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Knowledge of the fundamental limitations on a magnetic trap for neutral particles is of paramount interest to
designers as it allows for the rapid assessment of the feasibility of specific trap requirements or the quality of
a given design. In this paper, performance limitations are defined for convexity of magnetic trapping potential
and bias field using a local approximation in the trapping center. As an example, the fundamental bounds are
computed for current supporting regions in the form of a spherical shell, a cylindrical region, and a box. A
Pareto-optimal set considering both objectives is found and compared with known designs of the baseball trap
and loffe-Pritchard trap. The comparison reveals a significant gap in the performance of classical trap designs
from fundamental limitations. This indicates a possibility of improved trap designs and modern techniques of
shape synthesis are applied in order to prove their existence. The topologically optimized traps perform almost
two times better as compared to conventional designs. Last, but not least, the developed framework might serve
as a prototype for the formulation of fundamental limitations on plasma confinement in a wider sense.
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I. INTRODUCTION

Magnetic trapping of neutral particles prepared in low-field
seeking Zeeman states is a well-documented topic [1-3] with
major applications in preparing the grounds for subsequent
optical cooling [4-7] and Bose-Einstein condensation [8—10].
In the current state of the art, several successful designs of
traps are used and thoroughly described [11]. Among the most
popular designs are the loffe-Pritchard trap [11-13] and a trap
shaped like the seams of a baseball [11,14,15], which are
able to trap particles of temperature T & 6.3x1073Im/kg K
with I being the current flowing in the conductors, m being
the magnitude of the magnetic dipole moment, and kg being
Boltzmann’s constant [11].

Magnetic traps are characterized by many performance
metrics and criteria [1-3,11,13,16-18]. The most important
are trapping depth, trapping volume, magnetic-field mag-
nitude in the trapping center, dissipated power, thermal
management, and physical forces. In this paper, the studied
metrics are the depth of the trap and the field magnitude
inside the trap which suppresses the probability of spin flip
leading to the loss of trapped particles [2]. The performance
is normalized with respect to the dissipated power, which is
related to the thermal management and physical forces.

Although the designs of existing traps are advanced and
sophisticated [16—18], it is important to ask how they perform
in comparison to an ideal trap. This question is addressed in
this paper given the building material of the current-carrying
region and having complete freedom when shaping stationary
current density in it. The optimal currents give fundamental
bounds against which the realized designs should be com-
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pared when judging their performance, as well as show which
current paths lead to high-quality traps.

The fundamental bounds proposed in this paper are based
on an idea originally used to bound the performance of an-
tennas [19-21] and recently broadened to cover extremal
optical cross sections [22,23] or radiative heat transfer [24,25]
(see [26] for a recent review of the topic and an extensive
list of references). The basis of this framework is the use of
field quantities as optimized variables and is typically con-
nected to electromagnetic-field descriptions via field integral
equations [27-29], and quadratically constrained quadratic
programs (QCQPs) [30,31].

II. FORMULATION

Neglecting the effect of gravity, which is to be treated later,
trapping of a low-field seeking particle is, within the adiabatic
approximation [2,32], described by magnetic potential energy
[11,33]

¢ =—m-B~mB|. (1)

The approximation assumes a time-averaged magnetic dipole
moment m

B
m_
|BI

of the particle released into the magnetic trap pointing antipar-
allel in the direction of the magnetic field.

As is common in the literature [2,3,11,34], the quadratic
approximation is used to quantify the properties of the mag-
netic potential well forming the trap.

At that point, the potential (1) is expanded around the
center of the trap (chosen as the coordinate origin) as

2)
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FIG. 1. (a) Schematic of a two-dimensional isotropic potential well. (b) The cut along the x axis from the left panel is approximated by a
quadratic function at the trapping center where the force acting on the dipole is zero and ¢, is the potential energy in the trapping center. In
this isotropic case, the curvature is identical in all directions and proportional to eigenvalue A. (c), (d) Comparison of two potential wells with
the same curvature (c) or the same potential energy (d), but different trapping performances. Solid lines show better performance.

where F is the magnetic force acting on the dipole [33]
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and H is a symmetric Hessian matrix (tensor) evaluated at the
same point, the elements of which read
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with 97 and 9 j denoting derivatives with respect to Cartesian
coordinates, i.e., i, j € {x,y, z}. The Hessian matrix charac-
terizes the curvature of the potential at the trapping center.
Specifically, its eigenvalues A;

Hqi:)"iqi’ i € {172’3} (6)
determine the derivatives of the force (curvature of the po-
tential) along the directions defined by the corresponding
eigenvectors. Figure 1 shows the properties of the quadratic
approximation and demonstrates the meaning of the above
given quantities.

In order to simplify the algebra and to prepare the grounds
for establishing fundamental bounds on magnetic traps, aux-
iliary quantities quadratic in magnetic field are introduced
as follows. The squared magnitude of the magnetic field is
denoted as

® =B-B, 7
its gradient is denoted I' and defined componentwise as

_ 0B 0B

lN=— -B+B-—, 8
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and the Hessian matrix of function & is denoted as & with
elements
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All expressions are written in symmetric form to be prepared

for the subsequent optimization process. With the help of

(7)—(9), and in the vicinity of trapping center (3), the inter-

action of the magnetic dipole with the external magnetic field

can be written as

b = mV®, (10)
2
F= 55T (11
m? 1

Hij = gEU — EF,FJ

The metrics defining quality of magnetic traps for neutral
particles (see Fig. 1) are assessed as follows:

(1) The squared magnitude of magnetic field ® corre-
sponds to the ability of the magnetic trap to avoid spin flips
and should be high enough.

(2) Magnetic force F, acting upon a trapped particle, is
required to be zero in all directions of the magnetic trap,
which is the stationary condition for the trapped particle. The
condition is satisfied if, and only if, gradient I is a zero vector.

(3) Eigenvalues A; of Hessian matrix H are desired to be
positive so that the magnetic field forms a potential well in the
trapping center. Since force F is a zero vector in the trapping
center, only the first term in (12) is active and therefore the
eigenvalues &; of the Hessian matrix E are required to be
positive. For high localization of the trapped particle, the
curvature of the potential should be high.

In the static approximation used, the evaluation of the
above quantities is based on Biot-Savart’s law (see [33]
Sec. 10.2),

12)

o [ J@)x(r—r)
47 Jo  r—rP

where J is the current density flowing in the conductors of the
trap (r € §2) and g is the permeability of the vacuum. For a
real design of a trap, current density J is unique and is given
by the material distribution used and excitation, and (10)—(12)
can be directly used to judge the quality of the trap.

To set up the fundamental bounds on performance, the
dependence on material distribution and excitation must be
relaxed. To that point, consider current J as a free vari-
able (impressed current in a vacuum). Optimizing over this
variable, a question is then posed on what is the best pos-
sible current density existing in a given region which will
lead to the best trapping properties. Quantities ¢ and X; are
the objectives to be maximized (optimized) in the sense
of fundamental bounds with a constraint I'; =0 T?m™!,

B(r) = av’, (13)
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i € {x,y, z}. The worst case is always considered among the
eigenvalues A;:

Amin =mink;, ie€{l,2,3}. (14)
l
An additional constraint preventing the current density to
reach infinity in magnitude has to be set. A convenient one
is the restriction on power lost [33] in the supporting current
material:

1
=L / JOPav, (15)
o Jo

where o is the conductivity of the material used. The lost
power heats the conductors and it is constrained by the maxi-
mum allowed lost power P,

Not including a normalization introduced later, the desired
multiobjective optimization problem, setting the upper bounds
on performance of any magnetic trap with current density J,
reads

max Emin

s.t. PL = P,
D = D, O € [Pyin, Prnax]s
Ii=0,ief{x, vz}, (16)

where sweep in field strength &g provides the tradeoff be-
tween field strength and potential convexity, thus forming a
Pareto-optimal set [35] of values ¢ and Ay;y-

The feasibility region is restricted by ®p,x above which
the solution leads to concave potential in the trapping center
or violates the maximum allowed lost power A"**. The lower
limit ®,;, denotes the minimum field strength for which the
adiabatic approximation [2,32] assumed in (1) holds. Funda-
mental bounds on the performance of traps with vanishing
magnetic field at the trapping center, such as the quadrupole
and hexapole traps, are therefore not studied here. These traps
are nevertheless impractical with respect to particle spin flips.

III. RESULTS

The computation and evaluation of magnetic trap proper-
ties are based on current density. The technique used in this
paper is the Galerkin method [36] or method of moments
(MoM) [37,38] (see Appendix A). This applies to realized
traps, as well as to fundamental bounds. Conductors are as-
sumed in the form of highly conducting surfaces [39].

In the case of finding the optimal current distribution using
(16), the chosen current supporting regions are a spherical
shell, a cylindrical shell with a ratio of the diameter and height
equal to 1 further referenced only as a cylindrical region, and
a box. While the choice is free (multilayered surface regions
or volumetric current supporting regions can also be used), the
considered canonical surfaces are advantageous in a sense of
lower computational complexity' and are based on geometries
of practically used trap designs.

'Especially volumetric current supporting regions suffer from a
large number of degrees of freedom and become extremely compu-
tationally demanding in the case of topology optimization.

—

FIG. 2. Pareto-optimal points in curvature and a bias magnetic
field for different current supporting regions (sph — spherical shell,
cyl — cylindrical shell, and box), compared to selected realizations
(to — topology optimization [40] designs, IP — Ioffe-Pritchard trap,
and bb — baseball trap). The Pareto-optimal points of realizations
are highlighted by bold symbols and interconnected by dotted lines.
Black crosses denote values for which the current densities are shown
in Figs. 3-5 and 7.

The fundamental bound corresponding to a particular cur-
rent support then presents an upper limit on performance of
any trap design that fits into this current supporting region.
The above-mentioned regions then limit known trap designs,
namely, the loffe-Pritchard trap is supported by a cylindrical
region or by a box and the baseball trap is supported by a
spherical shell.

The solution to the optimization problem (16) is ap-
proached by its transformation into a convex QCQP that is
solved by standard methods [30,31]. The details are shown
in Appendix B. The Pareto-optimal set of points given by
solutions to the optimization problem for the given current
supporting regions (a spherical shell, a cylindrical shell, and a
box) are shown in Fig. 2, after applying normalization:

2
R
o, =20, (17)
/’L()PL
4
P R
=L e . 18
&n M%PLgmn (13)

The squared magnitude of magnetic field ® and the smallest

eigenvalue &, are normalized by radius p of the smallest
inscribed sphere centered at the trapping center,> conductor
resistivity R., free space permeability jo, and lost power P.

Inscribed sphere radius is determined by shortest distance between
the trapping center and any part of the conductor forming the trap.
The radius is related to the physical dimensions and the trapping
volume.
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FIG. 3. Optimal current densities on the current supporting re-
gions (a spherical shell, a cylindrical shell, and a box) performing
according to black cross marks in Fig. 2.

Normalization allows geometries to be compared regard-
less of the physical dimensions or the materials used as
conductors. This normalization was also employed in numer-
ical solution to (16) making it scale invariant. Consulting
definitions (10)—(12), the quantities depicted on the axis of
Fig. 2 are (apart from linear multiplication by the magnitude
of the magnetic dipole moment m) the normalized potential in
the trapping center ¢ and potential convexity Ap;p.

Comparing current supporting regions with the above-
mentioned normalization, the spherical shell performs best in
both observed parameters, followed by the cylindrical shell
and box. This ordering is nevertheless normalization depen-
dent; in this case, the dependency is due to radius of the
largest inscribed sphere p, which is native normalization for a
spherical current supporting region.

Selected optimal current densities corresponding to black
cross marks in Fig. 2 are shown in Fig. 3. The optimal current
density changes along the Pareto-optimal set. The optimal
points with strong bias magnetic field and low curvature are
realized by current densities the shape of which resembles a
solenoid. This gives an explanation for the lower performance
in the bias magnetic field of the baseball trap discussed later
because its geometry does not support this kind of current
density. The optimal points with the highest curvature are
realized by current density resembling a hexapole trap. The
central region of the Pareto frontier is occupied by current
densities resembling the shape of a baseball’s seam, one of
the classical trap designs described in Fig. 4. Notice also that
the optimal current densities are invariant with respect to the
0,Cy, operation (using Schoenflies notation [41]). Later on,
this symmetry property is employed in topology optimization.

Optimal current densities are typically impossible to real-
ize with realistic excitation. Their most important quality is
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FIG. 4. Current density on the baseball trap with angle o = 22°.
The baseball trap is composed of four contiguous planar arcs. Angle
o measures the tilt of the arc’s center with respect to its axis. The
four arcs are therefore defined by angles +«, —«, +o, and —« with
respect to x, y, —x, and —y, respectively [11].

the performance limitation, which cannot be overcome by any
realization. In that respect, Fig. 2 also shows the performance
of two widely used trap designs, the baseball trap [11,14,15]
and the Ioffe-Pritchard trap [3,11]. The performance of the
topology optimized designs is also included. The baseball trap
(see Fig. 4) is parametrized by its angle, in [11] denoted as «.
The Ioffe-Pritchard trap is parametrized by three parameters:
the relative radius of the loops creating the bias magnetic field
in the trapping center and their distance from the trapping
center, the relative distance of the vertical conductors from the
trapping center, and the ratio of currents in loops and vertical
conductors. The specific design of the loffe-Pritchard trap is
shown in Fig. 5. Both designs are made of conductive strips
of width w. Particularly, strip width w = 0.2R is used for
all baseball and Ioffe-Pritchard traps with R being the radius
(see Figs. 4 and 5).

FIG. 5. loffe-Pritchard trap configuration with performance ac-
cording to black cross mark in Fig. 2. Important variables related to
the normalized performance of this trap are ratio of distance between
loops and their radius 2a/R = 1.09, ratio of distance between wires
and radius of loops 2d /R = 1.53, and ratio of currents in loops and
wires Iy /I, = 1.84.
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FIG. 6. Potential profiles generated by optimal current densities
corresponding to maximal curvature. Potential wells are depicted
in chosen directions with d being the distance from the trapping
center. Potentials along vector ¢ are denoted by light lines, while the
potentials along the z axis are denoted by dark lines.

By changing the parameters of the designs, their Pareto-
optimal sets were found. The angle defining the baseball trap
is Pareto optimal in the approximate range of 17° to 26°. The
Pareto-optimal performances of the Ioffe-Pritchard trap are
highlighted in Fig. 2 by bold symbols.

Potential wells generated by the realized and optimal cur-
rent densities corresponding to the black cross marks in Fig. 2
are shown in Fig. 6. Particular vectors ¢ along which the
potential is depicted are chosen as follows. The potential is
identical in plane xy for the spherical shell and the cylindrical
shell current supporting regions and arbitrary vector ¢ in plane
xy can be chosen for them. The potential corresponding to
the box support is shown along vector vT = [1, 1, 0], which
is the cut of the overall lowest increase of potential from the
center in the xy plane. The depicted lines, nevertheless, show
that the potential realized by the optimal current densities is
almost isotropic if d/p < 0.4, where the potential is identical
in all directions, and where the quadratic approximation is
sufficient. Potential wells realized by current densities in the
baseball and loffe-Pritchard traps, as well as the results of
topology optimization, are not generally isotropic and the
potential is depicted along the x and z axes, which do not
intersect with any conducting part of the trap. Although, in
general, higher curvature at the trapping center does not en-
sure an overall better trapping depth, the curves in Fig. 6 show
that it is the case for the optimal current density. In the sense
of fundamental bounds, the local quadratic approximation is,
therefore, legitimate. Despite the fact that the realized trap
designs are not forced to form locally isotropic potential wells,
Fig. 2 shows a large gap between the realized performance and
the fundamental bounds. This gap calls for better trap designs.

The normalized performance of the realized traps de-
pends on the width of the strip, which is mainly related
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FIG. 7. Current density excited in a design given by topology
optimization and corresponding to the black cross mark in Fig. 2.
As compared to the baseball trap in Fig. 4, the topology opti-
mized design achieves almost two times higher normalized potential
curvature.

to ohmic losses. By widening the conducting strips, perfor-
mance improvement can be achieved. This, nevertheless, has
diminishing returns since current density is concentrated at
the edges of the current carrying region. The simple idea of
dividing the strip into several disconnected current paths also
does not lead to any significant improvement. These observa-
tions show the necessity of topology changes which are, in
this paper, performed by the topology optimization scheme
developed in [40]. Topology optimized designs can also verify
the feasibility of performance limitations.

In topology optimization, the objective function is a convex
combination of field strength and potential convexity. The
vanishing force in the trapping center is ensured by assuming
the geometry and feeding invariant with respect to the 0,Cy,
operation [41] (see Appendix B). Optimization is applied to
a spherical shell fed by four identical sources placed at the
maxima of the optimal current density shown in Fig. 3. The
performance of Pareto-optimal designs obtained by topology
optimization is shown in Fig. 2. Furthermore, Fig. 7 shows
the design corresponding to black cross marks in Fig. 2. The
shape of the potential well generated by the current through
this trap is included in Fig. 6. Qualitatively, topology opti-
mization tries to reassemble the optimal current density given
by the fundamental bound on the spherical shell in Fig. 3.
The relative performance, as compared to the fundamental
bound, depends on the number of excitation points and their
positioning in the supporting region.

The performance of topologically optimized designs is sig-
nificantly higher than that of the baseball and Ioffe-Pritchard
traps. The improvement indicates that the hunt for the optimal
trap design is open for further investigation. In addition, the
results of topology optimization show that the requirement on
fundamental bounds to form a locally isotropic potential well
is natural, since the topologically optimized designs also form
a locally isotropic potential well, despite not being forced to
do so.

Despite the positive outcomes shown above, a further
investigation of the topic is nevertheless needed. The topologi-
cally optimized design, as well as the design of loffe-Pritchard
and baseball traps shown in this paper, all omit many
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practical design aspects, such as realistic feeding and mechan-
ical support of trap conductors. Furthermore, the topology
optimization used in this paper [40] relies on addition or
removal of basis functions ¥; defined in Appendix A. The
optimized design must, therefore, be interpreted only as a set
of chosen basis functions, which creates the optimized current
path. Such a structure is complicated to fabricate because it is
the interconnection of neighbor elements and not the presence
of mesh elements which is optimized.

IV. ADDITION OF GRAVITY

The preceding text did not consider the effects of gravity.
In cases of light particles and a strong prepolarizing field, the
previous theory can still be used, and only after optimization
the magnitude of the current is set so as to compensate for
gravity at a slightly off-center location. This process in general
breaks the invariance of the results to absolute dimensions
and physically larger traps suffer less from the effects of
gravity. In cases of physically small traps and heavy particles,
the effect of gravity must be taken into account rigorously.
This section shows the necessary modifications to the already
developed theoretical framework.

A starting point is an addition of a linear term into total
potential energy:

Gpo=-—m-B—myg-r. (19)

The gravitational field is assumed to be homogeneous and
dependent on object mass m, and gravity vector g. Proceed-
ing further to the local approximation (3), the linear term is
preserved:

¢t:¢o—(F+mgg)-r+%r~Hr. (20)

Using auxiliary quantities quadratic in magnetic field (7)-(9),
the terms in the Taylor polynomial read the same as (10)—(12)
except the total force, which incorporates the gravitational
force. The resulting multiobjective optimization equivalent to
(16) reads

max Amin
J

S.t. PL = Plr‘nax’
b = (Ds, ch € [quina q)max]’
F; = —myg;, i € {x,y,z}. 2D

As in the gravity-free case, the solution to the optimization
problem (21) is provided by its transformation into a convex
quadratically constrained quadratic program (QCQP). Details
can be found in Appendix C.

Consideration of gravity imposes an increase in compu-
tational complexity and loss of generality, which are also
highlighted in Appendix C. If gravity is taken into account,
the maximal allowed lost power, mass, magnetic dipole, and
gravity have to be explicitly specified. The results thus be-
come particle dependent and are not independent of absolute
dimensions anymore. The detailed study of gravity effects is
left as a topic of future, more design-focused, research.

V. CONCLUSION

The performance limits on the magnetic traps were studied
using local approximation and numerical methods, mainly the
Galerkin method and convex optimization. The bias field and
convexity were the analyzed objectives. Fundamental bounds
of normalized metrics, the Pareto-optimal set, were found
for different current supporting regions: a spherical shell, a
cylindrical region, and a box. Performances of the baseball
trap and the Ioffe-Pritchard trap were compared to the limits
given by the regions, which support these designs.

Optimal current density realizing the fundamental bound
can serve as an inspiration for the improvement of the actual
designs. Nevertheless, shape optimization was also used to
narrow the gap in the performance of fundamental bounds
and known designs. Design topology is optimized in order to
increase its performance with the absolute benchmark being
the fundamental bound for the same current supporting the
region.

The determination of fundamental bounds is an important
step when the performance of a design is assessed and fu-
ture research in this area should focus on the extension of
the presented formulation for magnetic traps with multiple
trapping centers [42], which can easily be treated solely by
modifying the objective function and by adding constraints.
Besides, a detailed study should be performed on the effects of
gravity on specific particles and their influence significance on
performance limitations. In addition, an effort should also be
made in extending the formulation into the fields of trapping
charged particles, i.e., plasma confinement.
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APPENDIX A: MATRIX DESCRIPTION

The description of field in this paper is based on current
density expansion into a set of basis functions ¥;. Current
density flowing in conductors is represented by these basis
functions with expansion coefficients /;,

J@) =Y L), (A1)
1
collected into column vector I = [I;]. In the case of optimiza-
tion, current expansion vector I is taken as the optimized
variable [19-21]. In the case of trap design, the current ex-
pansion vector results from a solution to a system of linear
equations:

Z1=V, (A2)

where Z is the system (impedance) matrix and V collects the
projections of electric excitation onto the used basis functions.
In this paper, system matrix Z comes from the application of
the Galerkin method [36] or MoM [37,38], to the electric-
field integral equation. Loop-star decomposition [43] has been
employed to allow the operation under quasistatic conditions.
In all studied cases, the current density was composed of
looplike currents, which assures a vanishing divergence of
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current density. The decomposition is performed numerically
with high precision, considering the electric energy to be
vanishingly small as compared to magnetic energy.

Expansion (A1) also allows a magnetic field with its spa-
tial derivatives and lost power to be expressed as linear or
quadratic forms of column vector I:

(1) The magnetic field and its derivatives at the trapping
center are represented by matrices B, B ;, and B ;; as

B ~ BI, (A3)
OB
P MBI (Ad)
, 9°B
02 i~ B,1, (AS)

respectively, where i and j represent spatial variables
x,y, and z and the comma in the lower index stands for
derivatives with respect to variables following it. Spatial
derivatives of magnetic field are normalized by the shortest
distance p between the trapping center and the current car-
rying region. Such normalization enforces equal units to all
matrices B, B ;, and B ;; which is advantageous for mathemat-
ical operations in Appendix B.
(2) Lost power is expressed as

~ 1 H
P~ TR (A6)

where R,, is the lost power matrix [21,37].

According to (7)—(9), the matrices of the magnetic field
and its spatial derivatives (A3)—(AS5) are used to express the
squared magnitude of the magnetic field, its gradient’s ele-
ments, and the Hessian matrix’s elements as quadratic forms:

o ~ oI, (A7)
ol ~ THT 1, (A8)
p* 8 ~ THE I, (A9)
where
= B"B, (A10)
I, =B"B+B"B, (A11)
E,; =B B+B"B;;+B B;+B'B;, (Al2)

all share the same units.

APPENDIX B: CONVEX OPTIMIZATION

Evaluation of fundamental bounds on magnetic confine-
ment is based on optimization where the current expansion
coefficients (A1) are the degrees of freedom (16). The opti-
mization is formulated as a QCQP [30,31].

In order to rewrite (16) as a QCQP, an assumption on the
Hessian matrix (9) has to be made. The minimal eigenvalue
(14) in (16) cannot, in general, be represented via a quadratic
function. To overcome this difficulty, the off-diagonal terms
in the Hessian matrix are enforced to be zero and the diag-
onal terms are enforced so all are equal by the constraints
of optimization. The restriction results in a locally isotropic
potential well in the magnetic trap and, due to the symmetry,
it can be applied to a spherical current supporting region

without any impact. The same assumption is also done for
other current supporting regions: cylindrical shell and box.
In these later cases, such a bound might then be too pes-
simistic as better performance can possibly be achieved by
using a nonsymmetrical potential well. The results presented
in Sec. III, nevertheless, show that common trap designs still
perform worse than these “restricted” fundamental bounds.

The QCQP equivalent to the optimization problem (16)
with the aforementioned assumption reads

max I o &
I

s.t. "R, I — ngmx 0,
IH|: ] , @ € [Prin, Prmaxl,
Pmdx
"T1=0, i€ {xyz,
ME; — E;)I=0, Vi#j,
ME,I1=0, Vi#j. (BI)

The problem is numerically solved via a dual formulation
[30,31] by using MATLAB code [44] and exhibits no dual-
ity gap for the studied scenarios. Numerical implementation
should also include normalizations (17) and (18) which make
it scale invariant. In order to demonstrate the solution and
implementation steps, a simplified MATLAB script is accessible
as “exMagTrap.m” in the examples folder of a Fundamental
Bounds addon in [45].

Although the problem (16), and therefore (B1), can be
solved directly, it allows for a large reduction in the degrees of
freedom which is computationally advantageous. From (16),
with (7)-(9) in mind, it is observed that the current density
generating a simultaneously vanishing magnetic field, as well
as its first and second derivatives, cannot contribute to the
solution. The appropriate low-dimensional solution subspace
is, therefore, given by eigenvectors corresponding to nonzero
eigenvalues of a generalized eigenvalue problem

(Q"Q)I = BRI, (B2)
where
H
@=[B" BL Bj BI BI Bl BL].
(B3)

Due to the orthogonality of the eigenvectors with respect to
lost power, those eigenvectors with zero eigenvalues can only
decrease the performance of the magnetic trap.

If a magnetic field is considered only in the direction
along the z axis, as is the case of Sec. III, the force [the
third constraint in (16)] can be zeroed a priori before solving
the optimization problem. This is done by using the null
space of a matrix, the rows of which are specific compo-
nents of a magnetic-field operator and of its first derivatives,
as a solution subspace. Namely, components B, B,, and
B, ;, Vi € {x,y, 7}, are used in Sec. III. Consulting the law of
Biot and Savart (13), members of this subspace are invariant
with respect to the ¢,Cy4, operation [41], whenever the un-
derlying geometry allows it. This is advantageously used in
topology optimization, where the constraint on zero force in
the trapping center is enforced by aforementioned symmetry
of structure and feeding, greatly reducing the optimization
complexity.
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APPENDIX C: COMPUTATIONAL ASPECTS
OF GRAVITY ADDITION

Following (21) to find the fundamental bound on the mag-
netic trap and Appendix B, changes need to be done in
comparison to (B1) in order to incorporate nonvanishing mag-
netic force at the trapping center. The modified optimization
problem [compare to (B1)] reads

max "=, 1,
s.t. MR, I — 2™ =0,

H Ps
I & — WRP I=0, & € [Pnin, Prmaxl,
L

g 2V
m
2m?
ME; - E;)l— —2 (g — &) =0,
2m2g-g-
H:!“ _ goidJ _
Mz 1 — 5 =0, (C1)

where i and j span all spatial coordinates {x, y, z}. The solu-
tion is implicitly dependent on parameters P{"**, my, g;, and
m, which determine all possible Pareto-optimal solutions. The
optimization can be solved by using the same tool as in the
gravity-free case.

Advantageously, (B2) can still be applied in order to de-
crease the complexity of the computation. Moreover, if a
magnetic field and gravity are considered only in the direction
along the z axis, the force [the third constraint in (C1)] can be
treated a priori as in Appendix B. The only difference is that
matrix B, ; is excluded from the matrix used to compute null
space zeroing the forces solely in the direction along x and y
axes in this case. The component B, . is used to oppose the
gravity.

Contrary to the gravity-free case, the members of the afore-
mentioned null space are in general not invariant with respect
to the 0,Cy4; operation and this cannot be subsequently used
to simplify topology optimization. In addition, the constraint
equalizing the gravitational and magnetic forces has to be
treated, which results in a considerable increase in the com-
putational complexity of topology optimization.
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