦, the displacement
on the x axis for 800-nm light is 	x = 4.7 for FWHM = 2 fs,
but only 	x = 0.04 for FWHM = 3 fs. Note that at long
wavelengths, such as λ = 2000 nm, the displacement for such
short Gaussian pulses can become 	x > 100. On the other
hand, considering f (t ) = sin2p(ωt/2N ) as the envelope, it can
readily be shown that 	r = 0 for pulses with N � p cycles.
For N < p, however, the net displacement 	r can take anoma-
lously large values. We note that the sin4 envelope with N = 2
(often characterized as a nearly single-cycle pulse in the liter-
ature), which has been widely used in recent theoretical works
such as [10], leads to a displacement as large as 	x = 12.5 at
an intensity of 2 × 1014 W/cm2 for φ = 90◦.

III. RESULTS

We start this section by giving a general description of the
PMD, and we also assess the accuracy of our calculations by
analyzing the gauge invariance. We then analyze and inter-
pret the PMD for different pulse characteristics, varying one
parameter at a time. Specifically, we consider variations of
the envelope shape, CEP, pulse intensity, ellipticity, and pulse
length.

While we restate at times some familiar considerations for
completeness of the discussion, we draw special attention to
Secs. III D and III E, where we analyze in detail the inten-
sity and ellipticity dependence of the PMD. As a key result,
we demonstrate how short and intense optical pulses with
relatively low ellipticity (0.4 � ε � 0.6) provide important
information on various aspects of the electron tunneling dy-
namics in strong fields, and can actually serve as selectors of
the electron release time.

A. General description of the PMD

We first consider our benchmark pulse in Fig. 1, as it is
close to a pulse that (i) can be generated experimentally, and
(ii) enables the extraction of a number of interesting physical
effects. This pulse has a sin2 envelope, an ellipticity ε = 0.87,
and a CEP φ = 90◦. It results in the maximum ionization
probability along the y axis, similarly to what has been con-
sidered in recent experimental and theoretical works [14,33].

Using the pulse described above, we first choose a peak
intensity of 1014 W/cm2 and compare the PMDs obtained
in the length and velocity gauges to assess the accuracy of
our calculations. The results are presented in Fig. 2, where
we use �max = 100 in the length gauge and �max = 60 in the
velocity gauge. Excellent agreement is observed between the
results from the two calculations. The velocity gauge in this
intensity regime is known to be drastically more efficient than
the length gauge [34,35]. Therefore, we employed this gauge
in all the remaining calculations reported in this paper.
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FIG. 2. PMD for pulse parameters ε = 0.87, N = 4, I =
1014 W/cm2, sin2 envelope, and φ = 90◦ calculated using (a) the
length gauge and (b) the velocity gauge. The features L1–L4 are
explained in the text.

The PMD in Fig. 2 exhibits characteristic features that
deserve some general comments. First, the PMD has two
principal lobes, L1 and L2 [see Fig. 2(a)], which share an
approximate symmetry axis shifted with respect to the hori-
zontal axis. If the electron is released along the y axis at the
moment tm, when the field assumes its largest value, we know
from Eq. (6) that A(tm) = −E0ε/ω

√
1 + ε2êx. As a result,

if the electron is released with zero initial speed and subse-
quently interacts with the field only, its asymptotic momentum
p = −A(tm) should be along the positive x axis [since A(tm) ·
êx < 0]. However, the electron is also strongly deflected by the
Coulomb force, which results in an offset of the asymptotic
momentum. Below, we do not restrict our discussion to the
variation of the offset angle with intensity [10–14,36], but
provide a more general theoretical description of the main
features of the PMD. The dependence of the offset angle
on the laser intensity, laser ellipticity, and the photoelectron
energy, will be discussed in more detail in Secs. III D and III E.

For a very short pulse, such as N = 2, we expect a sin-
gle lobe in the PMD because the electron is released almost
exclusively when the field takes its maximum value at tm.
In the case of the four-cycle pulse of Fig. 1, however, there
exist two times, t3 and t6, located symmetrically with respect
to tm, which correspond to large negative values of the field

component along the y axis. The lobe L1 is thus primarily due
to tunneling at tm, with exit position y < 0, whereas the lobe
L2 is mostly due to tunneling at the two symmetric moments,
t3 and t6, with exit positions y > 0. However, given that the
tunneling rate at tm is significantly larger than at t3 and t6
due to the exponential dependence of the tunneling rate on
the field strength [37,38], the signal at L1 remains overall the
largest.

Aside from the signal strength, the two lobes also exhibit
noticeable differences in shape. Because the lobe L2 results
from two nearly identical electron bursts produced at t3 and
t6, separated by one IR period, it produces a high-contrast
periodic series of maxima and minima in momentum space
at energies such that E = nh̄ω − Ip − Up, where n is the total
number of absorbed photons, Ip denotes the ionization po-
tential, and Up = E2

0 /4ω2 is the ponderomotive energy. The
series of peaks is convoluted by the energy uncertainty of
the bursts and centered at their mean energy. On the other
hand, the lobe L1 can be considered to be formed from three
bursts, at t1, tm, and t8. Because the electron burst produced
at tm is significantly larger than those at t1 and t8, the PMD is
dominated by a strong background with a superimposed series
of maxima and minima with poor contrast. The repetition of
similar tunneling events toward a particular asymptotic direc-
tion, therefore, results in high-contrast fringes in the PMD.
Furthermore, the energy distribution is different in each lobe,
i.e., L2 has a stronger signal at low and high energies when
compared to L1 because the electron detected at L2 is released
either at an earlier (t3) or a later time (t6) than tm, thereby hav-
ing, respectively, more or less probability to absorb photons.

Using previous considerations, one can readily understand
the features at L3 and L4, which are located at 90◦ relative
to the symmetry axis formed by L1 and L2 (see Fig. 2).
This signal results from tunneling at t2 and t5 for asymptotic
momentum py > 0, and at t4 and t7 for asymptotic momentum
py < 0. Since the tunneling events occur at equivalent field
strengths along the x axis, except for the time ordering, their
momentum distributions are similar, as seen in Fig. 2. Finally,
because the electric field is similar at t2 and t5, as well as at t4
and t7, we see a relatively good contrast of the fringes at L3
and L4. As expected, however, it is not as high as for L2.

Note that the deflection angles of the L1 and L2 lobes
are nearly the same. This is consistent with the fact that the
angle is mainly due to the long-range Coulomb interaction
rather than the field-dependent tunneling process. The small
difference between the angular offsets of L1 and L2 is due
to the fact that (i) an electron released in the field at differ-
ent locations and times interacts for different time intervals
with the combined Coulomb and electromagnetic fields, and
(ii) that the vector potential at field extrema other than tm
is not precisely aligned with the x axis. The former effect
explains the differences in the asymptotic deflection angles
at the various fringes, which was recently considered in [17].
For the large ellipticity considered here, the offset angle at
the maximum signal of the individual fringes is only weakly
dependent on the fringe order. It will be shown, however, that
this dependence increases at smaller ellipticity (see Sec. III E).

In the following subsections, we consider the dependence
of the PMD on the CEP, envelope shape, ellipticity, intensity,
and pulse length. Varying these parameters independently,
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FIG. 3. PMDs for pulse with ε = 0.87, N = 4, I = 2 × 1014 W/cm2, φ = 90◦, with (a) sin2, (b) Gaussian, and (c) sin4 envelopes.

we keep the pulse presented in Fig. 1 as our benchmark
but increase its peak intensity to I = 2 × 1014 W/cm2 to
ensure that we are truly in the tunneling regime, i.e., with
γ � 1, where γ = √

Ip/2Up is the Keldysh parameter [39]. At
I = 2 × 1014 W/cm2, for instance, γ ≈ 0.75 for atomic hy-
drogen at a wavelength of λ = 800 nm. Although we do not
include them in the figures below, we keep the labels of the
lobes introduced in Fig. 2(a) to facilitate our discussion.

B. Envelope dependence

We first consider the dependence of the PMD on the
choice of envelope function by employing our benchmark
pulse, either with a Gaussian, sin2, or sin4 envelope. Since
the Gaussian envelope has, in principle, an infinite number
of cycles, we reduce it to N = 4 cycles by adding a small
linear correction at the edge of the pulse to compare results
at the same number N of cycles. We also recall that the
Gaussian pulse does not guarantee a vanishing displacement.
Nevertheless, we use it for illustrative purposes, since for the
parameters chosen here the displacement is sufficiently small
for meaningful conclusions to be drawn.

Our results, displayed in Fig. 3, reveal a weak dependence
on the pulse envelope. The general trend can be explained
by considering that the envelope width decreases gradually
from sin2, to Gaussian, to sin4 envelopes, thereby leading to
a decreasing contrast of the fringes at L1 as the tunneling
rates at t1 and t8 become much smaller than at tm. Similarly,
the signal strength at L2 decreases with pulse width due to
diminishing tunneling rates at t3 and t6. However, the contrast
in the fringes survives since these two symmetric instants are
almost entirely responsible for the signal at L2.

Finally, we note that most details in the PMD are pre-
served between the Gaussian and sin2 envelopes. This weak
dependence on the envelope function is undoubtedly highly
advantageous when comparing idealized theoretical scenarios
with realistic experimental setups, where the details are most
likely not known to high accuracy and controlling them is a
serious challenge.

C. Carrier-envelope phase dependence

Next, we analyze the variation of the PMD with the CEP,
considering φ = 0◦, 45◦, 90◦, and 135◦, while leaving all
other parameters fixed at the benchmark pulse. The results
are displayed in Fig. 4, where we show the PMDs with their
corresponding pulse to facilitate the discussion.

The origin of the shape of the PMD for different CEPs
can be understood using similar arguments than the ones
introduced in Sec. III A for the specific case of φ = 90◦.
Considering first the case φ = 0◦, one might be tempted to
simply interchange the role of the x and y axes in the φ = 90◦
case. However, the light’s ellipticity with the major axis along
the y direction breaks down this simple picture. Indeed, we
clearly see in Fig. 4 that the maxima of the field along the
y direction still dominate the maximum of the field in the x
direction at tm (the maximum value of the pulse envelope).
Therefore, the PMD still exhibits its maximum signal at L1
and L2, although it is understandably weaker than at φ = 90◦.
The fringes at both L1 and L2 now depict high contrast since
the signal originates from two nearly equal electron bursts,
whereas the contrast at L4 is now poor since it is produced
mostly by a single-electron burst.

As the CEP increases, the peak of the electric field along
the positive y axis shifts toward the maximum of the pulse en-
velope, thereby leading to an increase of the signal at L2. This
is accompanied by a decrease of the contrast of the fringes, as
can be seen at φ = 45◦. As the CEP increases to φ = 90◦,
the contrast of the fringes at L3 and L4 deteriorates since
those peaks are mainly produced by a single-electron burst
on the positive and negative x axes. At φ = 135◦, the contrast
increases at L4 because it results from an electron emitted at
two nearly equal peaks of the field along the positive x axis.

It is interesting to look at the difference between the PMDs
at φ = 45◦ and 135◦, i.e., for symmetric situations with re-
spect to φ = 90◦. The main peak of the electric field along the
y axis takes the same value in both cases, with the difference
being that it either occurs after or before tm for φ = 45◦
and 135◦, respectively. On the other hand, the maximum of
the electric field along the x axis switches from the positive
(φ = 45◦) to the negative (φ = 135◦) direction. Consequently,
the electron is emitted preferentially just before or after the
field lies along the y axis. This leads to a noticeable shift, from
lower to higher values, of the offset angle at L1 and L2 for
φ = 45◦ and 135◦, respectively,

In most attoclock experiments, e.g., [14], the CEP is not
stabilized. Consequently, one must average the theoretical
signal produced by atoms ionized by pulses with randomly
distributed CEP to interpret the experimental data. Even
though averaging over the CEP dependence smoothes the
results to a nearly spherically symmetric distribution, it is still
possible to define the principal axes of the ellipse and extract
the offset angle. Pulses with CEPs of φ and φ + 180◦ produce
PMDs that are mirror images of one another by inversion
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FIG. 4. PMDs (top) and associated pulses (bottom) for pulse parameters ε = 0.87, N = 4, I = 2 × 1014 W/cm2, sin2 envelope, and a CEP
chosen as (a) φ = 0◦, (b) φ = 45◦, (c) φ = 90◦, and (d) φ = 135◦. The horizontal and vertical axes in the bottom panels, respectively, indicate
zero electric field and the time tm of the maximum pulse envelope.

symmetry. As a result, the averaged PMD acquires central
symmetry. Furthermore, since PMDs with symmetric CEP
relative to 90◦ produce either slightly smaller or larger offset
angles than would be seen at φ = 90◦, the resulting averaged
PMD exhibits an offset angle that should be close to that of
the φ = 90◦ case.

For narrow sin4 envelopes, i.e., near-single-cycle pulses,
it is relatively straightforward to unambiguously extract the
offset angle [10]. On the other hand, the case of few-cycle
pulses with broader envelopes is more complicated, as there
can exist several maxima at various fringe orders, which ac-
tually correspond to different offset angles [17] depending
on the final value of the momentum pr = (p2

x + p2
y )1/2. In

fact, it was observed in [17] that the offset angle shifts even
in a single above-threshold ionization (ATI) peak, although
the reason could not be identified. In a realistic experiment,
one usually integrates over particular energy bins in order to
obtain an average offset angle [14]. As a result, it is by no
means obvious how to define the attoclock angle and, in turn,
what information can be obtained experimentally about the
tunneling time even for short pulses.

The origin of the change in offset angles lies in different
exit times and positions in the field, and it is intrinsi-
cally linked with the action of the Coulomb potential. The
dependence of the offset angles on the final electron en-
ergy, therefore, can provide important physical insights. In
Sec. III E, we will show that this effect is enhanced by pulses
with lower ellipticity and provide further explanations for the
observed offset angle.

D. Intensity dependence

Figure 5 exhibits the dependence of the PMD on the peak
intensity of the pulse. As expected, the ionization signal in-
creases continuously with intensity, thereby indicating that
we have not yet reached the saturation regime at the highest
studied intensity. This fact is not surprising considering the

short duration of our pulse. In addition, the mean kinetic
energy of the photoelectron becomes larger with increasing
pulse intensity, which can be seen in a multiphoton picture
as the increasing probability to absorb photons, or in the
tunneling picture, as the fact that the asymptotic momentum of
the electron, neglecting the Coulomb potential, is p = −A(tr ),
where A(tr ) is the vector potential at the release time tr of
the electron. The latter consideration indicates that the mean
asymptotic energy of the electron approximately grows lin-
early with the laser intensity.

Although it is difficult to see it from the figure, the offset
angle diminishes slowly with intensity [10–14]. This effect
can in part be explained by the fact that the action of the
Coulomb forces decreases for fast electrons since they spend
less time near the nucleus. The variation of the offset angle
with intensity is important for realistic experimental setups, in
which not only the CEP is likely not stabilized, but one would
also have to perform focal averaging to simulate the actual
measurements. Due to the broadening of all the features, the
lower peak intensities allow the extraction of the average
offset angle with the smallest uncertainty.

The variation of the offset angle with intensity can be
estimated quantitatively with the Keldysh-Rutherford (KR)
model [36], where the offset angle θ is approximatively given
by the Rutherford formula

tan θ = 1

ρ

Z

v2∞
= 1

L

Z

v∞
= Z

L

ω
√

2

E0
. (7)

In Eq. (7), v∞ = E0/
√

2ω is the asymptotic electron speed,
where E0/

√
2 is the maximum field strength for circularly

polarized light [see Eq. (6)], ρ is the impact parameter of
the collision, L = ρv∞ is the asymptotic electron angular
momentum of the photoelectron, and Z is the charge of the
residual ion. In the KR model, it is assumed that ρ ≈ r0,
where r0 is the point of closest approach, which is taken as
the tunnel exit position at the peak of the electric field, i.e.,
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FIG. 5. PMDs for pulse parameters N = 4, ε = 0.87, sin2 envelope, φ = 90◦, with (a) I = 1014 W/cm2, (b) I = 2 × 1014 W/cm2,
(c) I = 3 × 1014 W/cm2, and (d) I = 4 × 1014 W/cm2.

r0 = Ip

√
2/E0. These assumptions lead to tan θ =

ω2Z
√

2/(E0Ip). The latter formula can also be found [36] by
replacing L = Ip/ω for a circular pulse in (7).

The KR formula was employed in [36] to predict, after
introducing some fitting parameters, the offset angle of dif-
ferent atoms in the circular attoclock. In particular, the KR
model correctly predicts the I−1/2 dependence of the offset
angle on the intensity and the change to an I−1 dependence as
one enters the over-the-barrier ionization (OBI) regime [36].
Nevertheless, one should keep in mind the limitations of the
KR model, as will be discussed further in Sec. III E. While
KR can explain the variations of the offset angle at the main
emission signal, it cannot explain other significant effects
visible in the PMD. This is due to the fact that KR considers
the Coulomb potential to be dominant and does not account
for the combined action of the electric and Coulomb fields
at short range, which becomes utterly important to describe
the details of the tunneling mechanism in realistic few-cycle
pulses used in actual experiments.

Focusing back on Fig. 5, we observe that while the overall
ionization signal increases, the signal could vary differently
depending on the regions in the PMD. Following the predic-
tions from the Ammosov-Delone-Krainov (ADK) theory, the
tunneling ionization rate should increase exponentially with
field strength [37,38]. This means that the signal at L1 should

become overwhelmingly dominant over the signal produced
at other lobes as the intensity keeps increasing. We do not ob-
serve this trend in the figure as the relative intensity between
the L1 and L2 lobe decreases. Although the signal is rescaled
at the different intensities to the maximum signal at L1, mov-
ing from 1014 W/cm2 to higher intensities clearly adds signal
in the angular regions L3 and L4, which are perpendicular
to the dominant peak at L1 and its weaker counterpart L2.
In addition, the signals at L1 and L2 cover a much broader
angular range as the intensity increases, such that the offset
angle becomes difficult to assign. These are clear indications
for the onset of the OBI regime, which is known to start
at a critical intensity Ic = 1.4 × 1014 W/cm2 and ultimately
broadens the angular distribution.

E. Ellipticity dependence

We now turn to the ellipticity dependence of the PMD.
Our results are presented in Fig. 6 for pulses with ellipticity
ε = 0.0 (linear), 0.2, 0.4, 0.6, 0.87, and 1.0 (circular). The
asymptotic momentum of a classical electron released at the
maximum of the electric field, and interacting subsequently
with the field only, is given by p = −E0ε/ω

√
1 + ε2êx. This

explains why the maximum signal in the PMD increases to
higher kinetic energy with increasing light ellipticity and why
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FIG. 6. PMDs for pulse parameters N = 4, I = 2 × 1014 W/cm2, sin2 envelope for (a) ε = 0.0, (b) ε = 0.2, (c) ε = 0.4, (d) ε = 0.6,
(e) ε = 0.87, and (f) ε = 1.0.

the low-energy signal almost disappears for nearly circular
light.

The most interesting trend observed in Fig. 6 concerns the
variation of the offset angle with ellipticity. This effect was
observed experimentally [40] and theoretically [33] for much
longer pulses (N � 20 cycles). The variation of the offset
angle with ellipticity at the maximum signal can, in part, be
explained with a modification of the KR model, specifically
by replacing v∞ = E0ε/ω

√
1 + ε2 and ρ = Ip

√
1 + ε2/E0

in (7). This leads to

tan θ = 1

ρ

Z

v2∞
= ω2

Ip

√
1 + ε2

E0ε2
. (8)

The above formula correctly predicts that θ → π/2 as ε → 0
and that the overall offset angle decreases with increasing light
ellipticity. A quantitative comparison with the numerical cal-
culations is beyond the scope of this work and would require
a one-cycle pulse with sin4 envelope and fitting parameters, as
performed in [36] for the circular case.

Because the KR model is adapted to situations where the
Coulomb effects dominate, i.e., for very short and relatively
weak pulses, we have confirmed that it is the main origin of
the offset angle even for light that is not nearly circular by
repeating the calculations with a short-range Yukawa potential
(as already employed in Refs. [10,14,36]) to eliminate the
Coulomb effects. As expected, we found a zero offset angle
even at very low ellipticity.

Another salient feature visible in the PMDs of the low-
ellipticity PMDs in Fig. 6 is the smooth variation of the offset
angle with increasing order of the ATI peaks. While the offset
angle was also seen to increase with kinetic energy in [17]
for a pulse with N = 20 cycles and an ellipticity ε = 0.85,
the effect is much more pronounced for a four-cycle pulse
with ellipticity 0.4 � ε � 0.6 as seen in Fig. 6. Pulses with
low ellipticity were also studied in [33,40], but the shift of

the offset angle for different ATI peaks was hardly visible
due to the long pulse duration that ultimately blurs the effect.
Moreover, the energy resolution in [40] was insufficient to
observe the individual ATI peaks.

While various hypotheses were proposed in [17] to ex-
plain the increase of the offset angle with asymptotic electron
energy, the main origin of this effect remains unclear. In par-
ticular, the KR model wrongly predicts that the offset angle at
a given ellipticity should decrease with photoelectron energy
since an electron with larger v∞ will also have a higher angu-
lar momentum L and Eq. (7) clearly indicates a decrease of θ

in this case. In fact, the impact parameter ρ (taken as the exit
point in KR) in (8) also increases for a high-energy electron
since it does not tunnel at the peak of the electric field. This is
another factor contributing to the decrease of the offset angle
in KR.

We now suggest an explanation for the increase of the
offset angle with electron energy and demonstrate that a low-
ellipticity PMD can act as a selector of the electron release
instant. Neglecting at first the action of the Coulomb potential,
an electron released in the electromagnetic field at a time tr
will acquire an asymptotic momentum p = −A(tr ). Because
the electron tunnels near the peak of the field, with a positive
or negative delay, 	t = tr − tm, we obtain, to lowest order
in ω	t 
 1, that py/px ≈ ω	t/ε. Therefore, an electron
tunneling slightly after (	t � 0) or before (	t � 0) the max-
imum field strength will have py � 0 or py � 0, respectively,
while the angular spread of the momentum will increase with
decreasing ellipticity. In addition, for an N-cycle pulse with
an envelope f (t ) = sin2p(t ), the difference 	K = K − K0 be-
tween the asymptotic energy K = p2/2 of an electron released
in the field at tm ± 	t and the asymptotic energy K0 of an
electron released at tm is given, to lowest order, by

	K ≈ I	t2

1 + ε2

(
1 − ε2 + p

4N2
ε2

)
. (9)
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FIG. 7. Momentum distributions for pulse parameters ε = 0.87, I = 2 × 1014 W/cm2, sin2 envelope, φ = 90◦, for (a) N = 2, (b) N = 4,
(c) N = 6, and (d) N = 10.

Equation (9) indicates that the asymptotic energy of a classi-
cal electron released slightly before or after the peak of the
electric field will have a higher asymptotic energy than an
electron released at the peak of the electric field as long as
ε � (1 + p/4N2)−1/2. This effect, which is more pronounced
at low ellipticity and high intensity, is due to the rapid increase
of the vector potential along the major axis, which largely
compensates the decrease of the smaller vector potential in
the longitudinal direction. The last term in Eq. (9) is due
to the pulse envelope and is negligible for long pulses with
broad envelopes. Our simulations using a short-range Yukawa
potential reproduce these predictions: as the light ellipticity
decreases, the center of the PMD shifts to lower px values and
the curvature of the signal increases until the PMD becomes
symmetric with respect to the px = 0 axis for linear light.

Although the introduction of the long-range Coulomb po-
tential breaks this simple picture down, it is still possible to
draw important conclusions based on the following straight-
forward considerations. Suppose an electron is released at
tr with zero velocity along the electric field at the adiabatic
exit position. Classical trajectory calculations with a nearly
circular pulse show that, while the offset angle of the pho-
toelectron momentum increases with 	t (i.e., an electron
released earlier has a smaller offset angle), its asymptotic
energy remains nearly independent of the release time. There-
fore, the main emission signal spreads almost equally over
a broad angular distribution and the energy spread is nearly
angle-independent, as can be seen in Figs. 6(e) and 6(f). The
situation is different for low-ellipticity pulses, where classical
trajectories reveal that both the offset angle and the asymptotic
electron energy increase with 	t , such that the main emis-
sion signal acquires an energy-dependent angular shift that
becomes more pronounced with decreasing ellipticity (see

Fig. 6). Thus, a low-ellipticity pulse not only increases the
range and the spread of the electron offset angle in the PMD,
but it also acts as a selector of the electron release time by
dispersing jointly the angular and energy dependence of the
signal.

The origin of the above effect is deceptively simple. For a
nearly circular pulse, the released electron is rapidly pulled
away by the electric field and does not return near the
ionic core. This is a well-known phenomenon in strong-field
physics [41,42]. The Coulomb force, therefore, only acts ef-
fectively when the electron initially escapes the core, such
that the electron trajectory gets deflected (more strongly for
larger 	t) without significant energy dependence on the re-
lease time. For a low-ellipticity pulse, the released electron
can return closer to the core and the Coulomb force has the
possibility to reaccelerate the electron upward for a short
time, in synchronization with the electric force. Because an
electron released at a later time will return closer to the core,
the action of the Coulomb force is stronger for larger 	t ,
resulting in higher electron energy. It is important to note
that the Coulomb force is the necessary means by which
the electron experiences an additional upward acceleration.
However, it is the electric field that provides the major part
of the supplementary work. Finally, we emphasize that the
above effect can only be understood by taking into account
the combined action of the Coulomb and electric fields. This
explains why a simple model like KR cannot grasp its essence.

The above considerations suggest that the study of strong-
field physics with short and intense optical fields with
ellipticity 0.4 � ε � 0.6 could provide important information
on the electron tunneling dynamics. This is important for
high-harmonic generation as well as the production of highly
excited Rydberg states for quantum information.
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F. Pulse length dependence

We finish our analysis with a brief discussion of Fig. 7
regarding the dependence of the observed PMD on the length
of the pulse. As discussed above, the results for the “near-
single cycle” N = 2 pulse is straightforward to interpret, with
a well-defined maximum at L1 and no observable fringes.
Recall, however, that this pulse does not have a vanishing
displacement, and hence its physical meaning is questionable.

While the four-cycle pulse results in a well-defined offset
angle, the PMDs for N = 6 and 10 exhibit complex features
that are hard to interpret. There are just too many points where
the field is sufficiently large to produce substantial tunneling,
while the difference in the field strength at these points is
similar enough to fill the entire pattern. This results in many
fringes, with some additional distortion due to interference of
signals from multiple emissions at different times. As a result,
there is no longer a well-defined offset angle, and it is not
clear whether one can actually extract meaningful tunneling
information from the attoclock setup for long pulses.

IV. CONCLUSIONS

In this paper, we have investigated the photoelectron
momentum distribution (PMD) after ionization of atomic hy-
drogen by few-cycle, 800-nm, elliptically polarized light. We

analyzed and explained the principal features observed in
the PMD, including the signal strength, fringe contrast, and
offset angle in momentum space. We also analyzed how these
features are influenced by the pulse characteristics, such as in-
tensity, ellipticity, envelope shape, carrier-envelope phase, and
duration. Evidently, those pulse characteristics reveal impor-
tant physical insights, as the asymptotic electron momentum
signal at a specific final kinetic energy can be associated with
different release times and exit positions in the field. Finally,
we showed a signature in the PMD for the onset of over-the-
barrier ionization.

We hope that this work will stimulate experimental efforts
to further tailor few-cycle pulses in order to reveal yet unex-
plored strong-field effects. In particular, we suggest to employ
pulses with low ellipticity (0.4–0.6) in attoclock setups. As
shown in this paper, they could become promising tools to
unravel tunneling phenomena and information on electron
wave packets under the combined effect of the electric field
and the Coulomb potential.
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